source: branches/AddingGoogleTestEnvironment/msimcamera/MSimCamera.cc@ 20115

Last change on this file since 20115 was 18009, checked in by smueller, 10 years ago
New feature: Fix temporal offsets in between the pixels can be simulated and defined in a text file. This is solving ticket #9
File size: 17.9 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@phys.ethz.ch>
19!
20! Copyright: CheObs Software Development, 2000-2013
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MSimCamera
28//
29// This task initializes the analog channels with analog noise and simulated
30// the analog pulses from the photon signal.
31//
32// Input Containers:
33// MPhotonEvent
34// MPhotonStatistics
35// MRawRunHeader
36//
37// Output Containers:
38// MAnalogChannels
39//
40//////////////////////////////////////////////////////////////////////////////
41#include "MSimCamera.h"
42
43#include <TF1.h>
44#include <TRandom.h> // Needed for TRandom
45
46#include "MLog.h"
47#include "MLogManip.h"
48
49#include "MTruePhotonsPerPixelCont.h"
50
51#include "MSpline3.h"
52#include "MParSpline.h"
53
54#include "MParList.h"
55
56#include "MPhotonEvent.h"
57#include "MPhotonData.h"
58
59#include "MPedestalCam.h"
60#include "MPedestalPix.h"
61
62#include "MAnalogSignal.h"
63#include "MAnalogChannels.h"
64
65#include "MParameters.h"
66
67#include "MMcEvt.hxx" // To be replaced by a CheObs class
68#include "MRawRunHeader.h"
69
70ClassImp(MSimCamera);
71
72using namespace std;
73
74// --------------------------------------------------------------------------
75//
76// Default Constructor.
77//
78MSimCamera::MSimCamera(const char* name, const char *title)
79 : fEvt(0), fStat(0), fRunHeader(0), fElectronicNoise(0), fGain(0),
80 fCamera(0), fMcEvt(0),fCrosstalkCoeffParam(0), fSpline(0), fBaselineGain(kFALSE),
81 fDefaultOffset(-1), fDefaultNoise(-1), fDefaultGain(-1), fACFudgeFactor(0),
82 fACTimeConstant(0)
83
84{
85 fName = name ? name : "MSimCamera";
86 fTitle = title ? title : "Task to simulate the electronic noise and to convert photons into pulses";
87}
88
89// --------------------------------------------------------------------------
90//
91// Search for the necessayr parameter containers.
92// Setup spline for pulse shape.
93//
94Int_t MSimCamera::PreProcess(MParList *pList)
95{
96 fMcEvt = (MMcEvt*)pList->FindCreateObj("MMcEvt");
97 if (!fMcEvt)
98 return kFALSE;
99
100 fCamera = (MAnalogChannels*)pList->FindCreateObj("MAnalogChannels");
101 if (!fCamera)
102 return kFALSE;
103
104 fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
105 if (!fEvt)
106 {
107 *fLog << err << "MPhotonEvent not found... aborting." << endl;
108 return kFALSE;
109 }
110
111 fStat = (MPhotonStatistics*)pList->FindObject("MPhotonStatistics");
112 if (!fStat)
113 {
114 *fLog << err << "MPhotonStatistics not found... aborting." << endl;
115 return kFALSE;
116 }
117
118 fRunHeader = (MRawRunHeader *)pList->FindObject("MRawRunHeader");
119 if (!fRunHeader)
120 {
121 *fLog << err << "MRawRunHeader not found... aborting." << endl;
122 return kFALSE;
123 }
124 // -------------------------------------------------------------------
125 // Dominik Neise and Sebastian Mueller on fix time offsets:
126 // We obtain the fix temporal offsets for the FACT camera pixels out of
127 // a text file. The textfile must be mentioned in the ceres.rc file.
128 // There are no default offsets on purporse. The filename must be specified
129 // in ceres.rc and the file must be parsed without errors and it must
130 // provide exactly 1440 floating point numbers.
131 fFixTimeOffsetsBetweenPixelsInNs =
132 (MMatrix*)pList->FindObject("MFixTimeOffset");
133 if (!fFixTimeOffsetsBetweenPixelsInNs)
134 {
135 // the key value pair providing the text file is not present in the
136 // environment env.
137 *fLog << err << "In Source: "<< __FILE__ <<" in line: "<< __LINE__;
138 *fLog << " in function: "<< __func__ <<"\n";
139 *fLog << "MFixTimeOffset not found... aborting." << endl;
140 return kFALSE;
141
142 }
143 else if ( fFixTimeOffsetsBetweenPixelsInNs->fM.size() != 1440 )
144 {
145 // The number of time offsets must match the number of pixels in the
146 // FACT camera.
147 *fLog << err << "In Source: "<< __FILE__ <<" in line: "<< __LINE__;
148 *fLog << " in function: "<< __func__ <<"\n";
149 *fLog << "MFixTimeOffset has the wrong dimension! ";
150 *fLog << "There should be "<< 1440 <<" time offsets ";
151 *fLog << "(one for each pixel in FACT) but there are: ";
152 *fLog << fFixTimeOffsetsBetweenPixelsInNs->fM.size() << "! ";
153 *fLog << "... aborting." << endl;
154 return kFALSE;
155 }
156 // Check all entries for inf and nan. Those are not accepted here.
157 for( std::vector< double > row : fFixTimeOffsetsBetweenPixelsInNs->fM ){
158 for( double number : row){
159
160 if( std::isnan(number) || std::isinf(number) ){
161
162 *fLog << err << "In Source: "<< __FILE__ <<" in line: ";
163 *fLog << __LINE__;
164 *fLog << " in function: "<< __func__ <<"\n";
165 *fLog << "There is a non normal number in the fix temporal ";
166 *fLog << "pixel offsets. This is at least one number is ";
167 *fLog << "NaN or Inf. This here is >"<< number;
168 *fLog << "<... aborting." << endl;
169 return kFALSE;
170 }
171 }
172 }
173 // -------------------------------------------------------------------
174/*
175 fPulsePos = (MParameterD*)pList->FindObject("IntendedPulsePos", "MParameterD");
176 if (!fPulsePos)
177 {
178 *fLog << err << "IntendedPulsePos [MParameterD] not found... aborting." << endl;
179 return kFALSE;
180 }
181 */
182
183 // Create it here to make sure that MGeomApply will set the correct size
184 fElectronicNoise = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "ElectronicNoise");
185 if (!fElectronicNoise)
186 return kFALSE;
187
188 fGain = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "Gain");
189 if (!fGain)
190 return kFALSE;
191
192 fAccidentalPhotons = (MPedestalCam*)pList->FindObject("AccidentalPhotonRates","MPedestalCam");
193 if(!fAccidentalPhotons)
194 {
195 *fLog << err << "AccidentalPhotonRates [MPedestalCam] not found... aborting." << endl;
196 return kFALSE;
197 }
198
199 fCrosstalkCoeffParam = (MParameterD*)pList->FindCreateObj("MParameterD","CrosstalkCoeffParam");
200 if (!fCrosstalkCoeffParam)
201 {
202 *fLog << err << "CrosstalkCoeffParam [MParameterD] not found... aborting." << endl;
203 return kFALSE;
204 }
205
206 fTruePhotons = (MTruePhotonsPerPixelCont*)pList->FindCreateObj("MTruePhotonsPerPixelCont");
207 if (!fTruePhotons)
208 {
209 *fLog << err << "MTruePhotonsPerPixelCont not found... aborting." << endl;
210 return kFALSE;
211 }
212
213 MParSpline *pulse = (MParSpline*)pList->FindObject("PulseShape", "MParSpline");
214 if (!pulse)
215 {
216 *fLog << err << "PulseShape [MParSpline] not found... aborting." << endl;
217 return kFALSE;
218 }
219
220// if (fRunHeader->GetFreqSampling()!=1000)
221// {
222// *fLog << err << "ERROR - Sampling frequencies others than 1GHz are not yet supported." << endl;
223// *fLog << warn << "FIXME - SCALE MPulsShape WITH THE SAMPLING FREQUENCY." << endl;
224// return kFALSE;
225// }
226
227 fSpline = pulse->GetSpline();
228 if (!fSpline)
229 {
230 *fLog << err << "No spline initialized." << endl;
231 return kFALSE;
232 }
233
234 // ---------------- Information output ----------------------
235
236 if (fBaselineGain)
237 *fLog << inf << "Gain is also applied to the electronic noise." << endl;
238
239 return kTRUE;
240}
241
242// --------------------------------------------------------------------------
243//
244// FIXME: For now this is a workaround to set a baseline and the
245// electronic (guassian noise)
246//
247Bool_t MSimCamera::ReInit(MParList *plist)
248{
249 for (int i=0; i<fElectronicNoise->GetSize(); i++)
250 {
251 MPedestalPix &ped = (*fElectronicNoise)[i];
252 ped.SetPedestal(fDefaultOffset);
253 if (fDefaultNoise>0)
254 ped.SetPedestalRms(fDefaultNoise);
255
256 ped.SetPedestalABoffset(0);
257 ped.SetNumEvents(0);
258
259
260 MPedestalPix &gain = (*fGain)[i];
261 if (fDefaultGain>0)
262 gain.SetPedestal(fDefaultGain);
263
264 gain.SetPedestalRms(0);
265 gain.SetPedestalABoffset(0);
266 gain.SetNumEvents(0);
267 }
268
269 return kTRUE;
270}
271
272// --------------------------------------------------------------------------
273//
274// fStat->GetMaxIndex must return the maximum index possible
275// (equiv. number of pixels) not just the maximum index stored!
276//
277Int_t MSimCamera::Process()
278{
279 // Calculate start time, end time and corresponding number of samples
280 const Double_t freq = fRunHeader->GetFreqSampling()/1000.;
281
282 // FIXME: Should we use a higher sampling here?
283
284 const Double_t start = fStat->GetTimeFirst()*freq;
285 const Double_t end = fStat->GetTimeLast() *freq;
286
287 const UInt_t nlen = TMath::CeilNint(end-start);
288
289 // Get number of pixels/channels
290 const UInt_t npix = fStat->GetMaxIndex()+1;
291
292 if (npix>(UInt_t)fElectronicNoise->GetSize())
293 {
294 *fLog << err << "ERROR - More indices (" << npix << ") ";
295 *fLog << "assigned than existing in camera (";
296 *fLog << fElectronicNoise->GetSize() << ")!" << endl;
297 return kERROR;
298 }
299
300 const Double_t pl = fSpline->GetXmin()*freq;
301 const Double_t pr = fSpline->GetXmax()*freq;
302
303 // Init the arrays and set the range which will contain valid data
304 fCamera->Init(npix, nlen);
305 fCamera->SetValidRange(TMath::FloorNint(pr), TMath::CeilNint(nlen+pl));
306
307 // Add electronic noise to empty channels
308 for (UInt_t i=0; i<npix; i++)
309 {
310 const MPedestalPix &pix = (*fElectronicNoise)[i];
311
312 const Double_t val = pix.GetPedestal();
313 const Double_t rms = pix.GetPedestalRms();
314
315 // FTemme: Implementation of AC-coupling:
316 // to calculate the value of the accoupling per slice I use the
317 // following equation:
318 // accouplingPerSlice = accidentalPhotonRate * (1 + crossTalkProb)
319 // * areaOfOnePulse / samplingRate;
320 // Therefore I need the following variables
321 // Double_t accidentalPhotonRate; // [MHz]
322 // Float_t crossTalkProb; // [1]
323 // Double_t areaOfOnePulse; // [ADC-Counts * s]
324 // Double_t samplingRate; // [slices * MHz]
325
326 // The accidental photon rate is stored in GHz, so we have to multiply
327 // with 1E3 to get MHz:
328 const MPedestalPix &accPhoPix = (*fAccidentalPhotons)[i];
329
330 const Double_t accidentalPhotonRate = accPhoPix.GetPedestal() * 1e3; //[MHz]
331
332 Double_t currentAccidentalPhotonRate = accidentalPhotonRate;
333 if (fACTimeConstant!=0)
334 {
335 const Double_t accidentalPhotons = fACTimeConstant * accidentalPhotonRate;
336 const Double_t sigmaAccidentalPhotons = TMath::Sqrt(accidentalPhotons);
337
338 const Double_t gaus = gRandom->Gaus(accidentalPhotons,sigmaAccidentalPhotons);
339
340 currentAccidentalPhotonRate = gaus / fACTimeConstant;
341 }
342
343 // Get the CrosstalkCoefficient Parameter
344 const Double_t crossTalkProb = fCrosstalkCoeffParam->GetVal();
345
346 // To get the area of one Pulse, I only need to calculate the Integral
347 // of the Pulse Shape, which is stored in fSpline. Because the spline is
348 // normalized to a maximal amplitude of 1.0, I had to multiply it with
349 // the Default gain [ADC-Counts * s]
350 const Double_t areaOfOnePulse = fSpline->Integral() * fDefaultGain;
351
352 // The sampling rate I get from the RunHeader:
353 const Double_t samplingRate = fRunHeader->GetFreqSampling(); // [slices * MHz]
354
355 const Double_t accouplingPerSlice = currentAccidentalPhotonRate
356 * (1 + crossTalkProb + fACFudgeFactor)
357 * areaOfOnePulse / samplingRate;
358
359 // The accoupling is substracted from the timeline by decreasing the
360 // mean of the gaussian noise which is added
361
362 if (!fBaselineGain)
363 {
364 (*fCamera)[i].AddGaussianNoise(rms, val - accouplingPerSlice);
365 continue;
366 }
367 // Sorry, the name "pedestal" is misleading here
368 // FIXME: Simulate gain fluctuations
369 const Double_t gain = (*fGain)[i].GetPedestal();
370
371 // FIXME: We might add the base line here already.
372 // FIXME: How stable is the offset?
373 // FIXME: Should we write a container AppliedGain for MSImTrigger?
374
375 (*fCamera)[i].AddGaussianNoise(rms*gain, (val - accouplingPerSlice)*gain);
376 }
377
378 // FIXME: Simulate correlations with neighboring pixels
379
380 const Int_t num = fEvt->GetNumPhotons();
381
382 // A random shift, uniformely distributed within one slice, to make sure that
383 // the first photon is not always aligned identically with a sample edge.
384 // FIXME: Make it switchable
385 const Float_t rndm = gRandom->Uniform();
386
387 // FIXME: Shell we add a random shift of [0,1] samples per channel?
388 // Or maybe per channel and run?
389
390 Double_t tot = 0;
391
392 for (int i=0 ; i<1440 ; i++)
393 {
394 (*fTruePhotons->cherenkov_photons_weight)[i] = 0;
395 (*fTruePhotons->cherenkov_photons_number)[i] = 0;
396 (*fTruePhotons->cherenkov_arrival_time_mean)[i] = 0;
397 (*fTruePhotons->cherenkov_arrival_time_variance)[i] = 0;
398 (*fTruePhotons->muon_cherenkov_photons_weight)[i] = 0;
399 (*fTruePhotons->muon_cherenkov_photons_number)[i] = 0;
400 (*fTruePhotons->cherenkov_arrival_time_min)[i] = 10000;
401 (*fTruePhotons->cherenkov_arrival_time_max)[i] = 0;
402 (*fTruePhotons->noise_photons_weight)[i] = 0;
403 }
404
405 //--------------------------------------------------------------------------
406
407 // Simulate pulses
408 for (Int_t i=0; i<num; i++)
409 {
410 const MPhotonData &ph = (*fEvt)[i];
411
412 const UInt_t idx = ph.GetTag();
413 Double_t t = (ph.GetTime()-fStat->GetTimeFirst())*freq+rndm;// - fSpline->GetXmin();
414
415 // Sebastian Mueller and Dominik Neise on fix time offsets:
416 // We add a fix temporal offset to the relative arrival time of the
417 // individual pixel. The offsets are stored in the
418 // fFixTimeOffsetsBetweenPixelsInNs -> fM matrix. We identify the first
419 // column to hold the offsets in ns.
420 t = t + freq*fFixTimeOffsetsBetweenPixelsInNs->fM[idx][0];
421
422 // FIXME: Time jitter?
423 // FIXME: Add additional routing here?
424 // FIMXE: How stable is the gain?
425
426 if (ph.GetPrimary()!=MMcEvt::kNightSky && ph.GetPrimary()!=MMcEvt::kArtificial)
427 {
428 tot += ph.GetWeight();
429 (*fTruePhotons->cherenkov_photons_weight)[idx] += ph.GetWeight();
430 (*fTruePhotons->cherenkov_photons_number)[idx] += 1;
431
432 (*fTruePhotons->cherenkov_arrival_time_mean)[idx] += t;
433 (*fTruePhotons->cherenkov_arrival_time_variance)[idx] += t*t;
434
435 if (ph.GetPrimary()==MMcEvt::kMUON)
436 {
437 (*fTruePhotons->muon_cherenkov_photons_weight)[idx] += ph.GetWeight();
438 (*fTruePhotons->muon_cherenkov_photons_number)[idx] += 1;
439 }
440
441 // find min
442 if (t < (*fTruePhotons->cherenkov_arrival_time_min)[idx] )
443 {
444 (*fTruePhotons->cherenkov_arrival_time_min)[idx] = t;
445 }
446 // find max
447 if (t > (*fTruePhotons->cherenkov_arrival_time_max)[idx] )
448 {
449 (*fTruePhotons->cherenkov_arrival_time_max)[idx] = t;
450 }
451 }
452 else
453 {
454 (*fTruePhotons->noise_photons_weight)[idx] += ph.GetWeight();
455 }
456
457 // Sorry, the name "pedestal" is misleading here
458 // FIXME: Simulate gain fluctuations
459 const Double_t gain = (*fGain)[idx].GetPedestal();
460
461 // === FIXME === FIXME === FIXME === Frequency!!!!
462 (*fCamera)[idx].AddPulse(*fSpline, t, ph.GetWeight()*gain);
463 }
464
465 for (unsigned int i=0 ; i < 1440 ; i++)
466 {
467 float number = (*fTruePhotons->cherenkov_photons_number)[i];
468 (*fTruePhotons->cherenkov_arrival_time_mean)[i] /= number;
469 float mean = (*fTruePhotons->cherenkov_arrival_time_mean)[i];
470 float sum_tt = (*fTruePhotons->cherenkov_arrival_time_variance)[i];
471 (*fTruePhotons->cherenkov_arrival_time_variance)[i] = (sum_tt / number - mean*mean) /(number - 1);
472 }
473
474 fMcEvt->SetPhotElfromShower(TMath::Nint(tot));
475
476 return kTRUE;
477}
478
479// --------------------------------------------------------------------------
480//
481// BaselineGain: Off
482//
483Int_t MSimCamera::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
484{
485 Bool_t rc = kFALSE;
486 if (IsEnvDefined(env, prefix, "BaselineGain", print))
487 {
488 rc = kTRUE;
489 fBaselineGain = GetEnvValue(env, prefix, "BaselineGain", fBaselineGain);
490 }
491
492 if (IsEnvDefined(env, prefix, "DefaultOffset", print))
493 {
494 rc = kTRUE;
495 fDefaultOffset = GetEnvValue(env, prefix, "DefaultOffset", fDefaultOffset);
496 }
497 if (IsEnvDefined(env, prefix, "DefaultNoise", print))
498 {
499 rc = kTRUE;
500 fDefaultNoise = GetEnvValue(env, prefix, "DefaultNoise", fDefaultNoise);
501 }
502 if (IsEnvDefined(env, prefix, "DefaultGain", print))
503 {
504 rc = kTRUE;
505 fDefaultGain = GetEnvValue(env, prefix, "DefaultGain", fDefaultGain);
506 }
507 if (IsEnvDefined(env, prefix, "ACFudgeFactor", print))
508 {
509 rc = kTRUE;
510 fACFudgeFactor = GetEnvValue(env, prefix, "ACFudgeFactor", fACFudgeFactor);
511 }
512 if (IsEnvDefined(env, prefix, "ACTimeConstant", print))
513 {
514 rc = kTRUE;
515 fACTimeConstant = GetEnvValue(env, prefix, "ACTimeConstant", fACTimeConstant);
516 }
517
518 return rc;
519}
Note: See TracBrowser for help on using the repository browser.