--------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------- -- File: spi_control_sm_16.vhd -- -- -- Original file: spi_control_sm.vhd -- -- Created: 8-23-00 ALS -- This file contains the overall control of the SPI interface. It generates the slave -- select signals and the masks so that the SCK signals output to the SPI bus align properly -- with the data. It generates the control signals to the shift register and the receive -- data register. -- -- This SPI interface operates on bytes of data. When the START signal from the uC is -- asserted the byte-wide data in the SPI transmit register is transmitted on the SPI bus. -- When this transfer is complete, the BUSY signal is negated and the START signal is -- sampled. If the START signal is still asserted indicating that the uC has put new -- data in the SPI transmit register, the data in the transmit register will be transmitted. -- Each byte of data received from the SPI bus is captured in the receive register.The uC can -- read this data once the BUSY signal has negated. -- -- Revised: 9-6-00 ALS -- Revised: 9-12-00 ALS -- Revised: 10-17-00 ALS -- Revised: 10-19-00 ALS -- Revised: 10-27-00 ALS -- Revised: 12-12-02 JRH --------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------- -- Modified from 8 to 16 bit word size by Patrick Vogler -- 18th November 2009 -- -- Modifications are marked by: *Mod: -- -- Cleaned up by Quirin Weitzel -- 21th January 2010 --------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------- library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all; entity spi_control_sm is port( -- internal uC interface signals start : in std_logic; -- start transfer done : out std_logic; -- byte transfer is complete rcv_load : in std_logic; -- load control signal to spi receive register ss_mask_reg : in std_logic_vector(7 downto 0); -- uc slave select register, Caution! No modification, not word size ss_in_int : inout std_logic; -- internal sampled version of ss_in_n needed by uc to generate an interrupt xmit_empty : inout std_logic; -- flag indicating that spitr is empty xmit_empty_reset : in std_logic; -- xmit empty flag reset when spitr is written rcv_full : out std_logic; -- flag indicating that spirr has new data rcv_full_reset : in std_logic; -- rcv full flag reset when spirr is read cpha : in std_logic; -- clock phase from uc cpol : in std_logic; -- clock polarity from uc -- spi interface signals ss_n : out std_logic_vector(7 downto 0); -- slave select signals Caution! NO modification slave select, not word size ss_in_n : in std_logic; -- input slave select indicating master bus contention ss_n_int : inout std_logic; -- internal ss_n that is masked with slave select register -- internal interface signals sck_int : in std_logic; -- internal version of sck with cpha=1 sck_int_re : in std_logic; -- indicates rising edge on internal sck sck_int_fe : in std_logic; -- indicates falling edge on internal sck sck_re : in std_logic; -- indicates rising edge on external sck sck_fe : in std_logic; -- indicates falling edge on external sck xmit_shift : out std_logic; -- shift control signal to spi xmit shift register xmit_load : inout std_logic; -- load control signal to the spi xmit shift register clk1_mask : out std_logic; -- masks cpha=1 version of sck clk0_mask : out std_logic; -- masks cpha=0 version of sck -- clock and reset reset : in std_logic; -- active low reset clk : in std_logic -- clock ); end spi_control_sm; architecture DEFINITION of spi_control_sm is --**************************** Constants *************************************** constant RESET_ACTIVE : std_logic := '0'; constant SIXTEEN : std_logic_vector(4 downto 0) := "10000"; -- *Mod: width changed from 4 to 5 bits, Caution! bit counter --**************************** Signals *************************************** type SPI_STATE_TYPE is (IDLE, ASSERT_SSN1, ASSERT_SSN2, UNMASK_SCK, XFER_BIT, ASSERT_DONE, CHK_START, MASK_SCK, HOLD_SSN1, HOLD_SSN2, NEGATE_SSN); signal spi_state, next_spi_state : SPI_STATE_TYPE; signal bit_cnt : STD_LOGIC_VECTOR(4 downto 0); -- Caution! bit counter output *Mod: width changed from 4 to 5 bits signal bit_cnt_en : STD_LOGIC; -- count enable for bit counter signal bit_cnt_rst : STD_LOGIC; -- reset for bit counter from SPI control state machine signal bit_cnt_reset : STD_LOGIC; -- reset to bit counter that includes SS_IN_INT signal ss_in_neg : STD_LOGIC; -- SS_IN_N sampled with rising edge of clk signal ss_in_pos : STD_LOGIC; -- SS_IN_N sampled with negative edge of clk signal ss_n_out : STD_LOGIC_VECTOR(7 downto 0); -- output SS_N that are 3-stated if SS_IN_INT is asserted indicating another master slave select, -- do not change width --**************************** Component Definitions ******************************** -- 5-bit counter for bit counter component upcnt5 --*Mod: 5 instead of 4 bit counter port( cnt_en : in STD_LOGIC; -- Count enable clr : in STD_LOGIC; -- Active high clear clk : in STD_LOGIC; -- Clock qout : inout STD_LOGIC_VECTOR (4 downto 0) -- *Mod: 5 instead of 4 bit counter ); end component; begin --************************** Bit Counter Instantiation ******************************** BIT_CNTR : upcnt5 --*Mod: 5 instead of 4 bit counter port map( cnt_en => bit_cnt_en, clr => bit_cnt_reset, clk => sck_int, qout => bit_cnt ); --************************** SS_IN_N Input synchronization ******************************* -- When the SS_IN_N input is asserted, it indicates that there is another master on the bus -- that has selected this master as a slave. When this signal asserts, the SPI master needs -- to reset and tristate outputs. Therefore, the SS_IN_N input should be synchronized with the -- system clock to prevent glitches on this signal from reseting the SPI master. The proces -- below first samples SS_IN_N with the rising edge of the system clock and the falling edge -- of the system clock. If both of these samples show that the signal is asserted, then the -- internal SS_IN_INT signal will assert. SS_IN_INT is passed to the uC logic to generate an -- interrupt if interrupts have been enabled. It is also passed to the SCK logic and the -- SPI Xmit shift register to tri-state the SCK and MOSI outputs. ss_in_rising: process(clk, reset) begin if reset = RESET_ACTIVE then ss_in_pos <= '1'; elsif clk'event and clk = '1' then ss_in_pos <= ss_in_n; end if; end process; ss_in_falling: process (clk, reset) begin if reset = RESET_ACTIVE then ss_in_neg <= '1'; elsif clk'event and clk = '0' then ss_in_neg <= ss_in_n; end if; end process; ss_in_sample: process(clk,reset) begin if reset = RESET_ACTIVE then ss_in_int <= '1'; elsif clk'event and clk = '1' then if ss_in_pos = '0' and ss_in_neg = '0' then ss_in_int <= '0'; else ss_in_int <= '1'; end if; end if; end process; --************************** Bit Counter reset *************************************** -- The bit counter needs to be reset when the reset signal is asserted from the SPI control -- state machine is asserted and when SS_IN_INT is asserted -- is asserted bit_cnt_reset <= RESET_ACTIVE when bit_cnt_rst = RESET_ACTIVE or ss_in_int = '0' else not(RESET_ACTIVE); --************************** SPI Control State Machine ******************************* -- Register process registers next state signals -- Return to IDLE state whenever SS_IN_INT is asserted spi_sm_reg:process(clk, reset, ss_in_int) begin -- Set state to IDLE upon reset if (reset = RESET_ACTIVE or ss_in_int = '0') then spi_state <= IDLE; elsif clk'event and clk = '1' then spi_state <= next_spi_state; end if; end process; -- Combinatorial process determines next state logic spi_sm_comb: process(spi_state, start,bit_cnt, sck_re, sck_fe, sck_int_re, sck_int_fe, xmit_empty, cpha, cpol) begin -- set defaults clk0_mask <= '0'; clk1_mask <= '0'; bit_cnt_en <= '0'; bit_cnt_rst <= RESET_ACTIVE; next_spi_state <= spi_state; done <= '0'; xmit_shift <= '0'; xmit_load <= '0'; case spi_state is --********************* IDLE State ***************** when IDLE => if start = '1' and xmit_empty = '0' then next_spi_state <= ASSERT_SSN1; end if; --********************* ASSERT_SSN1 State ***************** when ASSERT_SSN1 => -- this state asserts SS_N and waits for first edge of SCK_INT -- SS_N must be asserted ~1 SCK before SCK is output from chip if sck_int_re = '1' then next_spi_state <= ASSERT_SSN2; end if; --********************* ASSERT_SSN2 State ***************** when ASSERT_SSN2 => -- this state asserts SS_N and waits for next edge of SCK_INT -- SS_N must be asserted ~1 SCK before SCK is output from chip if sck_int_fe = '1' then next_spi_state <= UNMASK_SCK; end if; --********************* UNMASK_SCK State ***************** when UNMASK_SCK => bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset bit_cnt_en <= '1'; -- enable bit counter clk1_mask <= '1'; -- unmask sck_1 xmit_load <= '1'; -- load SPI shift register if sck_int_re = '1' then -- first rising edge of CPHA=1 clock with SS_N asserted -- transition to XFER_BIT state and unmask CPHA=0 clk next_spi_state <= XFER_BIT; end if; --********************* XFER_BIT State ***************** when XFER_BIT => clk0_mask <= '1'; -- unmask CPHA=0 clock clk1_mask <= '1'; -- unmask CPHA=1 clock bit_cnt_en <= '1'; -- enable bit counter bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset xmit_shift <= '1'; -- enable shifting of SPI shift registers if bit_cnt = SIXTEEN then -- *Mod: SIXTEEN instead of EIGHT bit -- all 16 bits have transferred next_spi_state <= ASSERT_DONE; end if; --********************* ASSERT_DONE State ***************** when ASSERT_DONE => -- this state asserts done to the uC so that new data -- can be written into the transmit register or data -- can be read from the receive register done <= '1'; clk0_mask <= '1'; clk1_mask <= '1'; xmit_shift <= '1'; if sck_int_fe = '1' then next_spi_state <= CHK_START; end if; --********************* CHK_START State ***************** when CHK_START => clk0_mask <= '1'; clk1_mask <= '1'; done <= '1'; bit_cnt_en <= '1'; bit_cnt_rst <= not(RESET_ACTIVE); -- release bit counter from reset if cpha = '0' then -- when CPHA = 0, have to negate slave select and then -- re-assert it. Need to wait for last SCK pulse to complete -- and mask SCK before negating SS_N. if (sck_re = '1' and cpol = '1') or (sck_fe = '1' and cpol = '0') then clk0_mask <= '0'; clk1_mask <= '0'; next_spi_state <= MASK_SCK; end if; elsif start = '1' and xmit_empty = '0' then -- CPHA=1 and have more data to transfer, go back to -- UNMASK_CK state clk1_mask <= '1'; xmit_load <= '1'; -- load SPI shift register next_spi_state <= UNMASK_SCK; else -- CPHA=1 and no more data to transfer -- wait for last SCKs and then mask SCK if (sck_re = '1' and cpol = '1') or (sck_fe = '1' and cpol = '0') then clk0_mask <= '0'; clk1_mask <= '0'; next_spi_state <= MASK_SCK; end if; clk0_mask <= '0'; clk1_mask <= '1'; end if; --********************* MASK_SCK State ***************** when MASK_SCK => done <= '1'; -- wait for next internal SCK edge -- to help provide SS_N hold time if sck_int_fe <= '1' then next_spi_state <= HOLD_SSN1; end if; --********************* HOLD_SSN1 State ***************** when HOLD_SSN1 => -- This state waits for another SCK edge -- to provide SS_N hold time if sck_int_fe = '1' then next_spi_state <= HOLD_SSN2; end if; --********************* HOLD_SSN2 State ***************** when HOLD_SSN2 => -- This state waits for another SCK edge -- to provide SS_N hold time if sck_int_fe = '1' then next_spi_state <= NEGATE_SSN; end if; --********************* NEGATE_SSN State ***************** when NEGATE_SSN => -- SS_N should negate for an entire SCK -- This state waits for an SCK edge if sck_int_fe = '1' then next_spi_state <= IDLE; end if; --********************* Default State ***************** when others => next_spi_state <= IDLE; end case; end process; -- assert slave select when spi_state machine is in any state but IDLE or NEGATE_SSN ss_n_int <= '1' when (spi_state = IDLE or spi_state = NEGATE_SSN) else '0'; --xmit_load <= '1' when (spi_state = UNMASK_SCK) else '0'; --************************** Register Full/Empty flags ******************************* -- When data is loaded into the SPI transmit shift register from SPITR, the XMIT_EMPTY -- flag is set, indicating to the uC that new data can be written into SPITR. Note that -- the SPI transmit shift register is clocked from SCK, therefore, this flag is clocked -- from SCK. mt_flag_process: process (sck_int, xmit_empty_reset, reset) begin if xmit_empty_reset = RESET_ACTIVE or reset = RESET_ACTIVE then xmit_empty <= '0'; elsif sck_int'event and sck_int = '1' then if xmit_empty_reset = RESET_ACTIVE then -- reset empty flag because uC has written data to SPITR xmit_empty <= '0'; elsif xmit_load = '1' then -- set empty flag because SPITR data has been loaded into -- SPI transmit shift register xmit_empty <= '1'; end if; end if; end process; -- When data is loaded into SPIRR, the RCV_FULL flag is set, indicating to the uC that -- new data from the SPI bus has been received. full_flag_process: process (reset, clk) begin if reset = RESET_ACTIVE then rcv_full <= '0'; elsif clk'event and clk = '1' then if rcv_full_reset = RESET_ACTIVE then -- reset the full flag because the spirr has been read rcv_full <= '0'; elsif rcv_load = '1' then -- set the full flag because data has been loaded in spirr rcv_full <= '1'; end if; end if; end process; --************************** Slave Selects ******************************* -- The internal slave select signal generated by the SPI Control state machine -- is masked by the uC slave select register. The SS_N outputs are clocked on the -- falling edge of the system clock. ss_n_process: process ( reset, clk) variable i : integer; begin if reset = RESET_ACTIVE then ss_n_out <= (others => '1'); elsif clk'event and clk = '0' then for i in 0 to 7 loop if ss_n_int = '0' and ss_mask_reg (i) = '1' then ss_n_out(i) <= '0'; -- assert corresponding slave select else ss_n_out(i) <= '1'; end if; end loop; end if; end process; -- Slave selects are 3-stated if SS_IN_INT is asserted ss_n <= ss_n_out when ss_in_int = '1' else (others => 'Z'); end DEFINITION;