source: branches/AddingGoogleTestEnvironment/mranforest/MRanForestCalc.h@ 20037

Last change on this file since 20037 was 9864, checked in by tbretz, 14 years ago
Added a new member function MRanForestCalc::Train
File size: 3.9 KB
Line 
1#ifndef MARS_MRanForestCalc
2#define MARS_MRanForestCalc
3
4#ifndef MARS_MTask
5#include "MTask.h"
6#endif
7
8#ifndef ROOT_TObjArray
9#include <TObjArray.h>
10#endif
11
12#ifndef ROOT_TArrayD
13#include <TArrayD.h>
14#endif
15
16#ifndef ROOT_MDataPhrase
17#include "MDataPhrase.h"
18#endif
19
20class MDataArray;
21class MParameterD;
22class MHMatrix;
23
24class MRanForestCalc : public MTask
25{
26public:
27 enum EstimationMode_t
28 {
29 kMean,
30 kMaximum,
31 kFit
32 };
33
34private:
35 static const TString gsDefName; //! Default Name
36 static const TString gsDefTitle; //! Default Title
37 static const TString gsNameOutput; //! Default Output name
38 static const TString gsNameEvalFunc; //! Evaluation function name
39
40 MDataArray *fData; //! Used to store the MDataChains to get the event values
41 MParameterD *fRFOut; //! Used to store result
42 MHMatrix *fTestMatrix; //! Test Matrix used in Process (together with MMatrixLoop)
43 MDataPhrase fFunc; //! Function to apply to the result
44
45 TObjArray fEForests; //! List of forests read or to be written
46
47 Int_t fNumTrees; //! Training parameters
48 Int_t fNumTry; //! Training parameters
49 Int_t fNdSize; //! Training parameters
50
51 Int_t fNumObsoleteVariables; //! Training parameters
52 Bool_t fLastDataColumnHasWeights; //! Training parameters
53
54 TString fFileName; // File name to forest
55 TString fNameOutput; // Name of output container
56
57 Bool_t fDebug; // Debugging of eventloop while training on/off
58
59 EstimationMode_t fEstimationMode; // Mode of estimation in case of multi random forest regression
60
61private:
62 // MTask
63 Int_t PreProcess(MParList *plist);
64 Int_t Process();
65
66 // MRanForestCalc
67 Int_t ReadForests(MParList &plist);
68 Double_t Eval() const;
69
70 // MParContainer
71 Int_t ReadEnv(const TEnv &env, TString prefix, Bool_t print);
72
73 // Train Interface
74 Int_t Train(const MHMatrix &n, const TArrayD &grid, Int_t ver);
75
76public:
77 MRanForestCalc(const char *name=NULL, const char *title=NULL);
78 ~MRanForestCalc();
79
80 // TObject
81 void Print(Option_t *o="") const; //*MENU*
82
83 // Setter for estimation
84 void SetFileName(TString filename) { fFileName = filename; }
85 void SetEstimationMode(EstimationMode_t op) { fEstimationMode = op; }
86 void SetNameOutput(TString name=gsNameOutput) { fNameOutput = name; }
87
88 // Setter for training
89 void SetNumTrees(UShort_t n=100) { fNumTrees = n; }
90 void SetNdSize(UShort_t n=5) { fNdSize = n; }
91 void SetNumTry(UShort_t n=0) { fNumTry = n; }
92 void SetDebug(Bool_t b=kTRUE) { fDebug = b; }
93
94 Bool_t SetFunction(const char *name="x");
95
96 void SetNumObsoleteVariables(Int_t n=1) { fNumObsoleteVariables = n; }
97 void SetLastDataColumnHasWeights(Bool_t b=kTRUE) { fLastDataColumnHasWeights = b; }
98
99 // Train Interface
100 Int_t TrainMultiRF(const MHMatrix &n, const TArrayD &grid)
101 {
102 // One yes/no-classification forest is trained for each bin
103 return Train(n, grid, 0);
104 }
105 Int_t TrainSingleRF(const MHMatrix &n, const TArrayD &grid=TArrayD())
106 {
107 // w/o Grid: Last Column contains classifier
108 // w/ Grid: Last Column will be converted by grid into classifier
109 return Train(n, grid, grid.GetSize()==0 ? 2 : 1);
110 }
111 Int_t TrainRegression(const MHMatrix &n)
112 {
113 // Use last column for regression
114 return Train(n, TArrayD(), 3);
115 }
116
117 Int_t Train(const MHMatrix &m, Bool_t regression)
118 {
119 return regression ? TrainRegression(m) : TrainSingleRF(m);
120 }
121
122 // Test Interface
123 void SetTestMatrix(MHMatrix *m=0) { fTestMatrix=m; }
124 void InitMapping(MHMatrix *m=0) { fTestMatrix=m; }
125
126 ClassDef(MRanForestCalc, 1) // Task to calculate RF output and for RF training
127};
128
129#endif
Note: See TracBrowser for help on using the repository browser.