source: branches/AddingGoogleTestEnvironment/fact/analysis/gain/fit_spectra.C

Last change on this file was 17199, checked in by tbretz, 11 years ago
Implemented the option to fix the noise to sigma; fix noise to sigma as default; added new histograms which exclude the time marker channels; slightly modified start value for noise
File size: 29.4 KB
Line 
1#include <iomanip>
2#include <iostream>
3
4#include <TF1.h>
5#include <TH2.h>
6#include <TProfile2D.h>
7#include <TFile.h>
8#include <TFitResult.h>
9#include <TStyle.h>
10
11#include "MLog.h"
12#include "MLogManip.h"
13#include "MStatusArray.h"
14#include "MStatusDisplay.h"
15#include "MHCamera.h"
16#include "MGeomCamFACT.h"
17#include "MParameters.h"
18#include "MArrayI.h"
19#include "MRawRunHeader.h"
20#include "PixelMap.h"
21
22using namespace std;
23
24// --------------------------------------------------------------------------
25
26// Fit function for a single pe spectrum
27Double_t fcn_g(Double_t *xx, Double_t *par)
28{
29 const Double_t ampl = par[0];
30 const Double_t gain = par[1];
31 const Double_t sigma = par[2]*gain;
32 const Double_t cross = par[3];
33 const Double_t shift = par[4];
34 const Double_t noise = par[5]<0 ? sigma : par[5];
35 const Double_t expo = par[6];
36
37 Double_t y = 0;
38 for (int N=1; N<14; N++)
39 {
40 const Double_t muN = N*gain + shift;
41 const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise);
42
43 const Double_t p = TMath::Power(cross, N-1) * TMath::Power(N, -expo);
44
45 y += TMath::Gaus(xx[0], muN, sigN) * p / sigN;
46 }
47
48 const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
49 return ampl*sig1*y;
50}
51
52// Calculate the crosstalk from the function parameters
53Double_t xtalk(TF1 &f)
54{
55 Double_t cross = f.GetParameter(3);
56 Double_t expo = f.GetParameter(6);
57
58 Double_t y = 0;
59 for (int N=2; N<14; N++)
60 y += TMath::Power(cross, N-1) * TMath::Power(N, -expo);
61
62 return y / (y + 1);
63}
64
65// calculate the integral in units per millisecond
66double integral(TF1 &func, TH1 &hist)
67{
68 const Double_t sigma = func.GetParameter(2)*func.GetParameter(1);
69 const Double_t cross = func.GetParameter(3);
70 const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5);
71 const Double_t expo = func.GetParameter(6);
72
73 Double_t sum = 0;
74 for (int N=1; N<14; N++)
75 sum += TMath::Power(cross, N-1) * TMath::Power(N, -expo);
76
77 const Double_t scale = hist.GetBinWidth(1);
78 const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
79 const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale;
80
81 return integ/1e-9/1e6;
82}
83
84
85// --------------------------------------------------------------------------
86
87// Print function parameters
88void PrintFunc(TF1 &f, float integration_window=30)
89{
90 //cout << "--------------------" << endl;
91 cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl;
92 cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl;
93 cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl;
94 cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl;
95 cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl;
96 cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl;
97 if (f.GetParameter(5)>=0)
98 cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl;
99 cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl;
100 //cout << "--------------------" << endl;
101
102}
103
104// --------------------------------------------------------------------------
105
106// The parameters for the function are the filenam from the gain extraction
107// and the output filename
108int fit_spectra(const char *filename = "20130222_018_018.root",
109 const char *outfile = "20130222_018_018-fit.root",
110 bool fixednoise=true)
111{
112 // Read the mapping between bias channels and hardware channels
113 PixelMap pmap;
114 if (!pmap.Read("FACTmap111030.txt"))
115 {
116 cout << "FACTmap111030.txt not found." << endl;
117 return 1;
118 }
119
120 // It is more correct to fit the integral, but this is super
121 // slow, especially for 1440 pixel. To get that, one would have
122 // to analytically integrate and fit this function.
123 // (Currently the integral is switched off for the 1440 individual
124 // spectra in all cases)
125 bool fast = false; // Switch off using integral
126
127 // Values which should be read from the file but not available atm
128 Int_t integration_window = 30;
129
130 // Map for which pixel shall be plotted and which not
131 TArrayC usePixel(1440);
132 memset(usePixel.GetArray(), 1, 1440);
133
134 // List of Pixel that should be ignored in camera view
135 usePixel[424] = 0;
136 usePixel[923] = 0;
137 usePixel[1208] = 0;
138 usePixel[583] = 0;
139 usePixel[830] = 0;
140 usePixel[1399] = 0;
141 usePixel[113] = 0;
142 usePixel[115] = 0;
143 usePixel[354] = 0;
144 usePixel[423] = 0;
145 usePixel[1195] = 0;
146 usePixel[1393] = 0;
147
148 cout << setprecision(3);
149
150 // ======================================================
151 // Read data and histograms from file
152
153 TFile file(filename);
154 if (file.IsZombie())
155 {
156 gLog << err << "Opening file '" << filename << "' failed." << endl;
157 return 1;
158 }
159
160 MStatusArray arr;
161 if (arr.Read()<=0)
162 {
163 gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl;
164 return 2;
165 }
166
167 TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles");
168 if (!hsignal)
169 {
170 gLog << err << "Histogram Signal not found in '" << filename << "'." << endl;
171 return 3;
172 }
173 TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles");
174 if (!htime)
175 {
176 gLog << err << "Histogram Time not found in '" << filename << "'." << endl;
177 return 4;
178 }
179 TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles");
180 if (!hpulse)
181 {
182 gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl;
183 return 5;
184 }
185 TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline");
186 if (!hbase)
187 {
188 gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl;
189 return 6;
190 }
191
192 MRawRunHeader header;
193 if (header.Read()<=0)
194 {
195 gLog << err << "MRawRunheader not found in '" << filename << "'." << endl;
196 return 7;
197 }
198
199 MParameterI par("NumEvents");
200 if (par.Read()<=0)
201 {
202 gLog << err << "NumEvents not found in '" << filename << "'." << endl;
203 return 8;
204 }
205
206 MArrayI ext;
207 if (ext.Read("ExtractionRange")<=0)
208 {
209 gLog << err << "ExtractionRange not found in '" << filename << "'." << endl;
210 return 9;
211
212 }
213
214 // ======================================================
215
216 MStatusDisplay *d = new MStatusDisplay;
217
218 // Camera geometry for displays
219 MGeomCamFACT fact;
220
221 // ------------------ Spectrum Fit ---------------
222 // Instantiate the display histograms
223 MHCamera cRate(fact);
224 MHCamera cGain(fact);
225 MHCamera cRelSigma(fact);
226 MHCamera cCrosstalk(fact);
227 MHCamera cBaseline(fact);
228 MHCamera cNoise(fact);
229 MHCamera cChi2(fact);
230 MHCamera cNormGain(fact);
231 MHCamera cFitProb(fact);
232 MHCamera cCrosstalkP(fact);
233 MHCamera cCoeffR(fact);
234
235 // Set name and title for the histograms
236 cRate.SetNameTitle ("Rate", "Dark count rate");
237 cGain.SetNameTitle ("Gain", "Gain distribution");
238 cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");
239 cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability");
240 cBaseline.SetNameTitle ("Baseline", "Baseline per sample");
241 cNoise.SetNameTitle ("Noise", "Noise per sample");
242 cChi2.SetNameTitle ("Chi2", "\\Chi^2");
243 cNormGain.SetNameTitle ("NormGain", "Normalized gain");
244 cFitProb.SetNameTitle ("FitProb", "Root's fit probability");
245 cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");
246 cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");
247
248 // Instantiate 1D histograms for the distributions
249 // including TM channels
250 TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15);
251 TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400);
252 TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40);
253 TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 90, 0, 0.30);
254 TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5);
255 TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30);
256 TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4);
257 TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5);
258 TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1);
259 TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 90, 0, 0.3);
260 TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2);
261
262 // excluding TM channels
263 TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15);
264 TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400);
265 TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40);
266 TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 90, 0, 0.30);
267 TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5);
268 TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30);
269 TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4);
270 TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5);
271 TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1);
272 TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 90, 0, 0.3);
273 TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2);
274
275 // Histigram for the sum of all spectrums
276 TH1F hSum("Sum1", "Signal spectrum of all pixels",
277 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
278 hSum.SetXTitle("pulse integral [mV sample]");
279 hSum.SetYTitle("Counts");
280 hSum.SetStats(false);
281 hSum.Sumw2();
282
283 // Histogram for the sum of all pixels excluding the ones with faulty fits
284 TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (incl TM)",
285 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
286 hSumClear1.SetXTitle("pulse integral [mV sample]");
287 hSumClear1.SetYTitle("Counts");
288 hSumClear1.SetStats(false);
289 hSumClear1.SetLineColor(kBlue);
290 hSumClear1.Sumw2();
291
292 TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)",
293 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
294 hSumClear2.SetXTitle("pulse integral [mV sample]");
295 hSumClear2.SetYTitle("Counts");
296 hSumClear2.SetStats(false);
297 hSumClear2.SetLineColor(kBlue);
298 hSumClear2.Sumw2();
299
300 // Arrival time spectrum of the extracted pulses
301 TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax());
302 hTime.SetXTitle("pulse arrival time [sample]");
303 hTime.SetYTitle("Counts");
304 hTime.SetStats(false);
305
306 // average pulse shape of the extracted pulses
307 TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax());
308 hPulse.SetXTitle("pulse arrival time [sample]");
309 hPulse.SetYTitle("Counts");
310 hPulse.SetStats(false);
311
312 // Spektrum for the normalized individual spectra
313 TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (incl TM)", 120, 0.05, 12.05);
314 hSumScale1.SetXTitle("pulse integral [pe]");
315 hSumScale1.SetYTitle("Rate");
316 hSumScale1.SetStats(false);
317 hSumScale1.Sumw2();
318
319 TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05);
320 hSumScale2.SetXTitle("pulse integral [pe]");
321 hSumScale2.SetYTitle("Rate");
322 hSumScale2.SetStats(false);
323 hSumScale2.Sumw2();
324
325 // define fit function for Amplitudespectrum
326 TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7);
327 func.SetNpx(2000);
328 func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo");
329 func.SetLineColor(kRed);
330
331 //--------------------- fill sum spectrum --------------------------------
332
333 d->SetStatusLine("Calculating sum spectrum", 0);
334
335 // Begin of Loop over Pixels
336 for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++)
337 {
338 //jump to next pixel if the current is marked as faulty
339 if (usePixel[pixel]==0)
340 continue;
341
342 TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
343 hSum.Add(hist);
344 delete hist;
345 }
346
347 //----------------- get starting values -------------------------------
348
349 hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax());
350
351 const Int_t maxbin = hSum.GetMaximumBin();
352 const Double_t maxpos = hSum.GetBinCenter(maxbin);
353 const Double_t binwidth = hSum.GetBinWidth(maxbin);
354 const Double_t ampl = hSum.GetBinContent(maxbin);
355
356 double fwhmSum = 0;
357
358 //Calculate full width half Maximum
359 for (int i=1; i<maxbin; i++)
360 if (hSum.GetBinContent(maxbin-i)+hSum.GetBinContent(maxbin+i)<ampl)
361 {
362 fwhmSum = 2*(i-0.5)*binwidth;
363 break;
364 }
365
366 if (fwhmSum==0)
367 {
368 gLog << warn << "Could not determine start value for sigma." << endl;
369 }
370
371 Double_t sigma_est = fwhmSum/2.3548; // FWHM = 2*sqrt(2*ln(2))*sigma
372
373 Double_t fitmin = maxpos-3*sigma_est; // was 3
374 Double_t fitmax = hSum.GetXaxis()->GetXmax();
375
376 // ------------------- fit --------------------------------
377
378 //Fit and draw spectrum
379 func.SetParLimits(0, 0, 2*ampl); // Amplitude
380 func.SetParLimits(1, 0, 2*maxpos); // Gain
381 func.SetParLimits(2, 0, 1); // Sigma
382 func.SetParLimits(3, 0, 1); // Crosstalk
383 if (!fixednoise)
384 func.SetParLimits(5, 0, 150); // Noise
385
386 func.SetParameter(0, ampl); // Amplitude
387 func.SetParameter(1, maxpos); // Gain
388 func.SetParameter(2, 0.1); // Sigma
389 func.SetParameter(3, 0.16); // Crosstalk
390 func.SetParameter(4, 0*integration_window); // Baseline
391 if (fixednoise)
392 func.FixParameter(5, -1); // Noise
393 else
394 func.SetParameter(5, 0.1*maxpos); // Noise
395
396 func.SetParameter(6, 0.4); // Expo
397
398 func.SetRange(fitmin, fitmax);
399 hSum.Fit(&func, fast?"N0QSR":"IN0QSR");
400
401 Double_t res_par[7];
402 func.GetParameters(res_par);
403
404 //func.FixParameter(6, func.GetParameter(6)); // Expo
405
406 // ------------------ display result -------------------------------
407
408 cout << "--------------------" << endl;
409 cout << "AmplEst: " << ampl << endl;
410 cout << "GainEst: " << maxpos << endl;
411 cout << "SigmaEst: " << sigma_est << endl;
412 PrintFunc(func, integration_window);
413 cout << "--------------------" << endl;
414
415 gROOT->SetSelectedPad(0);
416 TCanvas &c11 = d->AddTab("SumHist");
417 c11.cd();
418 gPad->SetLogy();
419 gPad->SetGridx();
420 gPad->SetGridy();
421 hSum.GetXaxis()->SetRange();
422 hSum.DrawCopy("hist");
423 func.DrawCopy("same");
424
425 // ===================================================================
426 // Gain Calculation for each Pixel
427 // ===================================================================
428
429 // counter for number of processed pixel
430 int count_ok = 0;
431
432 // Begin of Loop over Pixels
433 for (Int_t pixel=0; pixel<hsignal->GetNbinsX(); pixel++)
434 {
435 // User information
436 d->SetStatusLine(Form("Fitting pixel #%d", pixel), 0);
437 d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1);
438
439 // Skip pixels known to be faulty
440 if (usePixel[pixel]==0)
441 continue;
442
443 //Projectipon of a certain Pixel out of Ampl.Spectrum
444 TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
445 hist->SetDirectory(0);
446
447 if (hist->GetEntries()<100)
448 {
449 gLog << warn << pixel << " ...histogram empty." << endl;
450 usePixel[pixel] = 0;
451 delete hist;
452 continue;
453 }
454
455 //Rebin Projection
456 hist->Rebin(2);
457
458 // Fit range
459 hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax());
460
461 // Determine start values
462 const Int_t maxBin = hist->GetMaximumBin();
463 const Double_t maxPos = hist->GetBinCenter(maxBin);
464
465 const Double_t gain = res_par[1];
466 const Double_t GainRMS = res_par[2];
467
468 const double fit_min = maxPos-GainRMS*gain*2.5;
469 const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5);
470
471 TArrayD cpy_par(7, res_par);
472
473 cpy_par[0] = hist->GetBinContent(maxBin);
474 cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline
475
476 func.SetParameters(cpy_par.GetArray());
477 func.SetParLimits(0, 0, 2*cpy_par[0]);
478 func.SetParLimits(1, 0, 2*cpy_par[1]);
479
480 // For individual spectra, the average fit yields 1 anyway
481 //func.SetParameter(6, 0); // Expo
482
483 // ----------- Fit Pixels spectrum ---------------
484
485 const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max);
486
487 // ----------- Calculate quality parameter ---------------
488
489 Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min);
490 Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max);
491
492 Double_t chi2 = 0;
493 Int_t cnt = 0;
494 for (int i=b1; i<=b2; i++)
495 {
496 if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5)
497 continue;
498
499 const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1));
500 const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i);
501
502 const Double_t chi = (v-y)/v;
503
504 chi2 += chi*chi;
505 cnt ++;
506 }
507
508 chi2 = cnt==0 ? 0 : sqrt(chi2/cnt);
509
510 // ----------------- Fit result --------------------
511
512 const double fit_prob = rc->Prob();
513
514 const float fRate = integral(func, *hist)/(ext[pixel]*0.5);
515 const float fGain = func.GetParameter(1);
516 const float fGainRMS = func.GetParameter(2);
517 const float fCrosstalkP= func.GetParameter(3);
518 const float fCrosstlk = xtalk(func);
519 const float fOffset = func.GetParameter(4);
520 const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window);
521 const float fCoeffR = func.GetParameter(6);
522
523 // Fill histograms with result values
524 cRate.SetBinContent( pixel+1, fRate);
525 cGain.SetBinContent( pixel+1, fGain);
526 cRelSigma.SetBinContent( pixel+1, fGainRMS);
527 cCrosstalk.SetBinContent( pixel+1, fCrosstlk);
528 cBaseline.SetBinContent( pixel+1, fOffset/integration_window);
529 cNoise.SetBinContent( pixel+1, fNoise);
530 cChi2.SetBinContent( pixel+1, chi2);
531 cNormGain.SetBinContent( pixel+1, fGain/gain);
532 cFitProb.SetBinContent( pixel+1, fit_prob);
533 cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP);
534 cCoeffR.SetBinContent( pixel+1, fCoeffR);
535
536 // ======================================================
537
538 // Try to determine faulty fits
539
540 bool ok = int(rc)==0;
541
542 // mark pixels suspicious with failed fit
543 if (!ok)
544 gLog << warn << pixel << " ...fit failed!" << endl;
545
546 // mark pixels suspicious with negative GainRMS
547 if (fabs(fGain/gain-1)>0.3)
548 {
549 gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl;
550 ok = 0;
551 }
552
553 if (fabs(fOffset/integration_window)>3)
554 {
555 gLog << warn << pixel << " ...baseline deviates." << endl;
556 ok = 0;
557 }
558
559 // cancel out pixel where the fit was not succsessfull
560 usePixel[pixel] = ok;
561
562 // Plot pixel 0 and 5 (TM) and all faulty fits
563 if (pixel==0 || pixel==5 || !ok)
564 {
565 TCanvas &c = d->AddTab(Form("Pix%d", pixel));
566 c.cd();
567 gPad->SetLogy();
568 gPad->SetGridx();
569 gPad->SetGridy();
570
571 hist->SetStats(false);
572 hist->SetXTitle("Extracted signal");
573 hist->SetYTitle("Counts");
574 hist->SetName(Form("Pix%d", pixel));
575 hist->GetXaxis()->SetRange();
576 hist->DrawCopy("hist")->SetDirectory(0);
577 func.DrawCopy("SAME")->SetRange(fit_min, fit_max);
578
579 cout << "--------------------" << endl;
580 cout << "Pixel: " << pixel << endl;
581 cout << "fit prob: " << fit_prob << endl;
582 cout << "AmplEst: " << cpy_par[0] << endl;
583 cout << "GainEst: " << cpy_par[1] << endl;
584 PrintFunc(func, integration_window);
585 cout << "--------------------" << endl;
586 }
587
588 if (!ok)
589 {
590 delete hist;
591 continue;
592 }
593
594 // Fill Parameters into histograms
595 hRate1.Fill( fRate);
596 hGain1.Fill( fGain);
597 hRelSigma1.Fill( fGainRMS);
598 hCrosstalk1.Fill( fCrosstlk);
599 hBaseline1.Fill( fOffset/integration_window);
600 hNoise1.Fill( fNoise);
601 hChiSq1.Fill( chi2);
602 hNormGain1.Fill( fGain/gain);
603 hFitProb1.Fill( fit_prob);
604 hCrosstalkP1.Fill(fCrosstalkP);
605 hCoeffR1.Fill( fCoeffR);
606
607 if (!pmap.index(pixel).isTM())
608 {
609 hRate2.Fill( fRate);
610 hGain2.Fill( fGain);
611 hRelSigma2.Fill( fGainRMS);
612 hCrosstalk2.Fill( fCrosstlk);
613 hBaseline2.Fill( fOffset/integration_window);
614 hNoise2.Fill( fNoise);
615 hChiSq2.Fill( chi2);
616 hNormGain2.Fill( fGain/gain);
617 hFitProb2.Fill( fit_prob);
618 hCrosstalkP2.Fill(fCrosstalkP);
619 hCoeffR2.Fill( fCoeffR);
620 }
621
622 // Fill sum spectrum
623 for (int b=1; b<=hist->GetNbinsX(); b++)
624 hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
625
626 if (!pmap.index(pixel).isTM())
627 for (int b=1; b<=hist->GetNbinsX(); b++)
628 hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
629
630 delete hist;
631
632 // Because of the rebinning...
633 hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
634 hSumClear1.Add(hist);
635 if (!pmap.index(pixel).isTM())
636 hSumClear2.Add(hist);
637 delete hist;
638
639 hist = htime->ProjectionY("proj", pixel+1, pixel+1);
640 hTime.Add(hist);
641 delete hist;
642
643 hist = hpulse->ProjectionY("proj", pixel+1, pixel+1);
644 hPulse.Add(hist);
645 delete hist;
646
647 count_ok++;
648 }
649
650 //------------------fill histograms-----------------------
651 // Display only pixels used and with valid fits
652
653 cRate.SetUsed(usePixel);
654 cGain.SetUsed(usePixel);
655 cRelSigma.SetUsed(usePixel);
656 cCrosstalk.SetUsed(usePixel);
657 cBaseline.SetUsed(usePixel);
658 cNoise.SetUsed(usePixel);
659 cChi2.SetUsed(usePixel);
660 cNormGain.SetUsed(usePixel);
661 cFitProb.SetUsed(usePixel);
662 cCrosstalkP.SetUsed(usePixel);
663 cCoeffR.SetUsed(usePixel);
664
665 // --------------------------------------------------------
666 // Display data
667
668 TCanvas *canv = &d->AddTab("Cams1");
669 canv->Divide(3,2);
670
671 canv->cd(1);
672 cRate.DrawCopy();
673
674 canv->cd(2);
675 cGain.DrawCopy();
676
677 canv->cd(3);
678 cBaseline.DrawCopy();
679
680 canv->cd(4);
681 cRelSigma.DrawCopy();
682
683 canv->cd(5);
684 cCrosstalk.DrawCopy();
685
686 canv->cd(6);
687 cNoise.DrawCopy();
688
689
690 canv = &d->AddTab("Cams2");
691 canv->Divide(3,2);
692
693 canv->cd(1);
694 cFitProb.DrawCopy();
695
696 canv->cd(2);
697 cChi2.DrawCopy();
698
699 canv->cd(4);
700 cCoeffR.DrawCopy();
701
702 canv->cd(5);
703 cCrosstalkP.DrawCopy();
704
705 // --------------------------------------------------------
706
707 gStyle->SetOptFit(1);
708
709 canv = &d->AddTab("Hists1");
710 canv->Divide(3,2);
711
712 TH1 *hh = 0;
713
714 canv->cd(1);
715 hh = hRate1.DrawCopy();
716 hh = hRate2.DrawCopy("same");
717
718 canv->cd(2);
719 hh = hGain1.DrawCopy();
720 hh = hGain2.DrawCopy("same");
721 hh->Fit("gaus");
722
723 canv->cd(3);
724 hh = hBaseline1.DrawCopy();
725 hh = hBaseline2.DrawCopy("same");
726 hh->Fit("gaus");
727
728 canv->cd(4);
729 hh = hRelSigma1.DrawCopy();
730 hh = hRelSigma2.DrawCopy("same");
731 hh->Fit("gaus");
732
733 canv->cd(5);
734 hh = hCrosstalk1.DrawCopy();
735 hh = hCrosstalk2.DrawCopy("same");
736 hh->Fit("gaus");
737
738 canv->cd(6);
739 hh = hNoise1.DrawCopy();
740 hh = hNoise2.DrawCopy("same");
741 hh->Fit("gaus");
742
743 // --------------------------------------------------------
744
745 canv = &d->AddTab("Hists2");
746 canv->Divide(3,2);
747
748 canv->cd(1);
749 gPad->SetLogy();
750 hh = hFitProb1.DrawCopy();
751 hh = hFitProb2.DrawCopy("same");
752 hh->Fit("gaus");
753
754 canv->cd(2);
755 hChiSq1.DrawCopy();
756 hChiSq2.DrawCopy("same");
757
758 canv->cd(4);
759 hh = hCoeffR1.DrawCopy();
760 hh = hCoeffR2.DrawCopy("same");
761 hh->Fit("gaus");
762
763 canv->cd(5);
764 hh = hCrosstalkP1.DrawCopy();
765 hh = hCrosstalkP2.DrawCopy("same");
766 hh->Fit("gaus");
767
768 // --------------------------------------------------------
769
770 canv = &d->AddTab("NormGain");
771 canv->Divide(2,1);
772
773 canv->cd(1);
774 cNormGain.SetMinimum(0.8);
775 cNormGain.SetMaximum(1.2);
776 cNormGain.DrawCopy();
777
778 canv->cd(2);
779 gPad->SetLogy();
780 hh = hNormGain1.DrawCopy();
781 hh = hNormGain2.DrawCopy("same");
782 hh->Fit("gaus");
783
784 //------------------ Draw gain corrected sum specetrum -------------------
785 gROOT->SetSelectedPad(0);
786 c11.cd();
787 hSumClear1.DrawCopy("hist same");
788
789 //-------------------- fit gain corrected sum spectrum -------------------
790
791 gROOT->SetSelectedPad(0);
792 TCanvas &c11b = d->AddTab("CleanHist1");
793 c11b.cd();
794 gPad->SetLogy();
795 gPad->SetGridx();
796 gPad->SetGridy();
797
798 const Int_t maxbin1 = hSumClear1.GetMaximumBin();
799 const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1);
800
801 func.SetParameters(res_par);
802 func.SetParLimits(0, 0, 2*ampl1);
803 func.SetParameter(0, ampl1);
804 func.ReleaseParameter(6);
805
806 hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
807
808 hSumClear1.DrawCopy();
809 func.DrawCopy("same");
810
811 cout << "--------------------" << endl;
812 PrintFunc(func, integration_window);
813 cout << "--------------------" << endl;
814
815 //-------------------- fit gain corrected sum spectrum -------------------
816
817 gROOT->SetSelectedPad(0);
818 TCanvas &c11c = d->AddTab("CleanHist2");
819 c11c.cd();
820 gPad->SetLogy();
821 gPad->SetGridx();
822 gPad->SetGridy();
823
824 const Int_t maxbin1b = hSumClear2.GetMaximumBin();
825 const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b);
826
827 func.SetParameters(res_par);
828 func.SetParLimits(0, 0, 2*ampl1b);
829 func.SetParameter(0, ampl1b);
830 func.ReleaseParameter(6);
831
832 hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
833
834 hSumClear2.DrawCopy();
835 func.DrawCopy("same");
836
837 cout << "--------------------" << endl;
838 PrintFunc(func, integration_window);
839 cout << "--------------------" << endl;
840
841 //-------------------- fit gain corrected sum spectrum -------------------
842
843 gROOT->SetSelectedPad(0);
844 TCanvas &c12 = d->AddTab("GainHist1");
845 c12.cd();
846 gPad->SetLogy();
847 gPad->SetGridx();
848 gPad->SetGridy();
849
850 const Int_t maxbin2 = hSumScale1.GetMaximumBin();
851 const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2);
852
853 //Set fit parameters
854 Double_t par2[7] =
855 {
856 ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
857 };
858
859 func.SetParameters(par2);
860 func.SetParLimits(0, 0, 2*ampl2);
861 func.FixParameter(1, 1);
862 func.FixParameter(4, 0);
863
864 func.SetRange(0.62, 9);
865 hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
866
867 hSumScale1.DrawCopy();
868 func.DrawCopy("same");
869
870 cout << "--------------------" << endl;
871 PrintFunc(func, integration_window);
872 cout << "--------------------" << endl;
873
874 //-------------------- fit gain corrected sum spectrum -------------------
875
876 gROOT->SetSelectedPad(0);
877 TCanvas &c12b = d->AddTab("GainHist2");
878 c12b.cd();
879 gPad->SetLogy();
880 gPad->SetGridx();
881 gPad->SetGridy();
882
883 const Int_t maxbin2b = hSumScale2.GetMaximumBin();
884 const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b);
885
886 //Set fit parameters
887 Double_t par2b[7] =
888 {
889 ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
890 };
891
892 func.SetParameters(par2b);
893 func.SetParLimits(0, 0, 2*ampl2b);
894 func.FixParameter(1, 1);
895 func.FixParameter(4, 0);
896
897 func.SetRange(0.62, 9);
898 hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
899
900 hSumScale2.DrawCopy();
901 func.DrawCopy("same");
902
903 cout << "--------------------" << endl;
904 PrintFunc(func, integration_window);
905 cout << "--------------------" << endl;
906
907 //--------fit gausses to peaks of gain corrected sum specetrum -----------
908
909 d->AddTab("ArrTime");
910 gPad->SetGrid();
911 hTime.DrawCopy();
912
913 // -----------------------------------------------------------------
914
915 d->AddTab("Pulse");
916 gPad->SetGrid();
917 hPulse.DrawCopy();
918
919 // ================================================================
920
921 cout << "Saving results to '" << outfile << "'" << endl;
922 d->SaveAs(outfile);
923 cout << "..success!" << endl;
924
925 TFile f(outfile, "UPDATE");
926 par.Write();
927 ext.Write("ExtractionRange");
928 header.Write();
929
930 return 0;
931}
Note: See TracBrowser for help on using the repository browser.