1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s) : T. Bretz 02/2002 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
18 | ! W. Wittek 09/2002 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | ! R. Wagner, 11/2004 <mailto:rwagner@mppmu.mpg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2005
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | /////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MUnfold
|
---|
29 | //
|
---|
30 | /////////////////////////////////////////////////////////////////////////////
|
---|
31 | #include "MUnfold.h"
|
---|
32 |
|
---|
33 | #include <TMath.h>
|
---|
34 | #include <TRandom3.h>
|
---|
35 | #include <TVector.h>
|
---|
36 | #include <TMatrixD.h>
|
---|
37 | #include <TMatrix.h>
|
---|
38 | #include <TH1.h>
|
---|
39 | #include <TH2.h>
|
---|
40 | #include <TH3.h>
|
---|
41 | #include <TProfile.h>
|
---|
42 | #include <TF1.h>
|
---|
43 | #include <TMinuit.h>
|
---|
44 | #include <TCanvas.h>
|
---|
45 | #include <TMarker.h>
|
---|
46 |
|
---|
47 | #include "MLog.h"
|
---|
48 | #include "MLogManip.h"
|
---|
49 |
|
---|
50 | ClassImp(MUnfold);
|
---|
51 | using namespace std;
|
---|
52 |
|
---|
53 | // -----------------------------------------------------------------------
|
---|
54 | //
|
---|
55 | // fcnSmooth (used by SmoothMigrationMatrix)
|
---|
56 | //
|
---|
57 | // is called by MINUIT
|
---|
58 | // for given values of the parameters it calculates the function
|
---|
59 | // to be minimized
|
---|
60 | //
|
---|
61 | static void fcnSmooth(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
62 | Double_t *par, Int_t iflag)
|
---|
63 | {
|
---|
64 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit();
|
---|
65 |
|
---|
66 | Double_t a0 = par[0];
|
---|
67 | Double_t a1 = par[1];
|
---|
68 | Double_t a2 = par[2];
|
---|
69 |
|
---|
70 | Double_t b0 = par[3];
|
---|
71 | Double_t b1 = par[4];
|
---|
72 | Double_t b2 = par[5];
|
---|
73 |
|
---|
74 | // loop over bins of log10(E-true)
|
---|
75 | Double_t chi2 = 0.0;
|
---|
76 | Int_t npoints = 0;
|
---|
77 | Double_t func[20];
|
---|
78 |
|
---|
79 | for (UInt_t j=0; j<gUnfold.fNb; j++)
|
---|
80 | {
|
---|
81 | Double_t yj = ((double)j) + 0.5;
|
---|
82 | Double_t mean = a0 + a1*yj + a2*yj*yj + yj;
|
---|
83 | Double_t RMS = b0 + b1*yj + b2*yj*yj;
|
---|
84 |
|
---|
85 | if (RMS <= 0.0)
|
---|
86 | {
|
---|
87 | chi2 = 1.e20;
|
---|
88 | break;
|
---|
89 | }
|
---|
90 |
|
---|
91 | // loop over bins of log10(E-est)
|
---|
92 |
|
---|
93 | //.......................................
|
---|
94 | Double_t function;
|
---|
95 | Double_t sum=0.0;
|
---|
96 | for (UInt_t i=0; i<gUnfold.fNa; i++)
|
---|
97 | {
|
---|
98 | Double_t xlow = (double)i;
|
---|
99 | Double_t xup = xlow + 1.0;
|
---|
100 | Double_t xl = (xlow- mean) / RMS;
|
---|
101 | Double_t xu = (xup - mean) / RMS;
|
---|
102 | function = (TMath::Freq(xu) - TMath::Freq(xl));
|
---|
103 |
|
---|
104 | //*fLog << "i, xl, xu, function = " << i << ", " << xl << ", "
|
---|
105 | // << xu << ", " << function << endl;
|
---|
106 |
|
---|
107 | if (function < 1.e-10)
|
---|
108 | function = 0.0;
|
---|
109 |
|
---|
110 | func[i] = function;
|
---|
111 | sum += function;
|
---|
112 | }
|
---|
113 |
|
---|
114 | // *fLog << "mean, RMS = " << mean << ", " << RMS
|
---|
115 | // << ", j , sum of function = " << j << ", " << sum << endl;
|
---|
116 |
|
---|
117 | //.......................................
|
---|
118 |
|
---|
119 | for (UInt_t i=0; i<gUnfold.fNa; i++)
|
---|
120 | {
|
---|
121 | if (sum != 0.0)
|
---|
122 | func[i] /= sum;
|
---|
123 |
|
---|
124 | gUnfold.fMigSmoo(i,j) = func[i];
|
---|
125 | gUnfold.fMigChi2(i,j) = 0.0;
|
---|
126 |
|
---|
127 | // if relative error is greater than 30 % ignore the point
|
---|
128 |
|
---|
129 | if (gUnfold.fMigOrig(i,j) != 0 &&
|
---|
130 | gUnfold.fMigOrigerr2(i,j) != 0 &&
|
---|
131 | func[i] != 0 )
|
---|
132 | {
|
---|
133 | if (gUnfold.fMigOrigerr2(i,j)/
|
---|
134 | (gUnfold.fMigOrig(i,j)*gUnfold.fMigOrig(i,j)) <= 0.09)
|
---|
135 | {
|
---|
136 | gUnfold.fMigChi2(i,j) = ( gUnfold.fMigOrig(i,j) - func[i] )
|
---|
137 | * ( gUnfold.fMigOrig(i,j) - func[i] )
|
---|
138 | / gUnfold.fMigOrigerr2(i,j);
|
---|
139 | chi2 += gUnfold.fMigChi2(i,j);
|
---|
140 | npoints += 1;
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|
144 | //.......................................
|
---|
145 |
|
---|
146 | }
|
---|
147 | f = chi2;
|
---|
148 |
|
---|
149 | //*fLog << "fcnSmooth : f = " << f << endl;
|
---|
150 |
|
---|
151 | //--------------------------------------------------------------------
|
---|
152 | // final calculations
|
---|
153 | if (iflag == 3)
|
---|
154 | {
|
---|
155 | Int_t NDF = npoints - npar;
|
---|
156 | Double_t prob = TMath::Prob(chi2, NDF);
|
---|
157 |
|
---|
158 | gLog << "fcnSmooth : npoints, chi2, NDF, prob = " << npoints << ", ";
|
---|
159 | gLog << chi2 << ", " << NDF << ", " << prob << endl;
|
---|
160 | gLog << "=======================================" << endl;
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 |
|
---|
165 | // -----------------------------------------------------------------------
|
---|
166 | //
|
---|
167 | // fcnTikhonov2 (used by Tikhonov2)
|
---|
168 | //
|
---|
169 | // is called by MINUIT
|
---|
170 | // for given values of the parameters it calculates the function F
|
---|
171 | // the free parameters are the first (fNb-1) elements
|
---|
172 | // of the normalized unfolded distribution
|
---|
173 | //
|
---|
174 | static void fcnTikhonov2(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
175 | Double_t *par, Int_t iflag)
|
---|
176 | {
|
---|
177 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit();
|
---|
178 |
|
---|
179 | // (npar+1) is the number of bins of the unfolded distribuition (fNb)
|
---|
180 | // npar is the number of free parameters (fNb-1)
|
---|
181 |
|
---|
182 | UInt_t npar1 = npar + 1;
|
---|
183 |
|
---|
184 | UInt_t fNa = gUnfold.fNa;
|
---|
185 | UInt_t fNb = gUnfold.fNb;
|
---|
186 | if (npar1 != fNb)
|
---|
187 | {
|
---|
188 | gLog << "fcnTikhonov2 : inconsistency in number of parameters; npar, fNb = ";
|
---|
189 | gLog << npar << ", " << fNb << endl;
|
---|
190 | //return;
|
---|
191 | }
|
---|
192 | npar1 = fNb;
|
---|
193 |
|
---|
194 | TMatrixD p(npar1, 1);
|
---|
195 | TMatrixD &fVb = gUnfold.fVb;
|
---|
196 |
|
---|
197 | // p is the normalized unfolded distribution
|
---|
198 | // sum(p(i,0)) from i=0 to npar is equal to 1
|
---|
199 | Double_t sum = 0.0;
|
---|
200 | for (Int_t i=0; i<npar; i++)
|
---|
201 | {
|
---|
202 | p(i,0) = par[i];
|
---|
203 | sum += par[i];
|
---|
204 | }
|
---|
205 | p(npar,0) = 1.0 - sum;
|
---|
206 |
|
---|
207 |
|
---|
208 | // all p(i,0) have to be greater than zero
|
---|
209 | for (UInt_t i=0; i<npar1; i++)
|
---|
210 | if (p(i,0) <= 0.0)
|
---|
211 | {
|
---|
212 | f = 1.e20;
|
---|
213 | return;
|
---|
214 | }
|
---|
215 |
|
---|
216 | //.......................
|
---|
217 | // take least squares result for the normaliztion
|
---|
218 | TMatrixD alpha(gUnfold.fMigrat, TMatrixD::kMult, p);
|
---|
219 |
|
---|
220 | //TMatrixD v4 (gUnfold.fVa, TMatrixD::kTransposeMult,
|
---|
221 | // gUnfold.fVacovInv);
|
---|
222 | //TMatrixD norma(v4, TMatrixD::kMult, gUnfold.fVa);
|
---|
223 |
|
---|
224 | TMatrixD v5 (alpha, TMatrixD::kTransposeMult, gUnfold.fVacovInv);
|
---|
225 | TMatrixD normb(v5, TMatrixD::kMult, alpha);
|
---|
226 |
|
---|
227 | TMatrixD normc(v5, TMatrixD::kMult, gUnfold.fVa);
|
---|
228 |
|
---|
229 | Double_t norm = normc(0,0)/normb(0,0);
|
---|
230 |
|
---|
231 | //.......................
|
---|
232 |
|
---|
233 | // b is the unnormalized unfolded distribution
|
---|
234 | // sum(b(i,0)) from i=0 to npar is equal to norm
|
---|
235 | // (the total number of events)
|
---|
236 | for (UInt_t i=0; i<npar1; i++)
|
---|
237 | fVb(i,0) = p(i,0) * norm;
|
---|
238 |
|
---|
239 | TMatrixD Gb(gUnfold.fMigrat, TMatrixD::kMult, fVb);
|
---|
240 | TMatrixD v3(fNa, 1);
|
---|
241 | v3 = gUnfold.fVa;
|
---|
242 | v3 -= Gb;
|
---|
243 |
|
---|
244 | TMatrixD v1(1,fNa);
|
---|
245 | for (UInt_t i=0; i<fNa; i++)
|
---|
246 | {
|
---|
247 | v1(0,i) = 0;
|
---|
248 | for (UInt_t j=0; j<fNa; j++)
|
---|
249 | v1(0,i) += v3(j,0) * gUnfold.fVacovInv(j,i) ;
|
---|
250 | }
|
---|
251 |
|
---|
252 | for (UInt_t i = 0; i<fNa; i++)
|
---|
253 | gUnfold.Chi2(i,0) = v1(0,i) * v3(i,0);
|
---|
254 |
|
---|
255 | Double_t chisqsum = 0;
|
---|
256 | for (Int_t i=0; i<gUnfold.Chi2.GetNrows(); i++)
|
---|
257 | chisqsum += gUnfold.Chi2(i, 0);
|
---|
258 | gUnfold.Chisq = chisqsum;
|
---|
259 |
|
---|
260 | //-----------------------------------------------------
|
---|
261 | // calculate 2nd derivative squared
|
---|
262 | // regularization term (second derivative squared)
|
---|
263 | gUnfold.SecDeriv = 0;
|
---|
264 | for (UInt_t j=1; j<(fNb-1); j++)
|
---|
265 | {
|
---|
266 | const Double_t temp =
|
---|
267 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
---|
268 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
---|
269 |
|
---|
270 | gUnfold.SecDeriv += temp*temp;
|
---|
271 | }
|
---|
272 |
|
---|
273 | gUnfold.ZerDeriv = 0;
|
---|
274 | for (UInt_t j=0; j<fNb; j++)
|
---|
275 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
276 |
|
---|
277 | f = gUnfold.Chisq/2 * gUnfold.fW + gUnfold.SecDeriv;
|
---|
278 |
|
---|
279 | //*fLog << "F=" << f << " \tSecDeriv=" << gUnfold.SecDeriv
|
---|
280 | // << " \tchi2="
|
---|
281 | // << gUnfold.Chisq << " \tfW=" << gUnfold.fW << endl;
|
---|
282 |
|
---|
283 | //--------------------------------------------------------------------
|
---|
284 | // final calculations
|
---|
285 | if (iflag == 3)
|
---|
286 | {
|
---|
287 | //..............................................
|
---|
288 | // calculate external error matrix of the fitted parameters 'val'
|
---|
289 | // extend it with the covariances for y=1-sum(val)
|
---|
290 | Double_t emat[20][20];
|
---|
291 | Int_t ndim = 20;
|
---|
292 | gMinuit->mnemat(&emat[0][0], ndim);
|
---|
293 |
|
---|
294 | Double_t covv = 0;
|
---|
295 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++)
|
---|
296 | {
|
---|
297 | Double_t cov = 0;
|
---|
298 | for (UInt_t k=0; k<(gUnfold.fNb-1); k++)
|
---|
299 | cov += emat[i][k];
|
---|
300 |
|
---|
301 | emat[i][gUnfold.fNb-1] = -cov;
|
---|
302 | emat[gUnfold.fNb-1][i] = -cov;
|
---|
303 |
|
---|
304 | covv += cov;
|
---|
305 | }
|
---|
306 | emat[gUnfold.fNb-1][gUnfold.fNb-1] = covv;
|
---|
307 |
|
---|
308 | for (UInt_t i=0; i<gUnfold.fNb; i++)
|
---|
309 | for (UInt_t k=0; k<gUnfold.fNb; k++)
|
---|
310 | gUnfold.fVbcov(i,k) = emat[i][k] *norm*norm;
|
---|
311 |
|
---|
312 | //-----------------------------------------------------
|
---|
313 | //..............................................
|
---|
314 | // put unfolded distribution into fResult
|
---|
315 | // fResult(i,0) value in bin i
|
---|
316 | // fResult(i,1) error of value in bin i
|
---|
317 |
|
---|
318 | gUnfold.fResult.ResizeTo(gUnfold.fNb, 5);
|
---|
319 |
|
---|
320 | Double_t sum = 0;
|
---|
321 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++)
|
---|
322 | {
|
---|
323 | Double_t val;
|
---|
324 | Double_t err;
|
---|
325 | if (!gMinuit->GetParameter(i, val, err))
|
---|
326 | {
|
---|
327 | gLog << "Error getting parameter #" << i << endl;
|
---|
328 | return;
|
---|
329 | }
|
---|
330 |
|
---|
331 | Double_t eplus;
|
---|
332 | Double_t eminus;
|
---|
333 | Double_t eparab;
|
---|
334 | Double_t gcc;
|
---|
335 | gMinuit->mnerrs(i, eplus, eminus, eparab, gcc);
|
---|
336 |
|
---|
337 | gUnfold.fVb(i, 0) = val * norm;
|
---|
338 |
|
---|
339 | gUnfold.fResult(i, 0) = val * norm;
|
---|
340 | gUnfold.fResult(i, 1) = eparab * norm;
|
---|
341 | gUnfold.fResult(i, 2) = eplus * norm;
|
---|
342 | gUnfold.fResult(i, 3) = eminus * norm;
|
---|
343 | gUnfold.fResult(i, 4) = gcc;
|
---|
344 | sum += val;
|
---|
345 | }
|
---|
346 | gUnfold.fVb(gUnfold.fNb-1, 0) = (1.0-sum) * norm;
|
---|
347 |
|
---|
348 | gUnfold.fResult(gUnfold.fNb-1, 0) = (1.0-sum) * norm;
|
---|
349 | gUnfold.fResult(gUnfold.fNb-1, 1) =
|
---|
350 | sqrt(gUnfold.fVbcov(gUnfold.fNb-1,gUnfold.fNb-1));
|
---|
351 | gUnfold.fResult(gUnfold.fNb-1, 2) = 0;
|
---|
352 | gUnfold.fResult(gUnfold.fNb-1, 3) = 0;
|
---|
353 | gUnfold.fResult(gUnfold.fNb-1, 4) = 1;
|
---|
354 | //..............................................
|
---|
355 |
|
---|
356 | //-----------------------------------------------------
|
---|
357 | // calculate 0th derivative squared
|
---|
358 | gUnfold.ZerDeriv = 0;
|
---|
359 | for (UInt_t j=0; j<fNb; j++)
|
---|
360 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
361 |
|
---|
362 | //-----------------------------------------------------
|
---|
363 | // calculate the entropy
|
---|
364 |
|
---|
365 | gUnfold.Entropy = 0;
|
---|
366 | for (UInt_t j=0; j<gUnfold.fNb; j++)
|
---|
367 | if (p(j,0) > 0)
|
---|
368 | gUnfold.Entropy += p(j,0) * log( p(j,0) );
|
---|
369 |
|
---|
370 |
|
---|
371 | //-----------------------------------------------------
|
---|
372 | // calculate SpurSigma
|
---|
373 | gUnfold.SpurSigma = 0.0;
|
---|
374 | for (UInt_t m=0; m<fNb; m++)
|
---|
375 | gUnfold.SpurSigma += gUnfold.fVbcov(m,m);
|
---|
376 | // *fLog << "SpurSigma =" << SpurSigma << endl;
|
---|
377 |
|
---|
378 | //-----------------------------------------------------
|
---|
379 | gUnfold.SpurAR = 0;
|
---|
380 | gUnfold.DiffAR2 = 0;
|
---|
381 |
|
---|
382 | //-----------------------------------------------------
|
---|
383 | gUnfold.fNdf = gUnfold.fNa;
|
---|
384 | gUnfold.fChisq = gUnfold.Chisq;
|
---|
385 |
|
---|
386 | for (UInt_t i=0; i<fNa; i++)
|
---|
387 | {
|
---|
388 | gUnfold.fChi2(i,0) = gUnfold.Chi2(i,0);
|
---|
389 | }
|
---|
390 |
|
---|
391 |
|
---|
392 | UInt_t iNdf = (UInt_t) (gUnfold.fNdf+0.5);
|
---|
393 |
|
---|
394 | //*fLog << "fcnTikhonov2 : fW, chisq (from fcnF) = "
|
---|
395 | // << gUnfold.fW << ", " << gUnfold.fChisq << endl;
|
---|
396 |
|
---|
397 | gUnfold.fProb = iNdf>0 ? TMath::Prob(gUnfold.fChisq, iNdf) : 0;
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 |
|
---|
402 | TH1 *MUnfold::DrawMatrixClone(const TMatrixD &m, Option_t *opt="")
|
---|
403 | {
|
---|
404 | const Int_t nrows = m.GetNrows();
|
---|
405 | const Int_t ncols = m.GetNcols();
|
---|
406 |
|
---|
407 | TMatrix m2(nrows, ncols);
|
---|
408 | for (int i=0; i<nrows; i++)
|
---|
409 | for (int j=0; j<ncols; j++)
|
---|
410 | m2(i, j) = m(i, j);
|
---|
411 |
|
---|
412 | TH2F *hist = new TH2F(m2);
|
---|
413 | hist->SetBit(kCanDelete);
|
---|
414 | hist->Draw(opt);
|
---|
415 | hist->SetDirectory(NULL);
|
---|
416 |
|
---|
417 | return hist;
|
---|
418 |
|
---|
419 | }
|
---|
420 |
|
---|
421 |
|
---|
422 | TH1 *MUnfold::DrawMatrixColClone(const TMatrixD &m, Option_t *opt="", Int_t col=0)
|
---|
423 | {
|
---|
424 | const Int_t nrows = m.GetNrows();
|
---|
425 |
|
---|
426 | TVector vec(nrows);
|
---|
427 | for (int i=0; i<nrows; i++)
|
---|
428 | vec(i) = m(i, col);
|
---|
429 |
|
---|
430 | TH1F *hist = new TH1F("TVector","",nrows,0,nrows);
|
---|
431 | for (int i=0; i<nrows; i++)
|
---|
432 | hist->SetBinContent(i+1, vec(i));
|
---|
433 |
|
---|
434 | hist->SetBit(kCanDelete);
|
---|
435 | hist->Draw(opt);
|
---|
436 | hist->SetDirectory(NULL);
|
---|
437 |
|
---|
438 | return hist;
|
---|
439 | }
|
---|
440 |
|
---|
441 |
|
---|
442 | void MUnfold::PrintTH3Content(const TH3 &hist)
|
---|
443 | {
|
---|
444 | *fLog << hist.GetName() << ": " << hist.GetTitle() << endl;
|
---|
445 | *fLog << "-----------------------------------------------------" << endl;
|
---|
446 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
447 | {
|
---|
448 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
---|
449 | for (Int_t k=1; k<=hist.GetNbinsZ(); k++)
|
---|
450 | *fLog << hist.GetBinContent(i,j,k) << " \t";
|
---|
451 | *fLog << endl << endl;
|
---|
452 | }
|
---|
453 | }
|
---|
454 |
|
---|
455 | void MUnfold::PrintTH3Error(const TH3 &hist)
|
---|
456 | {
|
---|
457 | *fLog << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
---|
458 | *fLog << "-----------------------------------------------------" << endl;
|
---|
459 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
460 | {
|
---|
461 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
---|
462 | for (Int_t k=1; k<=hist.GetNbinsZ(); k++)
|
---|
463 | *fLog << hist.GetBinError(i, j, k) << " \t";
|
---|
464 | *fLog << endl << endl;
|
---|
465 | }
|
---|
466 | }
|
---|
467 |
|
---|
468 | void MUnfold::PrintTH2Content(const TH2 &hist)
|
---|
469 | {
|
---|
470 | *fLog << hist.GetName() << ": " << hist.GetTitle() << endl;
|
---|
471 | *fLog << "-----------------------------------------------------" << endl;
|
---|
472 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
473 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
---|
474 | *fLog << hist.GetBinContent(i,j) << " \t";
|
---|
475 | *fLog << endl << endl;
|
---|
476 | }
|
---|
477 |
|
---|
478 | void MUnfold::PrintTH2Error(const TH2 &hist)
|
---|
479 | {
|
---|
480 | *fLog << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
---|
481 | *fLog << "-----------------------------------------------------" << endl;
|
---|
482 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
483 | for (Int_t j=1; j<=hist.GetNbinsY(); j++)
|
---|
484 | *fLog << hist.GetBinError(i, j) << " \t";
|
---|
485 | *fLog << endl << endl;
|
---|
486 | }
|
---|
487 |
|
---|
488 | void MUnfold::PrintTH1Content(const TH1 &hist)
|
---|
489 | {
|
---|
490 | *fLog << hist.GetName() << ": " << hist.GetTitle() << endl;
|
---|
491 | *fLog << "-----------------------------------------------------" << endl;
|
---|
492 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
493 | *fLog << hist.GetBinContent(i) << " \t";
|
---|
494 | *fLog << endl << endl;
|
---|
495 | }
|
---|
496 |
|
---|
497 | void MUnfold::PrintTH1Error(const TH1 &hist)
|
---|
498 | {
|
---|
499 | *fLog << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl;
|
---|
500 | *fLog << "-----------------------------------------------------" << endl;
|
---|
501 | for (Int_t i=1; i<=hist.GetNbinsX(); i++)
|
---|
502 | *fLog << hist.GetBinError(i) << " \t";
|
---|
503 | *fLog << endl << endl;
|
---|
504 | }
|
---|
505 |
|
---|
506 | void MUnfold::CopyCol(TMatrixD &m, const TH1 &h, Int_t col=0)
|
---|
507 | {
|
---|
508 | const Int_t n = m.GetNrows();
|
---|
509 |
|
---|
510 | for (Int_t i=0; i<n; i++)
|
---|
511 | m(i, col) = h.GetBinContent(i+1);
|
---|
512 | }
|
---|
513 |
|
---|
514 | void MUnfold::CopyCol(TH1 &h, const TMatrixD &m, Int_t col=0)
|
---|
515 | {
|
---|
516 | const Int_t n = m.GetNrows();
|
---|
517 |
|
---|
518 | for (Int_t i=0; i<n; i++)
|
---|
519 | h.SetBinContent(i+1, m(i, col));
|
---|
520 | }
|
---|
521 |
|
---|
522 | void MUnfold::CopyH2M(TMatrixD &m, const TH2 &h)
|
---|
523 | {
|
---|
524 | const Int_t nx = m.GetNrows();
|
---|
525 | const Int_t ny = m.GetNcols();
|
---|
526 |
|
---|
527 | for (Int_t i=0; i<nx; i++)
|
---|
528 | for (Int_t j=0; j<ny; j++)
|
---|
529 | m(i, j) = h.GetBinContent(i+1, j+1);
|
---|
530 | }
|
---|
531 |
|
---|
532 | void MUnfold::CopySqr(TMatrixD &m, const TH1 &h)
|
---|
533 | {
|
---|
534 | const Int_t nx = m.GetNrows();
|
---|
535 | const Int_t ny = m.GetNcols();
|
---|
536 |
|
---|
537 | for (Int_t i=0; i<nx; i++)
|
---|
538 | for (Int_t j=0; j<ny; j++)
|
---|
539 | {
|
---|
540 | const Double_t bin = h.GetBinContent(i+1, j+1);
|
---|
541 | m(i, j) = bin*bin;
|
---|
542 | }
|
---|
543 | }
|
---|
544 |
|
---|
545 | Double_t MUnfold::GetMatrixSumRow(const TMatrixD &m, Int_t row)
|
---|
546 | {
|
---|
547 | const Int_t n = m.GetNcols();
|
---|
548 |
|
---|
549 | Double_t sum = 0;
|
---|
550 | for (Int_t i=0; i<n; i++)
|
---|
551 | sum += m(row, i);
|
---|
552 |
|
---|
553 | return sum;
|
---|
554 | }
|
---|
555 |
|
---|
556 | Double_t MUnfold::GetMatrixSumDiag(const TMatrixD &m)
|
---|
557 | {
|
---|
558 | const Int_t n = m.GetNcols();
|
---|
559 |
|
---|
560 | Double_t sum = 0;
|
---|
561 | for (Int_t i=0; i<n; i++)
|
---|
562 | sum += m(i, i);
|
---|
563 |
|
---|
564 | return sum;
|
---|
565 | }
|
---|
566 |
|
---|
567 | Double_t MUnfold::GetMatrixSumCol(const TMatrixD &m, Int_t col=0)
|
---|
568 | {
|
---|
569 | const Int_t n = m.GetNrows();
|
---|
570 |
|
---|
571 | Double_t sum = 0;
|
---|
572 | for (Int_t i=0; i<n; i++)
|
---|
573 | sum += m(i, col);
|
---|
574 |
|
---|
575 | return sum;
|
---|
576 | }
|
---|
577 |
|
---|
578 | Double_t MUnfold::GetMatrixSum(const TMatrixD &m)
|
---|
579 | {
|
---|
580 | const Int_t n = m.GetNrows();
|
---|
581 |
|
---|
582 | Double_t sum = 0;
|
---|
583 | for (Int_t i=0; i<n; i++)
|
---|
584 | sum += GetMatrixSumRow(m, i);
|
---|
585 |
|
---|
586 | return sum;
|
---|
587 | }
|
---|
588 |
|
---|
589 |
|
---|
590 | Double_t MUnfold::CalcSpurSigma(TMatrixD &T, Double_t norm)
|
---|
591 | {
|
---|
592 | Double_t spursigma = 0;
|
---|
593 |
|
---|
594 | for (UInt_t a=0; a<fNb; a++)
|
---|
595 | {
|
---|
596 | for (UInt_t b=0; b<fNb; b++)
|
---|
597 | {
|
---|
598 | fVbcov(a,b) = 0;
|
---|
599 |
|
---|
600 | for (UInt_t c=0; c<fNa; c++)
|
---|
601 | for (UInt_t d=0; d<fNa; d++)
|
---|
602 | fVbcov(a,b) += T(a,d)*fVacov(d,c)*T(b,c);
|
---|
603 |
|
---|
604 | fVbcov(a,b) *= norm*norm;
|
---|
605 | }
|
---|
606 | spursigma += fVbcov(a,a);
|
---|
607 | }
|
---|
608 |
|
---|
609 | return spursigma;
|
---|
610 | }
|
---|
611 |
|
---|
612 |
|
---|
613 | MUnfold::MUnfold(TH1D &ha, TH2D &hacov, TH2D &hmig)
|
---|
614 | : fVEps(hmig.GetYaxis()->GetNbins(),1), fVEps0(fVEps, 0)
|
---|
615 | {
|
---|
616 | // ha is the distribution to be unfolded
|
---|
617 | // hacov is the covariance matrix of ha
|
---|
618 | // hmig is the migration matrix;
|
---|
619 | // this matrix will be used in the unfolding
|
---|
620 | // unless SmoothMigrationMatrix(*hmigrat) is called;
|
---|
621 | // in the latter case hmigrat is smoothed
|
---|
622 | // and the smoothed matrix is used in the unfolding
|
---|
623 |
|
---|
624 | // Eigen values of the matrix G, which are smaller than EpsLambda
|
---|
625 | // will be considered as being zero
|
---|
626 | EpsLambda = 1.e-10;
|
---|
627 | fW = 0.0;
|
---|
628 |
|
---|
629 | fNa = hmig.GetXaxis()->GetNbins();
|
---|
630 | const Double_t alow = hmig.GetXaxis()->GetXmin();
|
---|
631 | const Double_t aup = hmig.GetXaxis()->GetXmax();
|
---|
632 |
|
---|
633 | fNb = hmig.GetYaxis()->GetNbins();
|
---|
634 | const Double_t blow = hmig.GetYaxis()->GetXmin();
|
---|
635 | const Double_t bup = hmig.GetYaxis()->GetXmax();
|
---|
636 |
|
---|
637 |
|
---|
638 | UInt_t Na = ha.GetNbinsX();
|
---|
639 | if (fNa != Na)
|
---|
640 | {
|
---|
641 | *fLog << "MUnfold::MUnfold : dimensions do not match, fNa = ";
|
---|
642 | *fLog << fNa << ", Na = " << Na << endl;
|
---|
643 | }
|
---|
644 |
|
---|
645 | *fLog << "MUnfold::MUnfold :" << endl;
|
---|
646 | *fLog << "==================" << endl;
|
---|
647 | *fLog << " fNa = " << fNa << ", fNb = " << fNb << endl;
|
---|
648 |
|
---|
649 | // ------------------------
|
---|
650 |
|
---|
651 | fVa.ResizeTo(fNa, 1);
|
---|
652 | CopyCol(fVa, ha, 0);
|
---|
653 |
|
---|
654 | *fLog << " fVa = ";
|
---|
655 |
|
---|
656 | for (UInt_t i=0; i<fNa; i++)
|
---|
657 | *fLog << fVa(i,0) << " \t";
|
---|
658 | *fLog << endl;
|
---|
659 |
|
---|
660 | Double_t vaevents = GetMatrixSumCol(fVa, 0);
|
---|
661 | *fLog << " Total number of events in fVa = " << vaevents << endl;
|
---|
662 |
|
---|
663 | // ------------------------
|
---|
664 |
|
---|
665 | fChi2.ResizeTo(fNa,1);
|
---|
666 | Chi2.ResizeTo(fNa,1);
|
---|
667 |
|
---|
668 | // ------------------------
|
---|
669 |
|
---|
670 | fVacov.ResizeTo(fNa, fNa);
|
---|
671 | fSpurVacov = 0;
|
---|
672 |
|
---|
673 | CopyH2M(fVacov, hacov);
|
---|
674 |
|
---|
675 | fVapoints = 0;
|
---|
676 | for (UInt_t i=0; i<fNa; i++)
|
---|
677 | if (fVa(i,0)>0 && fVacov(i,i)<fVa(i,0)*fVa(i,0))
|
---|
678 | fVapoints++;
|
---|
679 |
|
---|
680 | fSpurVacov = GetMatrixSumDiag(fVacov);
|
---|
681 |
|
---|
682 | //*fLog << "MUnfold::MUnfold : fVacov = " << endl;
|
---|
683 | //*fLog << "==============================" << endl;
|
---|
684 | //fVacov.Print();
|
---|
685 |
|
---|
686 | *fLog << " Number of significant points in fVa = ";
|
---|
687 | *fLog << fVapoints << endl;
|
---|
688 |
|
---|
689 | *fLog << " Spur of fVacov = ";
|
---|
690 | *fLog << fSpurVacov << endl;
|
---|
691 |
|
---|
692 | // ------------------------
|
---|
693 |
|
---|
694 | fVacovInv.ResizeTo(fNa, fNa);
|
---|
695 | fVacovInv = fVacov;
|
---|
696 | fVacovInv.InvertPosDef();
|
---|
697 |
|
---|
698 | //*fLog << "MUnfold::MUnfold : fVacovInv = " << endl;
|
---|
699 | //*fLog << "==================================" << endl;
|
---|
700 | //fVacovInv.Print();
|
---|
701 |
|
---|
702 | // ------------------------
|
---|
703 | // fMigrat is the migration matrix to be used in the unfolding;
|
---|
704 | // fMigrat may be overwritten by SmoothMigrationMatrix
|
---|
705 |
|
---|
706 | fMigrat.ResizeTo(fNa, fNb); // row, col
|
---|
707 |
|
---|
708 | CopyH2M(fMigrat, hmig);
|
---|
709 |
|
---|
710 |
|
---|
711 | // ------------------------
|
---|
712 |
|
---|
713 | fMigraterr2.ResizeTo(fNa, fNb); // row, col
|
---|
714 | CopySqr(fMigraterr2, hmig);
|
---|
715 |
|
---|
716 | // normaxlize
|
---|
717 |
|
---|
718 | for (UInt_t j=0; j<fNb; j++)
|
---|
719 | {
|
---|
720 | const Double_t sum = GetMatrixSumCol(fMigrat, j);
|
---|
721 |
|
---|
722 | if (sum==0)
|
---|
723 | continue;
|
---|
724 |
|
---|
725 | TMatrixDColumn col1(fMigrat, j);
|
---|
726 | col1 *= 1./sum;
|
---|
727 |
|
---|
728 | TMatrixDColumn col2(fMigraterr2, j);
|
---|
729 | col2 *= 1./(sum*sum);
|
---|
730 | }
|
---|
731 |
|
---|
732 | //*fLog << "MUnfold::MUnfold : fMigrat = " << endl;
|
---|
733 | //*fLog << "===============================" << endl;
|
---|
734 | //fMigrat.Print();
|
---|
735 |
|
---|
736 | //*fLog << "MUnfold::MUnfold : fMigraterr2 = " << endl;
|
---|
737 | //*fLog << "===================================" << endl;
|
---|
738 | //fMigraterr2.Print();
|
---|
739 |
|
---|
740 | // ------------------------
|
---|
741 | G.ResizeTo(fNa, fNa);
|
---|
742 | EigenValue.ResizeTo(fNa);
|
---|
743 | Eigen.ResizeTo(fNa, fNa);
|
---|
744 |
|
---|
745 | fMigOrig.ResizeTo(fNa, fNb);
|
---|
746 | fMigOrigerr2.ResizeTo(fNa, fNb);
|
---|
747 |
|
---|
748 | fMigSmoo.ResizeTo (fNa, fNb);
|
---|
749 | fMigSmooerr2.ResizeTo(fNa, fNb);
|
---|
750 | fMigChi2.ResizeTo (fNa, fNb);
|
---|
751 |
|
---|
752 | // ------------------------
|
---|
753 |
|
---|
754 | fVEps0 = 1./fNb;
|
---|
755 |
|
---|
756 | //*fLog << "MUnfold::MUnfold : Default prior distribution fVEps = " << endl;
|
---|
757 | //*fLog << "========================================================" << endl;
|
---|
758 | //fVEps.Print();
|
---|
759 |
|
---|
760 | // ------------------------
|
---|
761 |
|
---|
762 | fVb.ResizeTo(fNb,1);
|
---|
763 | fVbcov.ResizeTo(fNb,fNb);
|
---|
764 |
|
---|
765 | // ----------------------------------------------------
|
---|
766 | // number and range of weights to be scanned
|
---|
767 | Nix = 30;
|
---|
768 | xmin = 1.e-5;
|
---|
769 | xmax = 1.e5;
|
---|
770 | dlogx = (log10(xmax)-log10(xmin)) / Nix;
|
---|
771 |
|
---|
772 | SpSig.ResizeTo (Nix);
|
---|
773 | SpAR.ResizeTo (Nix);
|
---|
774 | chisq.ResizeTo (Nix);
|
---|
775 | SecDer.ResizeTo(Nix);
|
---|
776 | ZerDer.ResizeTo(Nix);
|
---|
777 | Entrop.ResizeTo(Nix);
|
---|
778 | DAR2.ResizeTo (Nix);
|
---|
779 | Dsqbar.ResizeTo(Nix);
|
---|
780 |
|
---|
781 | //------------------------------------
|
---|
782 | // plots as a function of the iteration number
|
---|
783 |
|
---|
784 | hBchisq = new TH1D("Bchisq", "chisq",
|
---|
785 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
786 |
|
---|
787 | hBSpAR = new TH1D("BSpAR", "SpurAR",
|
---|
788 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
789 |
|
---|
790 | hBDSpAR = new TH1D("BDSpAR", "Delta(SpurAR)",
|
---|
791 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
792 |
|
---|
793 | hBSpSig = new TH1D("BSpSig", "SpurSigma/SpurC",
|
---|
794 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
795 |
|
---|
796 | hBDSpSig = new TH1D("BDSpSig", "Delta(SpurSigma/SpurC)",
|
---|
797 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
798 |
|
---|
799 | hBSecDeriv = new TH1D("BSecDeriv", "Second Derivative squared",
|
---|
800 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
801 |
|
---|
802 | hBDSecDeriv = new TH1D("BDSecDeriv", "Delta(Second Derivative squared)",
|
---|
803 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
804 |
|
---|
805 | hBZerDeriv = new TH1D("BZerDeriv", "Zero Derivative squared",
|
---|
806 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
807 |
|
---|
808 | hBDZerDeriv = new TH1D("BDZerDeriv", "Delta(Zero Derivative squared)",
|
---|
809 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
810 |
|
---|
811 | hBEntropy = new TH1D("BEntrop", "Entropy",
|
---|
812 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
813 |
|
---|
814 | hBDEntropy = new TH1D("BDEntrop", "Delta(Entropy)",
|
---|
815 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
816 |
|
---|
817 | hBDAR2 = new TH1D("BDAR2", "norm(AR-AR+)",
|
---|
818 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
819 |
|
---|
820 | hBD2bar = new TH1D("BD2bar", "(b_unfolded-b_ideal)**2",
|
---|
821 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 );
|
---|
822 |
|
---|
823 | //-------------------------------------
|
---|
824 | // original migration matrix
|
---|
825 | fhmig = new TH2D("fMigrat", "Migration matrix",
|
---|
826 | fNa, alow, aup, fNb, blow, bup);
|
---|
827 | fhmig->Sumw2();
|
---|
828 |
|
---|
829 | //-------------------------------------
|
---|
830 | // smoothed migration matrix
|
---|
831 | shmig = new TH2D("sMigrat", "Smoothed migration matrix",
|
---|
832 | fNa, alow, aup, fNb, blow, bup);
|
---|
833 | shmig->Sumw2();
|
---|
834 |
|
---|
835 | //-------------------------------------
|
---|
836 | // chi2 contributions for smoothing of migration matrix
|
---|
837 | shmigChi2 = new TH2D("sMigratChi2", "Chi2 contr. for smoothing",
|
---|
838 | fNa, alow, aup, fNb, blow, bup);
|
---|
839 |
|
---|
840 | //-------------------------------------
|
---|
841 | // eigen values of matrix G = M * M(transposed)
|
---|
842 | hEigen = new TH1D("Eigen", "Eigen values of M*MT",
|
---|
843 | fNa, 0.5, fNa+0.5);
|
---|
844 |
|
---|
845 | //------------------------------------
|
---|
846 | // Ideal distribution
|
---|
847 |
|
---|
848 | fhb0 = new TH1D("fhb0", "Ideal distribution", fNb, blow, bup);
|
---|
849 | fhb0->Sumw2();
|
---|
850 |
|
---|
851 |
|
---|
852 | //------------------------------------
|
---|
853 | // Distribution to be unfolded
|
---|
854 | fha = new TH1D("fha", "Distribution to be unfolded", fNa, alow, aup);
|
---|
855 | fha->Sumw2();
|
---|
856 |
|
---|
857 | //------------------------------------
|
---|
858 | // Prior distribution
|
---|
859 | hprior = new TH1D("Prior", "Prior distribution", fNb, blow, bup);
|
---|
860 |
|
---|
861 | //-----------------------------S-------
|
---|
862 | // Unfolded distribution
|
---|
863 | hb = new TH1D("DataSp", "Unfolded distribution", fNb, blow, bup);
|
---|
864 | hb->Sumw2();
|
---|
865 |
|
---|
866 | }
|
---|
867 |
|
---|
868 |
|
---|
869 | // --------------------------------------------------------------------------
|
---|
870 | //
|
---|
871 | // Default destructor.
|
---|
872 | //
|
---|
873 | MUnfold::~MUnfold()
|
---|
874 | {
|
---|
875 | // if (hBchisq) delete hBchisq;
|
---|
876 | // if (hBSpAR) delete hBSpAR;
|
---|
877 | // if (hBDSpAR) delete hBDSpAR;
|
---|
878 | // if (hBSpSig) delete hBSpSig;
|
---|
879 | // if (hBDSpSig) delete hBDSpSig;
|
---|
880 | // if (hBSecDeriv) delete hBSecDeriv;
|
---|
881 | // if (hBSecDeriv) delete hBDSecDeriv;
|
---|
882 | // if (hBZerDeriv) delete hBZerDeriv;
|
---|
883 | // if (hBDZerDeriv) delete hBDZerDeriv;
|
---|
884 | // if (hBEntropy) delete hBEntropy;
|
---|
885 | // if (hBDEntropy) delete hBDEntropy;
|
---|
886 | // if (hBDAR2) delete hBDAR2;
|
---|
887 | // if (hBD2bar) delete hBD2bar;
|
---|
888 | // if (fhmig) delete fhmig;
|
---|
889 | // if (shmig) delete shmig;
|
---|
890 | // if (shmigChi2) delete shmigChi2;
|
---|
891 | // if (hEigen) delete hEigen;
|
---|
892 | // if (fhb0) delete fhb0;
|
---|
893 | // if (fha) delete fha;
|
---|
894 | // if (hprior) delete hprior;
|
---|
895 | // if (hb) delete hb;
|
---|
896 | }
|
---|
897 |
|
---|
898 | // -----------------------------------------------------------------------
|
---|
899 | //
|
---|
900 | // Define prior distribution to be a constant
|
---|
901 | //
|
---|
902 | void MUnfold::SetPriorConstant()
|
---|
903 | {
|
---|
904 | fVEps0 = 1./fNb;
|
---|
905 |
|
---|
906 | CopyCol(*hprior, fVEps);
|
---|
907 |
|
---|
908 | //*fLog << "SetPriorConstant : Prior distribution fVEps = " << endl;
|
---|
909 | //*fLog << "==============================================" << endl;
|
---|
910 | //fVEps.Print();
|
---|
911 | }
|
---|
912 |
|
---|
913 | // -----------------------------------------------------------------------
|
---|
914 | //
|
---|
915 | // Take prior distribution from the histogram 'ha'
|
---|
916 | // which may have a different binning than 'hprior'
|
---|
917 | //
|
---|
918 | Bool_t MUnfold::SetPriorRebin(TH1D &ha)
|
---|
919 | {
|
---|
920 |
|
---|
921 | // ------------------------------------------------------------------
|
---|
922 | //
|
---|
923 | // fill the contents of histogram 'ha' into the histogram 'hprior';
|
---|
924 | // the histograms need not have the same binning;
|
---|
925 | // if the binnings are different, the bin contents of histogram 'ha'
|
---|
926 | // are distributed properly (linearly) over the bins of 'hprior'
|
---|
927 | //
|
---|
928 |
|
---|
929 | const Int_t na = ha.GetNbinsX();
|
---|
930 | const Double_t alow = ha.GetBinLowEdge(1);
|
---|
931 | const Double_t aup = ha.GetBinLowEdge(na+1);
|
---|
932 |
|
---|
933 | const Int_t nb = hprior->GetNbinsX();
|
---|
934 | const Double_t blow = hprior->GetBinLowEdge(1);
|
---|
935 | const Double_t bup = hprior->GetBinLowEdge(nb+1);
|
---|
936 |
|
---|
937 | // check whether there is an overlap
|
---|
938 | // between the x ranges of the 2 histograms
|
---|
939 | if (alow>bup || aup<blow)
|
---|
940 | {
|
---|
941 | *fLog << "Rebinning not possible because there is no overlap of the x ranges of the two histograms" << endl;
|
---|
942 | return kFALSE;
|
---|
943 | }
|
---|
944 |
|
---|
945 | // there is an overlap
|
---|
946 | //********************
|
---|
947 | Double_t sum = 0;
|
---|
948 | for (Int_t j=1; j<=nb; j++)
|
---|
949 | {
|
---|
950 | const Double_t yl = hprior->GetBinLowEdge(j);
|
---|
951 | const Double_t yh = hprior->GetBinLowEdge(j+1);
|
---|
952 |
|
---|
953 | // search bins of histogram ha which contribute
|
---|
954 | // to bin j of histogram hb
|
---|
955 | //----------------
|
---|
956 | Int_t il=0;
|
---|
957 | Int_t ih=0;
|
---|
958 | for (Int_t i=2; i<=na+1; i++)
|
---|
959 | {
|
---|
960 | const Double_t xl = ha.GetBinLowEdge(i);
|
---|
961 | if (xl>yl)
|
---|
962 | {
|
---|
963 | il = i-1;
|
---|
964 |
|
---|
965 | //.................................
|
---|
966 | ih = 0;
|
---|
967 | for (Int_t k=(il+1); k<=(na+1); k++)
|
---|
968 | {
|
---|
969 | const Double_t xh = ha.GetBinLowEdge(k);
|
---|
970 | if (xh >= yh)
|
---|
971 | {
|
---|
972 | ih = k-1;
|
---|
973 | break;
|
---|
974 | }
|
---|
975 | }
|
---|
976 | //.................................
|
---|
977 | if (ih == 0)
|
---|
978 | ih = na;
|
---|
979 | break;
|
---|
980 | }
|
---|
981 | }
|
---|
982 | //----------------
|
---|
983 | if (il == 0)
|
---|
984 | {
|
---|
985 | *fLog << "Something is wrong " << endl;
|
---|
986 | *fLog << " na, alow, aup = " << na << ", " << alow
|
---|
987 | << ", " << aup << endl;
|
---|
988 | *fLog << " nb, blow, bup = " << nb << ", " << blow
|
---|
989 | << ", " << bup << endl;
|
---|
990 | return kFALSE;
|
---|
991 | }
|
---|
992 |
|
---|
993 | Double_t content=0;
|
---|
994 | // sum up the contribution to bin j
|
---|
995 | for (Int_t i=il; i<=ih; i++)
|
---|
996 | {
|
---|
997 | const Double_t xl = ha.GetBinLowEdge(i);
|
---|
998 | const Double_t xh = ha.GetBinLowEdge(i+1);
|
---|
999 | const Double_t bina = xh-xl;
|
---|
1000 |
|
---|
1001 | if (xl<yl && xh<yh)
|
---|
1002 | content += ha.GetBinContent(i) * (xh-yl) / bina;
|
---|
1003 | else
|
---|
1004 | if (xl<yl && xh>=yh)
|
---|
1005 | content += ha.GetBinContent(i) * (yh-yl) / bina;
|
---|
1006 | else
|
---|
1007 | if (xl>=yl && xh<yh)
|
---|
1008 | content += ha.GetBinContent(i);
|
---|
1009 | else if (xl>=yl && xh>=yh)
|
---|
1010 | content += ha.GetBinContent(i) * (yh-xl) / bina;
|
---|
1011 | }
|
---|
1012 | hprior->SetBinContent(j, content);
|
---|
1013 | sum += content;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 | // normalize histogram hb
|
---|
1017 | if (sum==0)
|
---|
1018 | {
|
---|
1019 | *fLog << "histogram hb is empty; sum of weights in ha = ";
|
---|
1020 | *fLog << ha.GetSumOfWeights() << endl;
|
---|
1021 | return kFALSE;
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | for (Int_t j=1; j<=nb; j++)
|
---|
1025 | {
|
---|
1026 | const Double_t content = hprior->GetBinContent(j)/sum;
|
---|
1027 | hprior->SetBinContent(j, content);
|
---|
1028 | fVEps0(j-1) = content;
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 | //*fLog << "SetPriorRebin : Prior distribution fVEps = " << endl;
|
---|
1032 | //*fLog << "===========================================" << endl;
|
---|
1033 | //fVEps.Print();
|
---|
1034 |
|
---|
1035 | return kTRUE;
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 |
|
---|
1039 | // -----------------------------------------------------------------------
|
---|
1040 | //
|
---|
1041 | // Set prior distribution to a given distribution 'hpr'
|
---|
1042 | //
|
---|
1043 | Bool_t MUnfold::SetPriorInput(TH1D &hpr)
|
---|
1044 | {
|
---|
1045 | CopyCol(fVEps, hpr);
|
---|
1046 |
|
---|
1047 | const Double_t sum = GetMatrixSumCol(fVEps, 0);
|
---|
1048 |
|
---|
1049 | if (sum<=0)
|
---|
1050 | {
|
---|
1051 | *fLog << "MUnfold::SetPriorInput: invalid prior distribution" << endl;
|
---|
1052 | return kFALSE;
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | // normalize prior distribution
|
---|
1056 | fVEps0 *= 1./sum;
|
---|
1057 |
|
---|
1058 | CopyCol(*hprior, fVEps);
|
---|
1059 |
|
---|
1060 | //*fLog << "SetPriorInput : Prior distribution fVEps = " << endl;
|
---|
1061 | //*fLog << "===========================================" << endl;
|
---|
1062 | //fVEps.Print();
|
---|
1063 |
|
---|
1064 | return kTRUE;
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | // -----------------------------------------------------------------------
|
---|
1068 | //
|
---|
1069 | // Define prior distribution to be a power law
|
---|
1070 | // use input distribution 'hprior' only
|
---|
1071 | // for defining the histogram parameters
|
---|
1072 | //
|
---|
1073 | Bool_t MUnfold::SetPriorPower(Double_t gamma)
|
---|
1074 | {
|
---|
1075 | // generate distribution according to a power law
|
---|
1076 | // dN/dE = E^{-gamma}
|
---|
1077 | // or with y = lo10(E), E = 10^y :
|
---|
1078 | // dN/dy = ln10 * 10^{y*(1-gamma)}
|
---|
1079 | TH1D hpower(*hprior);
|
---|
1080 |
|
---|
1081 | const UInt_t nbin = hprior->GetNbinsX();
|
---|
1082 | const Double_t xmin = hprior->GetBinLowEdge(1);
|
---|
1083 | const Double_t xmax = hprior->GetBinLowEdge(nbin+1);
|
---|
1084 |
|
---|
1085 | *fLog << "nbin, xmin, xmax = " << nbin << ", ";
|
---|
1086 | *fLog << xmin << ", " << xmax << endl;
|
---|
1087 |
|
---|
1088 | TF1* fpow = new TF1("fpow", "pow(10.0, x*(1.0-[0]))", xmin,xmax);
|
---|
1089 | fpow->SetParName (0,"gamma");
|
---|
1090 | fpow->SetParameter(0, gamma );
|
---|
1091 |
|
---|
1092 | hpower.FillRandom("fpow", 100000);
|
---|
1093 |
|
---|
1094 | // fill prior distribution
|
---|
1095 | CopyCol(fVEps, hpower);
|
---|
1096 |
|
---|
1097 | const Double_t sum = GetMatrixSumCol(fVEps, 0);
|
---|
1098 | if (sum <= 0)
|
---|
1099 | {
|
---|
1100 | *fLog << "MUnfold::SetPriorPower : invalid prior distribution" << endl;
|
---|
1101 | return kFALSE;
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | // normalize prior distribution
|
---|
1105 | fVEps0 *= 1./sum;
|
---|
1106 | CopyCol(*hprior, fVEps);
|
---|
1107 |
|
---|
1108 | //*fLog << "SetPriorPower : Prior distribution fVEps = " << endl;
|
---|
1109 | //*fLog << "===========================================" << endl;
|
---|
1110 | //fVEps.Print();
|
---|
1111 |
|
---|
1112 | return kTRUE;
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 |
|
---|
1116 | // -----------------------------------------------------------------------
|
---|
1117 | //
|
---|
1118 | // Set the initial weight
|
---|
1119 | //
|
---|
1120 | Bool_t MUnfold::SetInitialWeight(Double_t &weight)
|
---|
1121 | {
|
---|
1122 | if (weight == 0.0)
|
---|
1123 | {
|
---|
1124 | TMatrixD v1(fVa, TMatrixD::kTransposeMult, fVacovInv);
|
---|
1125 | TMatrixD v2(v1, TMatrixD::kMult, fVa);
|
---|
1126 | weight = 1./sqrt(v2(0,0));
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | *fLog << "MUnfold::SetInitialWeight : Initial Weight = "
|
---|
1130 | << weight << endl;
|
---|
1131 |
|
---|
1132 | return kTRUE;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | // -----------------------------------------------------------------------
|
---|
1136 | //
|
---|
1137 | // Print the unfolded distribution
|
---|
1138 | //
|
---|
1139 | void MUnfold::PrintResults()
|
---|
1140 | {
|
---|
1141 | *fLog << bintitle << endl;
|
---|
1142 | *fLog << "PrintResults : Unfolded distribution fResult " << endl;
|
---|
1143 | *fLog << "=============================================" << endl;
|
---|
1144 | //*fLog << "val, eparab, eplus, eminus, gcc = " << endl;
|
---|
1145 |
|
---|
1146 | for (UInt_t i=0; i<fNb; i++)
|
---|
1147 | {
|
---|
1148 | // *fLog << fResult(i, 0) << " \t";
|
---|
1149 | // *fLog << fResult(i, 1) << " \t";
|
---|
1150 | // *fLog << fResult(i, 2) << " \t";
|
---|
1151 | // *fLog << fResult(i, 3) << " \t";
|
---|
1152 | // *fLog << fResult(i, 4) << endl;
|
---|
1153 | }
|
---|
1154 | *fLog << "Chisquared, NDF, chi2 probability, ixbest = "
|
---|
1155 | << fChisq << ", "
|
---|
1156 | << fNdf << ", " << fProb << ", " << ixbest << endl;
|
---|
1157 |
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 |
|
---|
1161 | // -----------------------------------------------------------------------
|
---|
1162 | //
|
---|
1163 | // Schmelling : unfolding by minimizing the function Z
|
---|
1164 | // by Gauss-Newton iteration
|
---|
1165 | //
|
---|
1166 | // the weights are scanned between
|
---|
1167 | // 1.e-5*fWinitial and 1.e5*fWinitial
|
---|
1168 | //
|
---|
1169 | Bool_t MUnfold::Schmelling(TH1D &hb0)
|
---|
1170 | {
|
---|
1171 |
|
---|
1172 | //======================================================================
|
---|
1173 | // copy ideal distribution
|
---|
1174 | for (UInt_t i=1; i<=fNb; i++)
|
---|
1175 | {
|
---|
1176 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
---|
1177 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | //-----------------------------------------------------------------------
|
---|
1181 | // Initialization
|
---|
1182 | // ==============
|
---|
1183 |
|
---|
1184 | Int_t numGiteration;
|
---|
1185 | Int_t MaxGiteration = 1000;
|
---|
1186 |
|
---|
1187 | TMatrixD alpha;
|
---|
1188 | alpha.ResizeTo(fNa, 1);
|
---|
1189 |
|
---|
1190 |
|
---|
1191 | //-----------------------------------------------------------------------
|
---|
1192 | // Newton iteration
|
---|
1193 | // ================
|
---|
1194 |
|
---|
1195 | Double_t dga2;
|
---|
1196 | Double_t dga2old;
|
---|
1197 | Double_t EpsG = 1.e-12;
|
---|
1198 |
|
---|
1199 | TMatrixD wZdp_inv(fNa, fNa);
|
---|
1200 | TMatrixD d(fNb, 1);
|
---|
1201 | TMatrixD p(fNb, 1);
|
---|
1202 |
|
---|
1203 | TMatrixD gamma (fNa, 1);
|
---|
1204 | TMatrixD dgamma(fNa, 1);
|
---|
1205 |
|
---|
1206 | Double_t fWinitial;
|
---|
1207 | fWinitial = 0.0;
|
---|
1208 | SetInitialWeight(fWinitial);
|
---|
1209 | // for my example this fWinitial was not good; therefore :
|
---|
1210 | fWinitial = 1.0;
|
---|
1211 |
|
---|
1212 | Int_t ix;
|
---|
1213 | Double_t xiter;
|
---|
1214 |
|
---|
1215 | //-------- start scanning weights --------------------------
|
---|
1216 | // if full == kFALSE only quantities necessary for the Gauss-Newton
|
---|
1217 | // iteration are calculated in SchmellCore
|
---|
1218 | // if full == kTRUE in addition the unfolded distribution,
|
---|
1219 | // its covariance matrix and quantities like
|
---|
1220 | // Chisq, SpurAR, etc. are computed in SchmellCore
|
---|
1221 | //Bool_t full;
|
---|
1222 | //full = kFALSE;
|
---|
1223 | Int_t full;
|
---|
1224 |
|
---|
1225 | *fLog << "Schmelling : start loop over weights" << endl;
|
---|
1226 |
|
---|
1227 | dga2 = 1.e20;
|
---|
1228 | for (ix=0; ix<Nix; ix++)
|
---|
1229 | {
|
---|
1230 | xiter = pow(10.0,log10(xmin)+ix*dlogx) * fWinitial;
|
---|
1231 |
|
---|
1232 | //---------- start Gauss-Newton iteration ----------------------
|
---|
1233 | numGiteration = 0;
|
---|
1234 |
|
---|
1235 | // if there was no convergence and the starting gamma was != 0
|
---|
1236 | // redo unfolding for the same weight starting with gamma = 0
|
---|
1237 | //
|
---|
1238 | Int_t gamma0 = 0;
|
---|
1239 | while (1)
|
---|
1240 | {
|
---|
1241 | if (dga2 > EpsG)
|
---|
1242 | {
|
---|
1243 | gamma0 = 1;
|
---|
1244 | gamma.Zero();
|
---|
1245 | }
|
---|
1246 |
|
---|
1247 | dga2 = 1.e20;
|
---|
1248 |
|
---|
1249 | while (1)
|
---|
1250 | {
|
---|
1251 | dga2old = dga2;
|
---|
1252 |
|
---|
1253 | full = 0;
|
---|
1254 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
---|
1255 |
|
---|
1256 | gamma += dgamma;
|
---|
1257 |
|
---|
1258 | //*fLog << "Schmelling : ix, numGiteration, dga2, dga2old = "
|
---|
1259 | // << ix << ", " << numGiteration << ", "
|
---|
1260 | // << dga2 << ", " << dga2old << endl;
|
---|
1261 |
|
---|
1262 | numGiteration += 1;
|
---|
1263 |
|
---|
1264 | // convergence
|
---|
1265 | if (dga2 < EpsG)
|
---|
1266 | break;
|
---|
1267 |
|
---|
1268 | // no convergence
|
---|
1269 | if (numGiteration > MaxGiteration)
|
---|
1270 | break;
|
---|
1271 |
|
---|
1272 | // gamma doesn't seem to change any more
|
---|
1273 | if (fabs(dga2-dga2old) < EpsG/100.)
|
---|
1274 | break;
|
---|
1275 | }
|
---|
1276 | //---------- end Gauss-Newton iteration ------------------------
|
---|
1277 | if (dga2<EpsG || gamma0 != 0) break;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 | // if Gauss-Newton iteration has not converged
|
---|
1281 | // go to next weight
|
---|
1282 | if (dga2 > EpsG)
|
---|
1283 | {
|
---|
1284 | *fLog << "Schmelling : Gauss-Newton iteration has not converged;"
|
---|
1285 | << " numGiteration = " << numGiteration << endl;
|
---|
1286 | *fLog << " ix, dga2, dga2old = " << ix << ", "
|
---|
1287 | << dga2 << ", " << dga2old << endl;
|
---|
1288 | continue;
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | //*fLog << "Schmelling : Gauss-Newton iteration has converged;" << endl;
|
---|
1292 | //*fLog << "==================================================" << endl;
|
---|
1293 | //*fLog << " numGiteration = " << numGiteration << endl;
|
---|
1294 | //*fLog << " ix, dga2 = " << ix << ", " << dga2 << endl;
|
---|
1295 |
|
---|
1296 | // calculated quantities which will be useful for determining
|
---|
1297 | // the best weight (Chisq, SpurAR, ...)
|
---|
1298 | //full = kTRUE;
|
---|
1299 | full = 1;
|
---|
1300 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
---|
1301 |
|
---|
1302 | // calculate difference between ideal and unfolded distribution
|
---|
1303 | Double_t D2bar = 0.0;
|
---|
1304 | for (UInt_t i = 0; i<fNb; i++)
|
---|
1305 | {
|
---|
1306 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
---|
1307 | D2bar += temp*temp;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | SpAR(ix) = SpurAR;
|
---|
1311 | SpSig(ix) = SpurSigma;
|
---|
1312 | chisq(ix) = Chisq;
|
---|
1313 | SecDer(ix) = SecDeriv;
|
---|
1314 | ZerDer(ix) = ZerDeriv;
|
---|
1315 | Entrop(ix) = Entropy;
|
---|
1316 | DAR2(ix) = DiffAR2;
|
---|
1317 | Dsqbar(ix) = D2bar;
|
---|
1318 |
|
---|
1319 | }
|
---|
1320 | //---------- end of scanning weights -------------------------------
|
---|
1321 | *fLog << "Schmelling : end of loop over weights" << endl;
|
---|
1322 | // plots ------------------------------
|
---|
1323 | for (ix=0; ix<Nix; ix++)
|
---|
1324 | {
|
---|
1325 | Double_t xbin = log10(xmin)+ix*dlogx;
|
---|
1326 | xiter = pow(10.0,xbin) * fWinitial;
|
---|
1327 |
|
---|
1328 | Int_t bin;
|
---|
1329 | bin = hBchisq->FindBin( xbin );
|
---|
1330 | hBchisq->SetBinContent(bin,chisq(ix));
|
---|
1331 | hBSpAR->SetBinContent(bin,SpAR(ix));
|
---|
1332 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
---|
1333 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
---|
1334 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
---|
1335 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
---|
1336 | hBDAR2->SetBinContent(bin,DAR2(ix));
|
---|
1337 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
---|
1338 |
|
---|
1339 | if (ix > 0)
|
---|
1340 | {
|
---|
1341 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
---|
1342 | hBDSpAR->SetBinContent(bin,DSpAR);
|
---|
1343 |
|
---|
1344 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
1345 | Double_t DSpSig = diff;
|
---|
1346 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
---|
1347 |
|
---|
1348 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
---|
1349 | hBDEntropy->SetBinContent(bin,DEntrop);
|
---|
1350 |
|
---|
1351 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
---|
1352 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
---|
1353 |
|
---|
1354 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
---|
1355 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
---|
1356 | }
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | // Select best weight
|
---|
1360 | SelectBestWeight();
|
---|
1361 |
|
---|
1362 | if (ixbest < 0.0)
|
---|
1363 | {
|
---|
1364 | *fLog << "Schmelling : no solution found; " << endl;
|
---|
1365 | return kFALSE;
|
---|
1366 | }
|
---|
1367 |
|
---|
1368 | // do the unfolding using the best weight
|
---|
1369 | //full = kTRUE;
|
---|
1370 |
|
---|
1371 |
|
---|
1372 | xiter = pow(10.0,log10(xmin)+ixbest*dlogx) * fWinitial;
|
---|
1373 |
|
---|
1374 | //---------- start Gauss-Newton iteration ----------------------
|
---|
1375 | numGiteration = 0;
|
---|
1376 | gamma.Zero();
|
---|
1377 | dga2 = 1.e20;
|
---|
1378 |
|
---|
1379 | while (1)
|
---|
1380 | {
|
---|
1381 | full = 1;
|
---|
1382 | SchmellCore(full, xiter, gamma, dgamma, dga2);
|
---|
1383 | gamma += dgamma;
|
---|
1384 |
|
---|
1385 | //*fLog << "Schmelling : sum(dgamma^2) = " << dga2 << endl;
|
---|
1386 |
|
---|
1387 | numGiteration += 1;
|
---|
1388 |
|
---|
1389 | if (numGiteration > MaxGiteration)
|
---|
1390 | break;
|
---|
1391 |
|
---|
1392 | if (dga2 < EpsG)
|
---|
1393 | break;
|
---|
1394 | }
|
---|
1395 | //---------- end Gauss-Newton iteration ------------------------
|
---|
1396 |
|
---|
1397 |
|
---|
1398 | //-----------------------------------------------------------------------
|
---|
1399 | // termination stage
|
---|
1400 | // =================
|
---|
1401 |
|
---|
1402 | *fLog << "Schmelling : best solution found; " << endl;
|
---|
1403 | *fLog << "==================================" << endl;
|
---|
1404 | *fLog << " xiter, ixbest, numGiteration, Chisq = "
|
---|
1405 | << xiter << ", " << ixbest << ", "
|
---|
1406 | << numGiteration << ", " << Chisq << endl;
|
---|
1407 |
|
---|
1408 | //------------------------------------
|
---|
1409 | //..............................................
|
---|
1410 | // put unfolded distribution into fResult
|
---|
1411 | // fResult(i,0) value in bin i
|
---|
1412 | // fResult(i,1) error of value in bin i
|
---|
1413 |
|
---|
1414 | fNdf = SpurAR;
|
---|
1415 | fChisq = Chisq;
|
---|
1416 |
|
---|
1417 | for (UInt_t i=0; i<fNa; i++)
|
---|
1418 | {
|
---|
1419 | fChi2(i,0) = Chi2(i,0);
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | UInt_t iNdf = (UInt_t) (fNdf+0.5);
|
---|
1423 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0;
|
---|
1424 |
|
---|
1425 | fResult.ResizeTo(fNb, 5);
|
---|
1426 | for (UInt_t i=0; i<fNb; i++)
|
---|
1427 | {
|
---|
1428 | fResult(i, 0) = fVb(i,0);
|
---|
1429 | fResult(i, 1) = sqrt(fVbcov(i,i));
|
---|
1430 | fResult(i, 2) = 0.0;
|
---|
1431 | fResult(i, 3) = 0.0;
|
---|
1432 | fResult(i, 4) = 1.0;
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 | //--------------------------------------------------------
|
---|
1436 |
|
---|
1437 | *fLog << "Schmelling : gamma = " << endl;
|
---|
1438 | for (UInt_t i=0; i<fNa; i++)
|
---|
1439 | *fLog << gamma(i,0) << " \t";
|
---|
1440 | *fLog << endl;
|
---|
1441 |
|
---|
1442 | return kTRUE;
|
---|
1443 | }
|
---|
1444 |
|
---|
1445 |
|
---|
1446 |
|
---|
1447 |
|
---|
1448 | // -----------------------------------------------------------------------
|
---|
1449 | //
|
---|
1450 | // SchmellCore main part of Schmellings calculations
|
---|
1451 | //
|
---|
1452 | void MUnfold::SchmellCore(Int_t full, Double_t &xiter, TMatrixD &gamma,
|
---|
1453 | TMatrixD &dgamma, Double_t &dga2)
|
---|
1454 | {
|
---|
1455 | Double_t norm;
|
---|
1456 | TMatrixD wZdp_inv(fNa, fNa);
|
---|
1457 | TMatrixD d(fNb, 1);
|
---|
1458 | TMatrixD p(fNb, 1);
|
---|
1459 |
|
---|
1460 | //--------------------------------------------------------
|
---|
1461 | //-- determine the probability vector p
|
---|
1462 |
|
---|
1463 |
|
---|
1464 | TMatrixD v3(gamma, TMatrixD::kTransposeMult, fMigrat);
|
---|
1465 | TMatrixD v4(TMatrixD::kTransposed, v3);
|
---|
1466 | d = v4;
|
---|
1467 | Double_t dmax = -1.e10;
|
---|
1468 | for (UInt_t j=0; j<fNb; j++)
|
---|
1469 | if (d(j,0)>dmax)
|
---|
1470 | dmax = d(j,0);
|
---|
1471 |
|
---|
1472 | Double_t psum = 0.0;
|
---|
1473 | for (UInt_t j=0; j<fNb; j++)
|
---|
1474 | {
|
---|
1475 | d(j,0) -= dmax;
|
---|
1476 | p(j,0) = fVEps0(j)*exp(xiter*d(j,0));
|
---|
1477 | psum += p(j,0);
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 | p *= 1.0/psum;
|
---|
1481 |
|
---|
1482 | //-- get the vector alpha
|
---|
1483 |
|
---|
1484 | TMatrixD alpha(fMigrat, TMatrixD::kMult, p);
|
---|
1485 |
|
---|
1486 | //-- determine the current normalization
|
---|
1487 |
|
---|
1488 | TMatrixD v2 (alpha, TMatrixD::kTransposeMult, fVacovInv);
|
---|
1489 | TMatrixD normb(v2, TMatrixD::kMult, alpha);
|
---|
1490 |
|
---|
1491 | TMatrixD normc(v2, TMatrixD::kMult, fVa);
|
---|
1492 |
|
---|
1493 | norm = normc(0,0)/normb(0,0);
|
---|
1494 |
|
---|
1495 | //--------------------------------------------------------
|
---|
1496 | //-- determine the scaled slope vector s and Hessian H
|
---|
1497 |
|
---|
1498 | TMatrixD Zp(fNa,1);
|
---|
1499 | for (UInt_t i=0; i<fNa; i++)
|
---|
1500 | {
|
---|
1501 | Zp(i,0) = norm*alpha(i,0) - fVa(i,0);
|
---|
1502 | for (UInt_t k=0; k<fNa; k++)
|
---|
1503 | Zp(i,0) += gamma(k,0)*fVacov(k,i);
|
---|
1504 | }
|
---|
1505 |
|
---|
1506 |
|
---|
1507 | TMatrixD Q (fNa, fNa);
|
---|
1508 | TMatrixD wZdp(fNa, fNa);
|
---|
1509 | for (UInt_t i=0; i<fNa; i++)
|
---|
1510 | {
|
---|
1511 | for (UInt_t j=0; j<fNa; j++)
|
---|
1512 | {
|
---|
1513 | Q(i,j) = - alpha(i,0)*alpha(j,0);
|
---|
1514 | for (UInt_t k=0; k<fNb; k++)
|
---|
1515 | Q(i,j) += fMigrat(i,k)*fMigrat(j,k)*p(k,0);
|
---|
1516 | wZdp(i,j) = xiter*norm*Q(i,j) + fVacov(i,j);
|
---|
1517 | }
|
---|
1518 | }
|
---|
1519 |
|
---|
1520 | //-- invert H and calculate the next Newton step
|
---|
1521 |
|
---|
1522 | Double_t determ = 1.0;
|
---|
1523 | wZdp_inv = wZdp;
|
---|
1524 | wZdp_inv.Invert(&determ);
|
---|
1525 |
|
---|
1526 | if(determ == 0.0)
|
---|
1527 | {
|
---|
1528 | *fLog << "SchmellCore: matrix inversion for H failed" << endl;
|
---|
1529 | return;
|
---|
1530 | }
|
---|
1531 |
|
---|
1532 |
|
---|
1533 | dga2 = 0.0;
|
---|
1534 | for (UInt_t i=0; i<fNa; i++)
|
---|
1535 | {
|
---|
1536 | dgamma(i,0) = 0.0;
|
---|
1537 | for (UInt_t j=0; j<fNa; j++)
|
---|
1538 | dgamma(i,0) -= wZdp_inv(i,j)*Zp(j,0);
|
---|
1539 | dga2 += dgamma(i,0)*dgamma(i,0);
|
---|
1540 | }
|
---|
1541 |
|
---|
1542 | if (full == 0)
|
---|
1543 | return;
|
---|
1544 |
|
---|
1545 | //--------------------------------------------------------
|
---|
1546 | //-- determine chi2 and dNdf (#measurements ignored)
|
---|
1547 | Double_t dNdf = 0;
|
---|
1548 | for (UInt_t i=0; i<fNa; i++)
|
---|
1549 | {
|
---|
1550 | Chi2(i,0) = 0;
|
---|
1551 | for (UInt_t j=0; j<fNa; j++)
|
---|
1552 | {
|
---|
1553 | Chi2(i,0) += fVacov(i,j) * gamma(i,0) * gamma(j,0);
|
---|
1554 | dNdf += fVacov(i,j) * wZdp_inv(j,i);
|
---|
1555 | }
|
---|
1556 | }
|
---|
1557 | Chisq = GetMatrixSumCol(Chi2, 0);
|
---|
1558 | SpurAR = fNa - dNdf;
|
---|
1559 |
|
---|
1560 | //-----------------------------------------------------
|
---|
1561 | // calculate the norm |AR - AR+|**2
|
---|
1562 |
|
---|
1563 | TMatrixD AR(fNa, fNa);
|
---|
1564 | DiffAR2 = 0.0;
|
---|
1565 | for (UInt_t i=0; i<fNa; i++)
|
---|
1566 | {
|
---|
1567 | for (UInt_t j=0; j<fNa; j++)
|
---|
1568 | {
|
---|
1569 | AR(i,j) = 0.0;
|
---|
1570 | for (UInt_t k=0; k<fNa; k++)
|
---|
1571 | AR(i,j) += fVacov(i,k) * wZdp_inv(k,j);
|
---|
1572 | DiffAR2 += AR(i,j) * AR(i,j);
|
---|
1573 | }
|
---|
1574 | }
|
---|
1575 |
|
---|
1576 | //--------------------------------------------------------
|
---|
1577 | //-- fill distribution b(*)
|
---|
1578 | fVb = p;
|
---|
1579 | fVb *= norm;
|
---|
1580 |
|
---|
1581 | //-- determine the covariance matrix of b (very expensive)
|
---|
1582 |
|
---|
1583 | TMatrixD T(fNb,fNa);
|
---|
1584 | for (UInt_t i=0; i<fNb; i++)
|
---|
1585 | {
|
---|
1586 | for (UInt_t j=0; j<fNa; j++)
|
---|
1587 | {
|
---|
1588 | T(i,j) = 0.0;
|
---|
1589 | for (UInt_t k=0; k<fNa; k++)
|
---|
1590 | T(i,j) += xiter*wZdp_inv(k,j)*(fMigrat(k,i)-alpha(k,0))*p(i,0);
|
---|
1591 | }
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 | SpurSigma = CalcSpurSigma(T, norm);
|
---|
1595 |
|
---|
1596 | //--------------------------------------------------------
|
---|
1597 |
|
---|
1598 | //-----------------------------------------------------
|
---|
1599 | // calculate the second derivative squared
|
---|
1600 |
|
---|
1601 | SecDeriv = 0;
|
---|
1602 | for (UInt_t j=1; j<(fNb-1); j++)
|
---|
1603 | {
|
---|
1604 | Double_t temp =
|
---|
1605 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
---|
1606 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
---|
1607 | SecDeriv += temp*temp;
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | ZerDeriv = 0;
|
---|
1611 | for (UInt_t j=0; j<fNb; j++)
|
---|
1612 | ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
1613 |
|
---|
1614 | //-----------------------------------------------------
|
---|
1615 | // calculate the entropy
|
---|
1616 | Entropy = 0;
|
---|
1617 | for (UInt_t j=0; j<fNb; j++)
|
---|
1618 | if (p(j,0) > 0.0)
|
---|
1619 | Entropy += p(j,0) * log( p(j,0) );
|
---|
1620 |
|
---|
1621 | //--------------------------------------------------------
|
---|
1622 | }
|
---|
1623 |
|
---|
1624 |
|
---|
1625 | // -----------------------------------------------------------------------
|
---|
1626 | //
|
---|
1627 | // Smooth migration matrix
|
---|
1628 | // by fitting a function to the migration matrix
|
---|
1629 | //
|
---|
1630 | Bool_t MUnfold::SmoothMigrationMatrix(TH2D &hmigorig)
|
---|
1631 | {
|
---|
1632 | // copy histograms into matrices; the matrices will be used in fcnSmooth
|
---|
1633 | // ------------------------
|
---|
1634 |
|
---|
1635 |
|
---|
1636 | //*fLog << "MUnfold::SmoothMigrationMatrix : fNa, fNb = " << fNa << ", " << fNb << endl;
|
---|
1637 |
|
---|
1638 | //*fLog << "MUnfold::SmoothMigrationMatrix: fMigOrig = " << endl;
|
---|
1639 | //*fLog << "========================================" << endl;
|
---|
1640 | for (UInt_t i=0; i<fNa; i++)
|
---|
1641 | {
|
---|
1642 | for (UInt_t j=0; j<fNb; j++)
|
---|
1643 | {
|
---|
1644 | fMigOrig(i, j) = hmigorig.GetBinContent(i+1, j+1);
|
---|
1645 | //*fLog << fMigOrig(i, j) << " \t";
|
---|
1646 | }
|
---|
1647 | //*fLog << endl;
|
---|
1648 | }
|
---|
1649 |
|
---|
1650 |
|
---|
1651 | // ------------------------
|
---|
1652 |
|
---|
1653 |
|
---|
1654 | //*fLog << "MUnfold::SmoothMigrationMatrix : fMigOrigerr2 = " << endl;
|
---|
1655 | //*fLog << "=============================================" << endl;
|
---|
1656 | for (UInt_t i=0; i<fNa; i++)
|
---|
1657 | {
|
---|
1658 | for (UInt_t j=0; j<fNb; j++)
|
---|
1659 | {
|
---|
1660 | fMigOrigerr2(i, j) = hmigorig.GetBinError(i+1, j+1)
|
---|
1661 | * hmigorig.GetBinError(i+1, j+1);
|
---|
1662 |
|
---|
1663 | //*fLog << fMigOrigerr2(i, j) << " \t";
|
---|
1664 | }
|
---|
1665 | //*fLog << endl;
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 |
|
---|
1669 | // ------------------------
|
---|
1670 | // the number of free parameters (npar) is equal to 6:
|
---|
1671 | // a0mean, a1mean, a2mean
|
---|
1672 | // <log10(Eest)> = a0 + a1*log10(Etrue) + a2*SQR(log10(Etrue))
|
---|
1673 | // + log10(Etrue)
|
---|
1674 | // b0RMS, b1RMS, b2RMS
|
---|
1675 | // RMS(log10(Eest)) = b0 + b1*log10(Etrue) + b2*SQR(log10(Etrue))
|
---|
1676 | //
|
---|
1677 | UInt_t npar = 6;
|
---|
1678 |
|
---|
1679 | if (npar > 20)
|
---|
1680 | {
|
---|
1681 | *fLog << "MUnfold::SmoothMigrationMatrix : too many parameters, npar = "
|
---|
1682 | << npar << endl;
|
---|
1683 | return kFALSE;
|
---|
1684 | }
|
---|
1685 |
|
---|
1686 |
|
---|
1687 | //..............................................
|
---|
1688 | // Find reasonable starting values for a0, a1 and b0, b1
|
---|
1689 |
|
---|
1690 | Double_t xbar = 0.0;
|
---|
1691 | Double_t xxbar = 0.0;
|
---|
1692 |
|
---|
1693 | Double_t ybarm = 0.0;
|
---|
1694 | Double_t xybarm = 0.0;
|
---|
1695 |
|
---|
1696 | Double_t ybarR = 0.0;
|
---|
1697 | Double_t xybarR = 0.0;
|
---|
1698 |
|
---|
1699 | Double_t Sum = 0.0;
|
---|
1700 | for (UInt_t j=0; j<fNb; j++)
|
---|
1701 | {
|
---|
1702 | Double_t x = (double)j + 0.5;
|
---|
1703 |
|
---|
1704 | Double_t meany = 0.0;
|
---|
1705 | Double_t RMSy = 0.0;
|
---|
1706 | Double_t sum = 0.0;
|
---|
1707 | for (UInt_t i=0; i<fNa; i++)
|
---|
1708 | {
|
---|
1709 | Double_t y = (double)i + 0.5;
|
---|
1710 | meany += y * fMigOrig(i, j);
|
---|
1711 | RMSy += y*y * fMigOrig(i, j);
|
---|
1712 | sum += fMigOrig(i, j);
|
---|
1713 | }
|
---|
1714 | if (sum > 0.0)
|
---|
1715 | {
|
---|
1716 | meany = meany / sum;
|
---|
1717 | RMSy = RMSy / sum - meany*meany;
|
---|
1718 | RMSy = sqrt(RMSy);
|
---|
1719 |
|
---|
1720 | Sum += sum;
|
---|
1721 | xbar += x * sum;
|
---|
1722 | xxbar += x*x * sum;
|
---|
1723 |
|
---|
1724 | ybarm += meany * sum;
|
---|
1725 | xybarm += x*meany * sum;
|
---|
1726 |
|
---|
1727 | ybarR += RMSy * sum;
|
---|
1728 | xybarR += x*RMSy * sum;
|
---|
1729 | }
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 | if (Sum > 0.0)
|
---|
1733 | {
|
---|
1734 | xbar /= Sum;
|
---|
1735 | xxbar /= Sum;
|
---|
1736 |
|
---|
1737 | ybarm /= Sum;
|
---|
1738 | xybarm /= Sum;
|
---|
1739 |
|
---|
1740 | ybarR /= Sum;
|
---|
1741 | xybarR /= Sum;
|
---|
1742 | }
|
---|
1743 |
|
---|
1744 | Double_t a1start = (xybarm - xbar*ybarm) / (xxbar - xbar*xbar);
|
---|
1745 | Double_t a0start = ybarm - a1start*xbar;
|
---|
1746 | a1start = a1start - 1.0;
|
---|
1747 |
|
---|
1748 | Double_t b1start = (xybarR - xbar*ybarR) / (xxbar - xbar*xbar);
|
---|
1749 | Double_t b0start = ybarR - b1start*xbar;
|
---|
1750 |
|
---|
1751 | *fLog << "MUnfold::SmoothMigrationMatrix : " << endl;
|
---|
1752 | *fLog << "============================" << endl;
|
---|
1753 | *fLog << "a0start, a1start = " << a0start << ", " << a1start << endl;
|
---|
1754 | *fLog << "b0start, b1start = " << b0start << ", " << b1start << endl;
|
---|
1755 |
|
---|
1756 | //..............................................
|
---|
1757 | // Set starting values and step sizes for parameters
|
---|
1758 |
|
---|
1759 | char name[20][100];
|
---|
1760 | Double_t vinit[20];
|
---|
1761 | Double_t step[20];
|
---|
1762 | Double_t limlo[20];
|
---|
1763 | Double_t limup[20];
|
---|
1764 | Int_t fix[20];
|
---|
1765 |
|
---|
1766 | sprintf(&name[0][0], "a0mean");
|
---|
1767 | vinit[0] = a0start;
|
---|
1768 | //vinit[0] = 1.0;
|
---|
1769 | step[0] = 0.1;
|
---|
1770 | limlo[0] = 0.0;
|
---|
1771 | limup[0] = 0.0;
|
---|
1772 | fix[0] = 0;
|
---|
1773 |
|
---|
1774 | sprintf(&name[1][0], "a1mean");
|
---|
1775 | vinit[1] = a1start;
|
---|
1776 | //vinit[1] = 0.0;
|
---|
1777 | step[1] = 0.1;
|
---|
1778 | limlo[1] = 0.0;
|
---|
1779 | limup[1] = 0.0;
|
---|
1780 | fix[1] = 0;
|
---|
1781 |
|
---|
1782 | sprintf(&name[2][0], "a2mean");
|
---|
1783 | vinit[2] = 0.0;
|
---|
1784 | step[2] = 0.1;
|
---|
1785 | limlo[2] = 0.0;
|
---|
1786 | limup[2] = 0.0;
|
---|
1787 | fix[2] = 0;
|
---|
1788 |
|
---|
1789 | sprintf(&name[3][0], "b0RMS");
|
---|
1790 | vinit[3] = b0start;
|
---|
1791 | //vinit[3] = 0.8;
|
---|
1792 | step[3] = 0.1;
|
---|
1793 | limlo[3] = 1.e-20;
|
---|
1794 | limup[3] = 10.0;
|
---|
1795 | fix[3] = 0;
|
---|
1796 |
|
---|
1797 | sprintf(&name[4][0], "b1RMS");
|
---|
1798 | vinit[4] = b1start;
|
---|
1799 | //vinit[4] = 0.0;
|
---|
1800 | step[4] = 0.1;
|
---|
1801 | limlo[4] = 0.0;
|
---|
1802 | limup[4] = 0.0;
|
---|
1803 | fix[4] = 0;
|
---|
1804 |
|
---|
1805 | sprintf(&name[5][0], "b2RMS");
|
---|
1806 | vinit[5] = 0.0;
|
---|
1807 | step[5] = 0.1;
|
---|
1808 | limlo[5] = 0.0;
|
---|
1809 | limup[5] = 0.0;
|
---|
1810 | fix[5] = 0;
|
---|
1811 |
|
---|
1812 |
|
---|
1813 | if ( CallMinuit(fcnSmooth, npar, name, vinit,
|
---|
1814 | step, limlo, limup, fix) )
|
---|
1815 | {
|
---|
1816 |
|
---|
1817 | // ------------------------
|
---|
1818 | // fMigrat is the migration matrix to be used in the unfolding;
|
---|
1819 | // fMigrat, as set by the constructor, is overwritten
|
---|
1820 | // by the smoothed migration matrix
|
---|
1821 |
|
---|
1822 | for (UInt_t i=0; i<fNa; i++)
|
---|
1823 | for (UInt_t j=0; j<fNb; j++)
|
---|
1824 | fMigrat(i, j) = fMigSmoo(i, j);
|
---|
1825 |
|
---|
1826 | // ------------------------
|
---|
1827 |
|
---|
1828 | for (UInt_t i=0; i<fNa; i++)
|
---|
1829 | for (UInt_t j=0; j<fNb; j++)
|
---|
1830 | fMigraterr2(i, j) = fMigSmooerr2(i, j);
|
---|
1831 |
|
---|
1832 |
|
---|
1833 | // normalize
|
---|
1834 | for (UInt_t j=0; j<fNb; j++)
|
---|
1835 | {
|
---|
1836 | Double_t sum = 0.0;
|
---|
1837 | for (UInt_t i=0; i<fNa; i++)
|
---|
1838 | sum += fMigrat(i, j);
|
---|
1839 |
|
---|
1840 | //*fLog << "SmoothMigrationMatrix : normalization fMigrat; j, sum + "
|
---|
1841 | // << j << ", " << sum << endl;
|
---|
1842 |
|
---|
1843 | if (sum == 0.0)
|
---|
1844 | continue;
|
---|
1845 |
|
---|
1846 | for (UInt_t i=0; i<fNa; i++)
|
---|
1847 | {
|
---|
1848 | fMigrat(i, j) /= sum;
|
---|
1849 | fMigraterr2(i, j) /= (sum*sum);
|
---|
1850 | }
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | *fLog << "MUnfold::SmoothMigrationMatrix : fMigrat = " << endl;
|
---|
1854 | *fLog << "========================================" << endl;
|
---|
1855 | for (UInt_t i=0; i<fNa; i++)
|
---|
1856 | {
|
---|
1857 | for (UInt_t j=0; j<fNb; j++)
|
---|
1858 | *fLog << fMigrat(i, j) << " \t";
|
---|
1859 | *fLog << endl;
|
---|
1860 | }
|
---|
1861 |
|
---|
1862 | /*
|
---|
1863 | *fLog << "MUnfold::SmoothMigrationMatrix : fMigraterr2 = " << endl;
|
---|
1864 | *fLog << "============================================" << endl;
|
---|
1865 | for (UInt_t i=0; i<fNa; i++)
|
---|
1866 | {
|
---|
1867 | for (UInt_t j=0; j<fNb; j++)
|
---|
1868 | *fLog << fMigraterr2(i, j) << " \t";
|
---|
1869 | *fLog << endl;
|
---|
1870 | }
|
---|
1871 | */
|
---|
1872 |
|
---|
1873 | // ------------------------
|
---|
1874 |
|
---|
1875 | return kTRUE;
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 | return kFALSE;
|
---|
1879 | }
|
---|
1880 |
|
---|
1881 | // -----------------------------------------------------------------------
|
---|
1882 | //
|
---|
1883 | // Prepare the call to MINUIT for the minimization of the function
|
---|
1884 | // f = chi2*w/2 + reg, where reg is the regularization term
|
---|
1885 | // reg is the sum the squared 2nd derivatives
|
---|
1886 | // of the unfolded distribution
|
---|
1887 | //
|
---|
1888 | // the corresponding fcn routine is 'fcnTikhonov2'
|
---|
1889 | //
|
---|
1890 | Bool_t MUnfold::Tikhonov2(TH1D &hb0)
|
---|
1891 | {
|
---|
1892 | // the number of free parameters (npar) is equal to
|
---|
1893 | // the number of bins (fNb) of the unfolded distribution minus 1,
|
---|
1894 | // because of the constraint that the total number of events
|
---|
1895 | // is fixed
|
---|
1896 | UInt_t npar = fNb-1;
|
---|
1897 |
|
---|
1898 | if (npar > 20)
|
---|
1899 | {
|
---|
1900 | *fLog << "MUnfold::Tikhonov2 : too many parameters, npar = "
|
---|
1901 | << npar << ", fNb = " << fNb << endl;
|
---|
1902 | return kFALSE;
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | // copy ideal distribution
|
---|
1906 |
|
---|
1907 | for (UInt_t i=1; i<=fNb; i++)
|
---|
1908 | {
|
---|
1909 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
---|
1910 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
---|
1911 | }
|
---|
1912 |
|
---|
1913 |
|
---|
1914 | //--- start w loop -----------------------------------
|
---|
1915 |
|
---|
1916 | *fLog << "Tikhonov2 : start loop over weights" << endl;
|
---|
1917 |
|
---|
1918 | Int_t ix;
|
---|
1919 | Double_t xiter;
|
---|
1920 |
|
---|
1921 | for (ix=0; ix<Nix; ix++)
|
---|
1922 | {
|
---|
1923 | fW = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
1924 |
|
---|
1925 | //..............................................
|
---|
1926 | // Set starting values and step sizes for parameters
|
---|
1927 |
|
---|
1928 | char name[20][100];
|
---|
1929 | Double_t vinit[20];
|
---|
1930 | Double_t step[20];
|
---|
1931 | Double_t limlo[20];
|
---|
1932 | Double_t limup[20];
|
---|
1933 | Int_t fix[20];
|
---|
1934 |
|
---|
1935 | for (UInt_t i=0; i<npar; i++)
|
---|
1936 | {
|
---|
1937 | sprintf(&name[i][0], "p%d", i+1);
|
---|
1938 | vinit[i] = fVEps0(i);
|
---|
1939 | step[i] = fVEps0(i)/10;
|
---|
1940 |
|
---|
1941 | // lower and upper limits (limlo=limup=0: no limits)
|
---|
1942 | //limlo[i] = 1.e-20;
|
---|
1943 | limlo[i] = -1.0;
|
---|
1944 | limup[i] = 1.0;
|
---|
1945 | fix[i] = 0;
|
---|
1946 | }
|
---|
1947 |
|
---|
1948 | // calculate solution for the weight fW
|
---|
1949 | // flag non-convergence by chisq(ix) = 0.0
|
---|
1950 | chisq(ix) = 0.0;
|
---|
1951 | if ( CallMinuit(fcnTikhonov2, npar, name, vinit,
|
---|
1952 | step, limlo, limup, fix) )
|
---|
1953 | {
|
---|
1954 | // calculate difference between ideal and unfolded distribution
|
---|
1955 | Double_t D2bar = 0.0;
|
---|
1956 | for (UInt_t i = 0; i<fNb; i++)
|
---|
1957 | {
|
---|
1958 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
---|
1959 | D2bar += temp*temp;
|
---|
1960 | }
|
---|
1961 |
|
---|
1962 | SpAR(ix) = SpurAR;
|
---|
1963 | SpSig(ix) = SpurSigma;
|
---|
1964 | chisq(ix) = Chisq;
|
---|
1965 | SecDer(ix) = SecDeriv;
|
---|
1966 | ZerDer(ix) = ZerDeriv;
|
---|
1967 | Entrop(ix) = Entropy;
|
---|
1968 | DAR2(ix) = DiffAR2;
|
---|
1969 | Dsqbar(ix) = D2bar;
|
---|
1970 | }
|
---|
1971 | }
|
---|
1972 | *fLog << "Tikhonov2 : end of loop over weights" << endl;
|
---|
1973 |
|
---|
1974 | // plots ------------------------------
|
---|
1975 | for (ix=0; ix<Nix; ix++)
|
---|
1976 | {
|
---|
1977 | // test whether minimization has converged
|
---|
1978 | if (chisq(ix) != 0.0)
|
---|
1979 | {
|
---|
1980 | xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
1981 |
|
---|
1982 | Int_t bin;
|
---|
1983 | bin = hBchisq->FindBin( log10(xiter) );
|
---|
1984 | hBchisq->SetBinContent(bin,chisq(ix));
|
---|
1985 |
|
---|
1986 | //hBSpAR->SetBinContent(bin,SpAR(ix));
|
---|
1987 | hBSpAR->SetBinContent(bin,0.0);
|
---|
1988 |
|
---|
1989 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
---|
1990 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
---|
1991 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
---|
1992 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
---|
1993 |
|
---|
1994 | //hBDAR2->SetBinContent(bin,DAR2(ix));
|
---|
1995 | hBDAR2->SetBinContent(bin,0.0);
|
---|
1996 |
|
---|
1997 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
---|
1998 |
|
---|
1999 | if (ix > 0)
|
---|
2000 | {
|
---|
2001 | //Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
---|
2002 | //hBDSpAR->SetBinContent(bin,DSpAR);
|
---|
2003 |
|
---|
2004 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
2005 | Double_t DSpSig = diff;
|
---|
2006 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
---|
2007 |
|
---|
2008 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
---|
2009 | hBDEntropy->SetBinContent(bin,DEntrop);
|
---|
2010 |
|
---|
2011 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
---|
2012 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
---|
2013 |
|
---|
2014 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
---|
2015 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
---|
2016 | }
|
---|
2017 | }
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 |
|
---|
2021 | //--- end w loop -----------------------------------
|
---|
2022 |
|
---|
2023 | // Select best weight
|
---|
2024 | SelectBestWeight();
|
---|
2025 |
|
---|
2026 | *fLog << " Tikhonov2 : after SelectBestWeight" << endl;
|
---|
2027 |
|
---|
2028 | if (ixbest < 0.0)
|
---|
2029 | {
|
---|
2030 | *fLog << "Tikhonov2 : no result found; " << endl;
|
---|
2031 | return kFALSE;
|
---|
2032 | }
|
---|
2033 |
|
---|
2034 | *fLog << "Tikhonov2 : best result found; " << endl;
|
---|
2035 | *fLog << "===============================" << endl;
|
---|
2036 | *fLog << " ixbest = " << ixbest << endl;
|
---|
2037 |
|
---|
2038 |
|
---|
2039 | // do a final unfolding using the best weight
|
---|
2040 |
|
---|
2041 | fW = pow(10.0,log10(xmin)+ixbest*dlogx);
|
---|
2042 |
|
---|
2043 | //..............................................
|
---|
2044 | // Set starting values and step sizes for parameters
|
---|
2045 |
|
---|
2046 | char name[20][100];
|
---|
2047 | Double_t vinit[20];
|
---|
2048 | Double_t step[20];
|
---|
2049 | Double_t limlo[20];
|
---|
2050 | Double_t limup[20];
|
---|
2051 | Int_t fix[20];
|
---|
2052 |
|
---|
2053 | for (UInt_t i=0; i<npar; i++)
|
---|
2054 | {
|
---|
2055 | sprintf(&name[i][0], "p%d", i+1);
|
---|
2056 | vinit[i] = fVEps0(i);
|
---|
2057 | step[i] = fVEps0(i)/10;
|
---|
2058 |
|
---|
2059 | // lower and upper limits (limlo=limup=0: no limits)
|
---|
2060 | //limlo[i] = 1.e-20;
|
---|
2061 | limlo[i] = -1.0;
|
---|
2062 | limup[i] = 1.0;
|
---|
2063 | fix[i] = 0;
|
---|
2064 | }
|
---|
2065 |
|
---|
2066 | // calculate solution for the best weight
|
---|
2067 | CallMinuit(fcnTikhonov2, npar, name, vinit,
|
---|
2068 | step, limlo, limup, fix);
|
---|
2069 |
|
---|
2070 |
|
---|
2071 | *fLog << "Tikhonov : Values for best weight " << endl;
|
---|
2072 | *fLog << "==================================" << endl;
|
---|
2073 | *fLog << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl;
|
---|
2074 | *fLog << " " << fW << ", " << ixbest << ", "
|
---|
2075 | << Chisq << ", " << SpurAR << ", "
|
---|
2076 | << SpurSigma << ", " << SecDeriv << ", " << ZerDeriv << ", "
|
---|
2077 | << Entropy << ", " << DiffAR2 << ", "
|
---|
2078 | << Dsqbar(ixbest) << endl;
|
---|
2079 |
|
---|
2080 | return kTRUE;
|
---|
2081 |
|
---|
2082 | }
|
---|
2083 |
|
---|
2084 |
|
---|
2085 | // -----------------------------------------------------------------------
|
---|
2086 | //
|
---|
2087 | // Bertero :
|
---|
2088 | //
|
---|
2089 | // the unfolded distribution is calculated iteratively;
|
---|
2090 | // the number of iterations after which the iteration is stopped
|
---|
2091 | // corresponds to the 'weight' in other methods
|
---|
2092 | // a small number of iterations corresponds to strong regularization
|
---|
2093 | // a high number to no regularization
|
---|
2094 | //
|
---|
2095 | // see : M.Bertero, INFN/TC-88/2 (1988)
|
---|
2096 | // V.B.Anykeyev et al., NIM A303 (1991) 350
|
---|
2097 | //
|
---|
2098 | Bool_t MUnfold::Bertero(TH1D &hb0)
|
---|
2099 | {
|
---|
2100 | // copy ideal distribution
|
---|
2101 |
|
---|
2102 | for (UInt_t i=1; i<=fNb; i++)
|
---|
2103 | {
|
---|
2104 | fhb0->SetBinContent(i, hb0.GetBinContent(i));
|
---|
2105 | fhb0->SetBinError (i, hb0.GetBinError(i));
|
---|
2106 | }
|
---|
2107 |
|
---|
2108 |
|
---|
2109 | TMatrixD bold(fNb, 1);
|
---|
2110 | bold.Zero();
|
---|
2111 |
|
---|
2112 | //----------------------------------------------------------
|
---|
2113 |
|
---|
2114 | Double_t db2 = 1.e20;
|
---|
2115 |
|
---|
2116 |
|
---|
2117 | TMatrixD aminusaest(fNa, 1);
|
---|
2118 |
|
---|
2119 | //------- scan number of iterations -----------------
|
---|
2120 |
|
---|
2121 | *fLog << "Bertero : start loop over number of iterations" << endl;
|
---|
2122 |
|
---|
2123 | Int_t ix;
|
---|
2124 |
|
---|
2125 | for (ix=0; ix<Nix; ix++)
|
---|
2126 | {
|
---|
2127 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
2128 |
|
---|
2129 | // calculate solution for the iteration number xiter
|
---|
2130 | BertCore(xiter);
|
---|
2131 |
|
---|
2132 | // calculate difference between ideal and unfolded distribution
|
---|
2133 | Double_t D2bar = 0.0;
|
---|
2134 | for (UInt_t i = 0; i<fNb; i++)
|
---|
2135 | {
|
---|
2136 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0);
|
---|
2137 | D2bar += temp*temp;
|
---|
2138 | }
|
---|
2139 |
|
---|
2140 | SpAR(ix) = SpurAR;
|
---|
2141 | SpSig(ix) = SpurSigma;
|
---|
2142 | chisq(ix) = Chisq;
|
---|
2143 | SecDer(ix) = SecDeriv;
|
---|
2144 | ZerDer(ix) = ZerDeriv;
|
---|
2145 | Entrop(ix) = Entropy;
|
---|
2146 | DAR2(ix) = DiffAR2;
|
---|
2147 | Dsqbar(ix) = D2bar;
|
---|
2148 |
|
---|
2149 | db2 = 0.0;
|
---|
2150 | for (UInt_t i = 0; i<fNb; i++)
|
---|
2151 | {
|
---|
2152 | Double_t temp = fVb(i,0)-bold(i,0);
|
---|
2153 | db2 += temp*temp;
|
---|
2154 | }
|
---|
2155 | bold = fVb;
|
---|
2156 |
|
---|
2157 | //if (db2 < Epsdb2) break;
|
---|
2158 |
|
---|
2159 | }
|
---|
2160 |
|
---|
2161 | *fLog << "Bertero : end of loop over number of iterations" << endl;
|
---|
2162 |
|
---|
2163 | // plots ------------------------------
|
---|
2164 | for (ix=0; ix<Nix; ix++)
|
---|
2165 | {
|
---|
2166 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx);
|
---|
2167 |
|
---|
2168 | Int_t bin;
|
---|
2169 | bin = hBchisq->FindBin( log10(xiter) );
|
---|
2170 | hBchisq->SetBinContent(bin,chisq(ix));
|
---|
2171 | hBSpAR->SetBinContent(bin,SpAR(ix));
|
---|
2172 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov);
|
---|
2173 | hBSecDeriv->SetBinContent(bin,SecDer(ix));
|
---|
2174 | hBZerDeriv->SetBinContent(bin,ZerDer(ix));
|
---|
2175 | hBEntropy->SetBinContent(bin,Entrop(ix));
|
---|
2176 | hBDAR2->SetBinContent(bin,DAR2(ix));
|
---|
2177 | hBD2bar->SetBinContent(bin,Dsqbar(ix));
|
---|
2178 |
|
---|
2179 | if (ix > 0)
|
---|
2180 | {
|
---|
2181 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1);
|
---|
2182 | hBDSpAR->SetBinContent(bin,DSpAR);
|
---|
2183 |
|
---|
2184 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
2185 | Double_t DSpSig = diff;
|
---|
2186 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov);
|
---|
2187 |
|
---|
2188 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1);
|
---|
2189 | hBDEntropy->SetBinContent(bin,DEntrop);
|
---|
2190 |
|
---|
2191 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1);
|
---|
2192 | hBDSecDeriv->SetBinContent(bin,DSecDer);
|
---|
2193 |
|
---|
2194 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1);
|
---|
2195 | hBDZerDeriv->SetBinContent(bin,DZerDer);
|
---|
2196 | }
|
---|
2197 | }
|
---|
2198 | //------- end of scan of number of iterations -----------------
|
---|
2199 |
|
---|
2200 | // Select best weight
|
---|
2201 | SelectBestWeight();
|
---|
2202 |
|
---|
2203 |
|
---|
2204 | if (ixbest < 0.0)
|
---|
2205 | {
|
---|
2206 | *fLog << "Bertero : weight iteration has NOT converged; " << endl;
|
---|
2207 | return kFALSE;
|
---|
2208 | }
|
---|
2209 |
|
---|
2210 | *fLog << "Bertero : weight iteration has converged; " << endl;
|
---|
2211 | *fLog << " ixbest = " << ixbest << endl;
|
---|
2212 |
|
---|
2213 |
|
---|
2214 | // do a final unfolding using the best weight
|
---|
2215 |
|
---|
2216 | // calculate solution for the iteration number xiter
|
---|
2217 | Double_t xiter = pow(10.0,log10(xmin)+ixbest*dlogx);
|
---|
2218 | BertCore(xiter);
|
---|
2219 |
|
---|
2220 | *fLog << "Bertero : Values for best weight " << endl;
|
---|
2221 | *fLog << "=================================" << endl;
|
---|
2222 | *fLog << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl;
|
---|
2223 | *fLog << " " << fW << ", " << ixbest << ", "
|
---|
2224 | << Chisq << ", " << SpurAR << ", "
|
---|
2225 | << SpurSigma << ", " << SecDeriv << ", " << ZerDeriv << ", "
|
---|
2226 | << Entropy << ", " << DiffAR2 << ", "
|
---|
2227 | << Dsqbar(ixbest) << endl;
|
---|
2228 |
|
---|
2229 | //----------------
|
---|
2230 |
|
---|
2231 | fNdf = SpurAR;
|
---|
2232 | fChisq = Chisq;
|
---|
2233 |
|
---|
2234 | for (UInt_t i=0; i<fNa; i++)
|
---|
2235 | {
|
---|
2236 | fChi2(i,0) = Chi2(i,0);
|
---|
2237 | }
|
---|
2238 |
|
---|
2239 | UInt_t iNdf = (UInt_t) (fNdf+0.5);
|
---|
2240 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0;
|
---|
2241 |
|
---|
2242 |
|
---|
2243 | fResult.ResizeTo(fNb, 5);
|
---|
2244 | for (UInt_t i=0; i<fNb; i++)
|
---|
2245 | {
|
---|
2246 | fResult(i, 0) = fVb(i,0);
|
---|
2247 | fResult(i, 1) = sqrt(fVbcov(i,i));
|
---|
2248 | fResult(i, 2) = 0.0;
|
---|
2249 | fResult(i, 3) = 0.0;
|
---|
2250 | fResult(i, 4) = 1.0;
|
---|
2251 | }
|
---|
2252 |
|
---|
2253 | return kTRUE;
|
---|
2254 | }
|
---|
2255 |
|
---|
2256 | // -----------------------------------------------------------------------
|
---|
2257 | //
|
---|
2258 | // main part of Bertero's calculations
|
---|
2259 | //
|
---|
2260 | Bool_t MUnfold::BertCore(Double_t &xiter)
|
---|
2261 | {
|
---|
2262 | // ignore eigen values which are smaller than EpsLambda
|
---|
2263 | TMatrixD G_inv(fNa, fNa);
|
---|
2264 | TMatrixD Gtil_inv(fNa, fNa);
|
---|
2265 | TMatrixD atil(fNb, fNa);
|
---|
2266 | TMatrixD aminusaest(fNa, 1);
|
---|
2267 |
|
---|
2268 | G_inv.Zero();
|
---|
2269 | Gtil_inv.Zero();
|
---|
2270 | SpurAR = 0.0;
|
---|
2271 |
|
---|
2272 | // ----- loop over eigen values ------------------
|
---|
2273 | // calculate the approximate inverse of the matrix G
|
---|
2274 | //*fLog << "flaml = " << endl;
|
---|
2275 |
|
---|
2276 | UInt_t flagstart = 2;
|
---|
2277 | Double_t flaml=0;
|
---|
2278 |
|
---|
2279 | for (UInt_t l=0; l<fNa; l++)
|
---|
2280 | {
|
---|
2281 | if (EigenValue(l) < EpsLambda)
|
---|
2282 | continue;
|
---|
2283 |
|
---|
2284 | switch (flagstart)
|
---|
2285 | {
|
---|
2286 | case 1 :
|
---|
2287 | // This is the expression for f(lambda) if the initial C^(0)
|
---|
2288 | // is chosen to be zero
|
---|
2289 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter);
|
---|
2290 | break;
|
---|
2291 |
|
---|
2292 | case 2 :
|
---|
2293 | // This is the expression for f(lambda) if the initial C^(0)
|
---|
2294 | // is chosen to be equal to the measured distribution
|
---|
2295 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter)
|
---|
2296 | + EigenValue(l) * pow(1.0-tau*EigenValue(l),xiter);
|
---|
2297 | break;
|
---|
2298 | }
|
---|
2299 |
|
---|
2300 | // *fLog << flaml << ", ";
|
---|
2301 |
|
---|
2302 | for (UInt_t m=0; m<fNa; m++)
|
---|
2303 | {
|
---|
2304 | for (UInt_t n=0; n<fNa; n++)
|
---|
2305 | {
|
---|
2306 | G_inv(m,n) += 1.0 /EigenValue(l) * Eigen(m,l)*Eigen(n,l);
|
---|
2307 | Gtil_inv(m,n) += flaml/EigenValue(l) * Eigen(m,l)*Eigen(n,l);
|
---|
2308 | }
|
---|
2309 | }
|
---|
2310 | SpurAR += flaml;
|
---|
2311 | }
|
---|
2312 | //*fLog << endl;
|
---|
2313 |
|
---|
2314 |
|
---|
2315 | //*fLog << "Gtil_inv =" << endl;
|
---|
2316 | //for (Int_t m=0; m<fNa; m++)
|
---|
2317 | //{
|
---|
2318 | // for (Int_t n=0; n<fNa; n++)
|
---|
2319 | // {
|
---|
2320 | // *fLog << Gtil_inv(m,n) << ", ";
|
---|
2321 | // }
|
---|
2322 | // *fLog << endl;
|
---|
2323 | //}
|
---|
2324 |
|
---|
2325 | //-----------------------------------------------------
|
---|
2326 | // calculate the unfolded distribution b
|
---|
2327 | TMatrixD v2(fMigrat, TMatrixD::kTransposeMult, Gtil_inv);
|
---|
2328 | atil = v2;
|
---|
2329 | TMatrixD v4(atil, TMatrixD::kMult, fVa);
|
---|
2330 | fVb = v4;
|
---|
2331 |
|
---|
2332 | //-----------------------------------------------------
|
---|
2333 | // calculate AR and AR+
|
---|
2334 | TMatrixD AR(v2, TMatrixD::kMult, fMigrat);
|
---|
2335 |
|
---|
2336 | TMatrixD v3(fMigrat, TMatrixD::kTransposeMult, G_inv);
|
---|
2337 | TMatrixD ARplus(v3, TMatrixD::kMult, fMigrat);
|
---|
2338 |
|
---|
2339 |
|
---|
2340 | //-----------------------------------------------------
|
---|
2341 | // calculate the norm |AR - AR+|**2
|
---|
2342 |
|
---|
2343 | DiffAR2 = 0.0;
|
---|
2344 | for (UInt_t j=0; j<fNb; j++)
|
---|
2345 | {
|
---|
2346 | for (UInt_t k=0; k<fNb; k++)
|
---|
2347 | {
|
---|
2348 | Double_t tempo = AR(j,k) - ARplus(j,k);
|
---|
2349 | DiffAR2 += tempo*tempo;
|
---|
2350 | }
|
---|
2351 | }
|
---|
2352 |
|
---|
2353 | //-----------------------------------------------------
|
---|
2354 | // calculate the second derivative squared
|
---|
2355 |
|
---|
2356 | SecDeriv = 0;
|
---|
2357 | for (UInt_t j=1; j<(fNb-1); j++)
|
---|
2358 | {
|
---|
2359 | // temp = ( 2.0*fVb(j,0)-fVb(j-1,0)-fVb(j+1,0) ) / ( 2.0*fVb(j,0) );
|
---|
2360 | Double_t temp = 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0))
|
---|
2361 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0));
|
---|
2362 | SecDeriv += temp*temp;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 | ZerDeriv = 0;
|
---|
2366 | for (UInt_t j=0; j<fNb; j++)
|
---|
2367 | ZerDeriv += fVb(j,0) * fVb(j,0);
|
---|
2368 |
|
---|
2369 | //-----------------------------------------------------
|
---|
2370 | // calculate the entropy
|
---|
2371 |
|
---|
2372 | Double_t sumb = 0.0;
|
---|
2373 | for (UInt_t j=0; j<fNb; j++)
|
---|
2374 | sumb += fVb(j,0);
|
---|
2375 |
|
---|
2376 | TMatrixD p(fNb,1);
|
---|
2377 | p = fVb;
|
---|
2378 | if (sumb > 0.0)
|
---|
2379 | p *= 1.0/sumb;
|
---|
2380 |
|
---|
2381 | Entropy = 0;
|
---|
2382 | for (UInt_t j=0; j<fNb; j++)
|
---|
2383 | if (p(j,0) > 0.0)
|
---|
2384 | Entropy += p(j,0) * log( p(j,0) );
|
---|
2385 |
|
---|
2386 | //-----------------------------------------------------
|
---|
2387 |
|
---|
2388 | TMatrixD Gb(fMigrat, TMatrixD::kMult, fVb);
|
---|
2389 | aminusaest = fVa;
|
---|
2390 | aminusaest -= Gb;
|
---|
2391 |
|
---|
2392 | TMatrixD v1(1,fNa);
|
---|
2393 | for (UInt_t i=0; i<fNa; i++)
|
---|
2394 | {
|
---|
2395 | v1(0,i) = 0.0;
|
---|
2396 | for (UInt_t j=0; j<fNa; j++)
|
---|
2397 | v1(0,i) += aminusaest(j,0) * fVacovInv(j,i) ;
|
---|
2398 | }
|
---|
2399 |
|
---|
2400 | //-----------------------------------------------------
|
---|
2401 | // calculate error matrix fVbcov of unfolded distribution
|
---|
2402 | SpurSigma = CalcSpurSigma(atil);
|
---|
2403 |
|
---|
2404 | //-----------------------------------------------------
|
---|
2405 | // calculate the chi squared
|
---|
2406 | for (UInt_t i = 0; i<fNa; i++)
|
---|
2407 | Chi2(i,0) = v1(0,i) * aminusaest(i,0);
|
---|
2408 |
|
---|
2409 | Chisq = GetMatrixSumCol(Chi2,0);
|
---|
2410 | return kTRUE;
|
---|
2411 | }
|
---|
2412 |
|
---|
2413 |
|
---|
2414 | // -----------------------------------------------------------------------
|
---|
2415 | //
|
---|
2416 | // Calculate the matrix G = M * M(transposed)
|
---|
2417 | // and its eigen values and eigen vectors
|
---|
2418 | //
|
---|
2419 | Bool_t MUnfold::CalculateG()
|
---|
2420 | {
|
---|
2421 | // Calculate matrix G = M*M(transposed) (M = migration matrix)
|
---|
2422 | // the matrix Eigen of the eigen vectors of G
|
---|
2423 | // the vector EigenValues of the eigen values of G
|
---|
2424 | // the parameter tau = 1/lambda_max
|
---|
2425 | //
|
---|
2426 | TMatrixD v5(TMatrixD::kTransposed, fMigrat);
|
---|
2427 | //TMatrixD G(fMigrat, TMatrixD::kMult, v5);
|
---|
2428 | G.Mult(fMigrat, v5);
|
---|
2429 |
|
---|
2430 | Eigen = G.EigenVectors(EigenValue);
|
---|
2431 |
|
---|
2432 | RankG = 0.0;
|
---|
2433 | for (UInt_t l=0; l<fNa; l++)
|
---|
2434 | {
|
---|
2435 | if (EigenValue(l) < EpsLambda) continue;
|
---|
2436 | RankG += 1.0;
|
---|
2437 | }
|
---|
2438 |
|
---|
2439 | tau = 1.0 / EigenValue(0);
|
---|
2440 |
|
---|
2441 | // *fLog << "eigen values : " << endl;
|
---|
2442 | // for (Int_t i=0; i<fNa; i++)
|
---|
2443 | // {
|
---|
2444 | // *fLog << EigenValue(i) << ", ";
|
---|
2445 | // }
|
---|
2446 | // *fLog << endl;
|
---|
2447 |
|
---|
2448 | //*fLog << "eigen vectors : " << endl;
|
---|
2449 | //for (Int_t i=0; i<fNa; i++)
|
---|
2450 | //{
|
---|
2451 | // *fLog << " vector " << i << endl;
|
---|
2452 | // for (Int_t j=0; j<fNa; j++)
|
---|
2453 | // {
|
---|
2454 | // *fLog << Eigen(j,i) << ", ";
|
---|
2455 | // }
|
---|
2456 | // *fLog << endl;
|
---|
2457 | //}
|
---|
2458 | //*fLog << endl;
|
---|
2459 |
|
---|
2460 | //*fLog << "G =" << endl;
|
---|
2461 | //for (Int_t m=0; m<fNa; m++)
|
---|
2462 | //{
|
---|
2463 | // for (Int_t n=0; n<fNa; n++)
|
---|
2464 | // {
|
---|
2465 | // *fLog << G(m,n) << ", ";
|
---|
2466 | // }
|
---|
2467 | // *fLog << endl;
|
---|
2468 | //}
|
---|
2469 |
|
---|
2470 | return kTRUE;
|
---|
2471 | }
|
---|
2472 |
|
---|
2473 | // -----------------------------------------------------------------------
|
---|
2474 | //
|
---|
2475 | // Select the best weight
|
---|
2476 | //
|
---|
2477 | Bool_t MUnfold::SelectBestWeight()
|
---|
2478 | {
|
---|
2479 | //-------------------------------
|
---|
2480 | // select 'best' weight according to some criterion
|
---|
2481 |
|
---|
2482 | Int_t ix;
|
---|
2483 |
|
---|
2484 | Double_t DiffSpSigmax = -1.e10;
|
---|
2485 | Int_t ixDiffSpSigmax = -1;
|
---|
2486 |
|
---|
2487 | Double_t DiffSigpointsmin = 1.e10;
|
---|
2488 | Int_t ixDiffSigpointsmin = -1;
|
---|
2489 |
|
---|
2490 | Double_t DiffRankGmin = 1.e10;
|
---|
2491 | Int_t ixDiffRankGmin = -1;
|
---|
2492 |
|
---|
2493 | Double_t D2barmin = 1.e10;
|
---|
2494 | Int_t ixD2barmin = -1;
|
---|
2495 |
|
---|
2496 | Double_t DiffSpSig1min = 1.e10;
|
---|
2497 | Int_t ixDiffSpSig1min = -1;
|
---|
2498 |
|
---|
2499 |
|
---|
2500 | Int_t ixmax = -1;
|
---|
2501 |
|
---|
2502 | // first loop over all weights :
|
---|
2503 | // find smallest chi2
|
---|
2504 | Double_t chisqmin = 1.e20;
|
---|
2505 | for (ix=0; ix<Nix; ix++)
|
---|
2506 | {
|
---|
2507 | // consider only weights for which
|
---|
2508 | // - unfolding was successful
|
---|
2509 | if (chisq(ix) != 0.0)
|
---|
2510 | {
|
---|
2511 | if (chisq(ix) < chisqmin)
|
---|
2512 | chisqmin = chisq(ix);
|
---|
2513 | }
|
---|
2514 | }
|
---|
2515 | Double_t chisq0 = chisqmin > fVapoints ? chisqmin : fVapoints/2.0;
|
---|
2516 |
|
---|
2517 | // second loop over all weights :
|
---|
2518 | // consider only weights for which chisq(ix) < chisq0
|
---|
2519 | ixbest = -1;
|
---|
2520 | for (ix=0; ix<Nix; ix++)
|
---|
2521 | {
|
---|
2522 | if (chisq(ix) != 0.0 && chisq(ix) < 2.0*chisq0)
|
---|
2523 | {
|
---|
2524 | // ixmax = highest weight with successful unfolding
|
---|
2525 | // (Least squares solution)
|
---|
2526 | ixmax = ix;
|
---|
2527 |
|
---|
2528 | SpurSigma = SpSig(ix);
|
---|
2529 | SpurAR = SpAR(ix);
|
---|
2530 | Chisq = chisq(ix);
|
---|
2531 | D2bar = Dsqbar(ix);
|
---|
2532 |
|
---|
2533 | //----------------------------------
|
---|
2534 | // search weight where SpurSigma changes most
|
---|
2535 | // (as a function of the weight)
|
---|
2536 | if (ix > 0 && chisq(ix-1) != 0.0)
|
---|
2537 | {
|
---|
2538 | Double_t diff = SpSig(ix) - SpSig(ix-1);
|
---|
2539 | if (diff > DiffSpSigmax)
|
---|
2540 | {
|
---|
2541 | DiffSpSigmax = diff;
|
---|
2542 | ixDiffSpSigmax = ix;
|
---|
2543 | }
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 | //----------------------------------
|
---|
2547 | // search weight where Chisq is close
|
---|
2548 | // to the number of significant measurements
|
---|
2549 | Double_t DiffSigpoints = fabs(Chisq-fVapoints);
|
---|
2550 |
|
---|
2551 | if (DiffSigpoints < DiffSigpointsmin)
|
---|
2552 | {
|
---|
2553 | DiffSigpointsmin = DiffSigpoints;
|
---|
2554 | ixDiffSigpointsmin = ix;
|
---|
2555 | }
|
---|
2556 |
|
---|
2557 | //----------------------------------
|
---|
2558 | // search weight where Chisq is close
|
---|
2559 | // to the rank of matrix G
|
---|
2560 | Double_t DiffRankG = fabs(Chisq-RankG);
|
---|
2561 |
|
---|
2562 | if (DiffRankG < DiffRankGmin)
|
---|
2563 | {
|
---|
2564 | DiffRankGmin = DiffRankG;
|
---|
2565 | ixDiffRankGmin = ix;
|
---|
2566 | }
|
---|
2567 |
|
---|
2568 | //----------------------------------
|
---|
2569 | // search weight where SpurSigma is close to 1.0
|
---|
2570 | Double_t DiffSpSig1 = fabs(SpurSigma/fSpurVacov-1.0);
|
---|
2571 |
|
---|
2572 | if (DiffSpSig1 < DiffSpSig1min)
|
---|
2573 | {
|
---|
2574 | DiffSpSig1min = DiffSpSig1;
|
---|
2575 | ixDiffSpSig1min = ix;
|
---|
2576 | }
|
---|
2577 |
|
---|
2578 | //----------------------------------
|
---|
2579 | // search weight where D2bar is minimal
|
---|
2580 |
|
---|
2581 | if (D2bar < D2barmin)
|
---|
2582 | {
|
---|
2583 | D2barmin = D2bar;
|
---|
2584 | ixD2barmin = ix;
|
---|
2585 | }
|
---|
2586 |
|
---|
2587 | //----------------------------------
|
---|
2588 | }
|
---|
2589 | }
|
---|
2590 |
|
---|
2591 |
|
---|
2592 | // choose solution where increase of SpurSigma is biggest
|
---|
2593 | //if ( DiffSpSigmax > 0.0)
|
---|
2594 | // ixbest = ixDiffSpSigmax;
|
---|
2595 | //else
|
---|
2596 | // ixbest = ixDiffSigpointsmin;
|
---|
2597 |
|
---|
2598 | // choose Least Squares Solution
|
---|
2599 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2600 | // ixbest = ixmax;
|
---|
2601 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2602 |
|
---|
2603 | // choose weight where chi2 is close to the number of significant
|
---|
2604 | // measurements
|
---|
2605 | // ixbest = ixDiffSigpointsmin;
|
---|
2606 |
|
---|
2607 | // choose weight where chi2 is close to the rank of matrix G
|
---|
2608 | // ixbest = ixDiffRankGmin;
|
---|
2609 |
|
---|
2610 | // choose weight where chi2 is close to the rank of matrix G
|
---|
2611 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2612 | ixbest = ixDiffSpSig1min;
|
---|
2613 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
|
---|
2614 |
|
---|
2615 | *fLog << "SelectBestWeight : ixDiffSpSigmax, DiffSpSigmax = "
|
---|
2616 | << ixDiffSpSigmax << ", " << DiffSpSigmax << endl;
|
---|
2617 | *fLog << "================== ixDiffSigpointsmin, DiffSigpointsmin = "
|
---|
2618 | << ixDiffSigpointsmin << ", " << DiffSigpointsmin << endl;
|
---|
2619 |
|
---|
2620 | *fLog << " ixDiffRankGmin, DiffRankGmin = "
|
---|
2621 | << ixDiffRankGmin << ", " << DiffRankGmin << endl;
|
---|
2622 |
|
---|
2623 | *fLog << " ixDiffSpSig1min, DiffSpSig1min = "
|
---|
2624 | << ixDiffSpSig1min << ", " << DiffSpSig1min << endl;
|
---|
2625 |
|
---|
2626 | *fLog << " ixD2barmin, D2barmin = "
|
---|
2627 | << ixD2barmin << ", " << D2barmin << endl;
|
---|
2628 | *fLog << " ixmax = " << ixmax << endl;
|
---|
2629 | *fLog << " ixbest = " << ixbest << endl;
|
---|
2630 |
|
---|
2631 |
|
---|
2632 | return kTRUE;
|
---|
2633 | }
|
---|
2634 |
|
---|
2635 | // -----------------------------------------------------------------------
|
---|
2636 | //
|
---|
2637 | // Draw the plots
|
---|
2638 | //
|
---|
2639 | Bool_t MUnfold::DrawPlots()
|
---|
2640 | {
|
---|
2641 |
|
---|
2642 | // in the plots, mark the weight which has been selected
|
---|
2643 | Double_t xbin = log10(xmin)+ixbest*dlogx;
|
---|
2644 |
|
---|
2645 | TMarker *m = new TMarker();
|
---|
2646 | m->SetMarkerSize(1);
|
---|
2647 | m->SetMarkerStyle(20);
|
---|
2648 |
|
---|
2649 | //-------------------------------------
|
---|
2650 | // draw the iteration plots
|
---|
2651 | TString ctitle = bintitle;
|
---|
2652 | ctitle += "Plots versus weight";
|
---|
2653 | TCanvas *c = new TCanvas("iter", ctitle, 900, 600);
|
---|
2654 | c->Divide(3,2);
|
---|
2655 |
|
---|
2656 | c->cd(1);
|
---|
2657 | hBchisq->Draw();
|
---|
2658 | gPad->SetLogy();
|
---|
2659 | hBchisq->SetXTitle("log10(iteration number)");
|
---|
2660 | hBchisq->SetYTitle("chisq");
|
---|
2661 | m->DrawMarker(xbin, log10(chisq(ixbest)));
|
---|
2662 |
|
---|
2663 | c->cd(2);
|
---|
2664 | hBD2bar->Draw();
|
---|
2665 | gPad->SetLogy();
|
---|
2666 | hBD2bar->SetXTitle("log10(iteration number)");
|
---|
2667 | hBD2bar->SetYTitle("(b_unfolded-b_ideal)**2");
|
---|
2668 | m->DrawMarker(xbin, log10(Dsqbar(ixbest)));
|
---|
2669 |
|
---|
2670 | /*
|
---|
2671 | c->cd(3);
|
---|
2672 | hBDAR2->Draw();
|
---|
2673 | gPad->SetLogy();
|
---|
2674 | strgx = "log10(iteration number)";
|
---|
2675 | strgy = "norm(AR-AR+)";
|
---|
2676 | hBDAR2->SetXTitle(strgx);
|
---|
2677 | hBDAR2->SetYTitle(strgy);
|
---|
2678 | m->DrawMarker(xbin, log10(DAR2(ixbest)));
|
---|
2679 | */
|
---|
2680 |
|
---|
2681 | c->cd(3);
|
---|
2682 | hBSecDeriv->Draw();
|
---|
2683 | hBSecDeriv->SetXTitle("log10(iteration number)");
|
---|
2684 | hBSecDeriv->SetYTitle("Second Derivative squared");
|
---|
2685 | m->DrawMarker(xbin, SecDer(ixbest));
|
---|
2686 |
|
---|
2687 | /*
|
---|
2688 | c->cd(8);
|
---|
2689 | hBDSecDeriv->Draw();
|
---|
2690 | strgx = "log10(iteration number)";
|
---|
2691 | strgy = "Delta(Second Derivative squared)";
|
---|
2692 | hBDSecDeriv->SetXTitle(strgx);
|
---|
2693 | hBDSecDeriv->SetYTitle(strgy);
|
---|
2694 | */
|
---|
2695 |
|
---|
2696 | /*
|
---|
2697 | c->cd(4);
|
---|
2698 | hBZerDeriv->Draw();
|
---|
2699 | strgx = "log10(iteration number)";
|
---|
2700 | strgy = "Zero Derivative squared";
|
---|
2701 | hBZerDeriv->SetXTitle(strgx);
|
---|
2702 | hBZerDeriv->SetYTitle(strgy);
|
---|
2703 | m->DrawMarker(xbin, ZerDer(ixbest));
|
---|
2704 | */
|
---|
2705 |
|
---|
2706 | /*
|
---|
2707 | c->cd(5);
|
---|
2708 | hBDZerDeriv->Draw();
|
---|
2709 | strgx = "log10(iteration number)";
|
---|
2710 | strgy = "Delta(Zero Derivative squared)";
|
---|
2711 | hBDZerDeriv->SetXTitle(strgx);
|
---|
2712 | hBDZerDeriv->SetYTitle(strgy);
|
---|
2713 | */
|
---|
2714 |
|
---|
2715 | c->cd(4);
|
---|
2716 | hBSpAR->Draw();
|
---|
2717 | hBSpAR->SetXTitle("log10(iteration number)");
|
---|
2718 | hBSpAR->SetYTitle("SpurAR");
|
---|
2719 | m->DrawMarker(xbin, SpAR(ixbest));
|
---|
2720 |
|
---|
2721 |
|
---|
2722 | /*
|
---|
2723 | c->cd(11);
|
---|
2724 | hBDSpAR->Draw();
|
---|
2725 | strgx = "log10(iteration number)";
|
---|
2726 | strgy = "Delta(SpurAR)";
|
---|
2727 | hBDSpAR->SetXTitle(strgx);
|
---|
2728 | hBDSpAR->SetYTitle(strgy);
|
---|
2729 | */
|
---|
2730 |
|
---|
2731 | c->cd(5);
|
---|
2732 | hBSpSig->Draw();
|
---|
2733 | hBSpSig->SetXTitle("log10(iteration number)");
|
---|
2734 | hBSpSig->SetYTitle("SpurSig/SpurC");
|
---|
2735 | m->DrawMarker(xbin, SpSig(ixbest)/fSpurVacov);
|
---|
2736 |
|
---|
2737 | /*
|
---|
2738 | c->cd(14);
|
---|
2739 | hBDSpSig->Draw();
|
---|
2740 | strgx = "log10(iteration number)";
|
---|
2741 | strgy = "Delta(SpurSig/SpurC)";
|
---|
2742 | hBDSpSig->SetXTitle(strgx);
|
---|
2743 | hBDSpSig->SetYTitle(strgy);
|
---|
2744 | */
|
---|
2745 |
|
---|
2746 | c->cd(6);
|
---|
2747 | hBEntropy->Draw();
|
---|
2748 | hBEntropy->SetXTitle("log10(iteration number)");
|
---|
2749 | hBEntropy->SetYTitle("Entropy");
|
---|
2750 | m->DrawMarker(xbin, Entrop(ixbest));
|
---|
2751 |
|
---|
2752 | /*
|
---|
2753 | c->cd(17);
|
---|
2754 | hBDEntropy->Draw();
|
---|
2755 | strgx = "log10(iteration number)";
|
---|
2756 | strgy = "Delta(Entropy)";
|
---|
2757 | hBDEntropy->SetXTitle(strgx);
|
---|
2758 | hBDEntropy->SetYTitle(strgy);
|
---|
2759 | */
|
---|
2760 |
|
---|
2761 | //-------------------------------------
|
---|
2762 |
|
---|
2763 | for (UInt_t i=0; i<fNa; i++)
|
---|
2764 | {
|
---|
2765 | fha->SetBinContent(i+1, fVa(i, 0) );
|
---|
2766 | fha->SetBinError (i+1, sqrt(fVacov(i, i)));
|
---|
2767 |
|
---|
2768 | for (UInt_t j=0; j<fNb; j++)
|
---|
2769 | {
|
---|
2770 | fhmig->SetBinContent(i+1, j+1, fMigOrig(i, j) );
|
---|
2771 | fhmig->SetBinError (i+1, j+1, sqrt(fMigOrigerr2(i, j)) );
|
---|
2772 |
|
---|
2773 | shmig->SetBinContent(i+1, j+1, fMigrat(i, j) );
|
---|
2774 | shmig->SetBinError (i+1, j+1, sqrt(fMigraterr2(i, j)) );
|
---|
2775 | shmigChi2->SetBinContent(i+1, j+1, fMigChi2(i, j) );
|
---|
2776 | }
|
---|
2777 | }
|
---|
2778 |
|
---|
2779 | //PrintTH2Content(*shmig);
|
---|
2780 | //PrintTH2Content(*shmigChi2);
|
---|
2781 |
|
---|
2782 | //-------------------------------------
|
---|
2783 | CopyCol(*hprior, fVEps);
|
---|
2784 | CopyCol(*hb, fVb);
|
---|
2785 | for (UInt_t i=0; i<fNb; i++)
|
---|
2786 | hb->SetBinError(i+1, sqrt(fVbcov(i, i)));
|
---|
2787 |
|
---|
2788 | PrintTH1Content(*hb);
|
---|
2789 | PrintTH1Error(*hb);
|
---|
2790 |
|
---|
2791 | //..............................................
|
---|
2792 | for (UInt_t i=0; i<fNa; i++)
|
---|
2793 | hEigen->SetBinContent(i+1, EigenValue(i));
|
---|
2794 |
|
---|
2795 | //..............................................
|
---|
2796 | // draw the plots
|
---|
2797 | TString cctitle = bintitle;
|
---|
2798 | cctitle += "Unfolding input";
|
---|
2799 | TCanvas *cc = new TCanvas("input", cctitle, 900, 600);
|
---|
2800 | cc->Divide(3, 2);
|
---|
2801 |
|
---|
2802 | // distribution to be unfolded
|
---|
2803 | cc->cd(1);
|
---|
2804 | fha->Draw();
|
---|
2805 | gPad->SetLogy();
|
---|
2806 | fha->SetXTitle("log10(E_{est}/GeV)");
|
---|
2807 | fha->SetYTitle("Counts");
|
---|
2808 |
|
---|
2809 | // superimpose unfolded distribution
|
---|
2810 | hb->Draw("*HSAME");
|
---|
2811 | hb->SetMarkerColor(75);
|
---|
2812 | hb->SetLineColor(75);
|
---|
2813 |
|
---|
2814 | // prior distribution
|
---|
2815 | cc->cd(2);
|
---|
2816 | hprior->Draw();
|
---|
2817 | gPad->SetLogy();
|
---|
2818 | hprior->SetXTitle("log10(E_{true}/GeV)");
|
---|
2819 | hprior->SetYTitle("Counts");
|
---|
2820 |
|
---|
2821 | // migration matrix
|
---|
2822 | cc->cd(3);
|
---|
2823 | fhmig->Draw("box");
|
---|
2824 | fhmig->SetXTitle("log10(E_{est}/GeV)");
|
---|
2825 | fhmig->SetYTitle("log10(E_{true}/GeV)");
|
---|
2826 |
|
---|
2827 | // smoothed migration matrix
|
---|
2828 | cc->cd(4);
|
---|
2829 | shmig->Draw("box");
|
---|
2830 | shmig->SetXTitle("log10(E_{est}/GeV)");
|
---|
2831 | shmig->SetYTitle("log10(E_{true}/GeV)");
|
---|
2832 |
|
---|
2833 | // chi2 contributions for smoothing
|
---|
2834 | cc->cd(5);
|
---|
2835 | shmigChi2->Draw("box");
|
---|
2836 | shmigChi2->SetXTitle("log10(E_{est}/GeV)");
|
---|
2837 | shmigChi2->SetYTitle("log10(E_{true}/GeV)");
|
---|
2838 |
|
---|
2839 | // Eigenvalues of matrix M*M(transposed)
|
---|
2840 | cc->cd(6);
|
---|
2841 | hEigen->Draw();
|
---|
2842 | hEigen->SetXTitle("l");
|
---|
2843 | hEigen->SetYTitle("Eigen values Lambda_l of M*M(transposed)");
|
---|
2844 |
|
---|
2845 |
|
---|
2846 | //..............................................
|
---|
2847 | // draw the results
|
---|
2848 | TString crtitle = bintitle;
|
---|
2849 | crtitle += "Unfolding results";
|
---|
2850 | TCanvas *cr = new TCanvas("results", crtitle, 600, 600);
|
---|
2851 | cr->Divide(2, 2);
|
---|
2852 |
|
---|
2853 | // unfolded distribution
|
---|
2854 | cr->cd(1);
|
---|
2855 | hb->Draw();
|
---|
2856 | gPad->SetLogy();
|
---|
2857 | hb->SetXTitle("log10(E-true/GeV)");
|
---|
2858 | hb->SetYTitle("Counts");
|
---|
2859 |
|
---|
2860 |
|
---|
2861 | // covariance matrix of unfolded distribution
|
---|
2862 | cr->cd(2);
|
---|
2863 | TH1 *hbcov=DrawMatrixClone(fVbcov, "lego");
|
---|
2864 | hbcov->SetBins(fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1),
|
---|
2865 | fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1));
|
---|
2866 |
|
---|
2867 | hbcov->SetName("hbcov");
|
---|
2868 | hbcov->SetTitle("Error matrix of distribution hb");
|
---|
2869 | hbcov->SetXTitle("log10(E_{true}/GeV)");
|
---|
2870 | hbcov->SetYTitle("log10(E_{true}/GeV)");
|
---|
2871 |
|
---|
2872 |
|
---|
2873 | // chi2 contributions
|
---|
2874 | cr->cd(3);
|
---|
2875 | TH1 *hchi2=DrawMatrixColClone(fChi2);
|
---|
2876 | hchi2->SetBins(fNa, fha->GetBinLowEdge(1), fha->GetBinLowEdge(fNa+1));
|
---|
2877 |
|
---|
2878 | hchi2->SetName("Chi2");
|
---|
2879 | hchi2->SetTitle("chi2 contributions");
|
---|
2880 | hchi2->SetXTitle("log10(E_{est}/GeV)");
|
---|
2881 | hchi2->SetYTitle("Chisquared");
|
---|
2882 |
|
---|
2883 |
|
---|
2884 | // ideal distribution
|
---|
2885 |
|
---|
2886 | cr->cd(4);
|
---|
2887 | fhb0->Draw();
|
---|
2888 | gPad->SetLogy();
|
---|
2889 | fhb0->SetXTitle("log10(E_{true}/GeV)");
|
---|
2890 | fhb0->SetYTitle("Counts");
|
---|
2891 |
|
---|
2892 |
|
---|
2893 | // superimpose unfolded distribution
|
---|
2894 | hb->Draw("*Hsame");
|
---|
2895 |
|
---|
2896 |
|
---|
2897 | return kTRUE;
|
---|
2898 | }
|
---|
2899 |
|
---|
2900 |
|
---|
2901 | // -----------------------------------------------------------------------
|
---|
2902 | //
|
---|
2903 | // Interface to MINUIT
|
---|
2904 | //
|
---|
2905 | //
|
---|
2906 | Bool_t MUnfold::CallMinuit(
|
---|
2907 | void (*fcnx)(Int_t &, Double_t *, Double_t &, Double_t *, Int_t),
|
---|
2908 | UInt_t npar, char name[20][100],
|
---|
2909 | Double_t vinit[20], Double_t step[20],
|
---|
2910 | Double_t limlo[20], Double_t limup[20], Int_t fix[20])
|
---|
2911 | {
|
---|
2912 | //
|
---|
2913 | // Be carefull: This is not thread safe
|
---|
2914 | //
|
---|
2915 | UInt_t maxpar = 100;
|
---|
2916 |
|
---|
2917 | if (npar > maxpar)
|
---|
2918 | {
|
---|
2919 | *fLog << "MUnfold::CallMinuit : too many parameters, npar = " << fNb
|
---|
2920 | << ", maxpar = " << maxpar << endl;
|
---|
2921 | return kFALSE;
|
---|
2922 | }
|
---|
2923 |
|
---|
2924 | //..............................................
|
---|
2925 | // Set the maximum number of parameters
|
---|
2926 | TMinuit minuit(maxpar);
|
---|
2927 |
|
---|
2928 |
|
---|
2929 | //..............................................
|
---|
2930 | // Set the print level
|
---|
2931 | // -1 no output except SHOW comands
|
---|
2932 | // 0 minimum output
|
---|
2933 | // 1 normal output (default)
|
---|
2934 | // 2 additional ouput giving intermediate results
|
---|
2935 | // 3 maximum output, showing progress of minimizations
|
---|
2936 | //
|
---|
2937 | Int_t printLevel = -1;
|
---|
2938 | minuit.SetPrintLevel(printLevel);
|
---|
2939 |
|
---|
2940 | //..............................................
|
---|
2941 | // Printout for warnings
|
---|
2942 | // SET WAR print warnings
|
---|
2943 | // SET NOW suppress warnings
|
---|
2944 | Int_t errWarn;
|
---|
2945 | Double_t tmpwar = 0;
|
---|
2946 | minuit.mnexcm("SET NOW", &tmpwar, 0, errWarn);
|
---|
2947 |
|
---|
2948 | //..............................................
|
---|
2949 | // Set the address of the minimization function
|
---|
2950 | minuit.SetFCN(fcnx);
|
---|
2951 |
|
---|
2952 | //..............................................
|
---|
2953 | // Set starting values and step sizes for parameters
|
---|
2954 | for (UInt_t i=0; i<npar; i++)
|
---|
2955 | {
|
---|
2956 | if (minuit.DefineParameter(i, &name[i][0], vinit[i], step[i],
|
---|
2957 | limlo[i], limup[i]))
|
---|
2958 | {
|
---|
2959 | *fLog << "MUnfold::CallMinuit: Error in defining parameter "
|
---|
2960 | << name << endl;
|
---|
2961 | return kFALSE;
|
---|
2962 | }
|
---|
2963 | }
|
---|
2964 |
|
---|
2965 | //..............................................
|
---|
2966 | //Int_t NumPars = minuit.GetNumPars();
|
---|
2967 | //*fLog << "MUnfold::CallMinuit : number of free parameters = "
|
---|
2968 | // << NumPars << endl;
|
---|
2969 |
|
---|
2970 | //..............................................
|
---|
2971 | // Minimization
|
---|
2972 | minuit.SetObjectFit(this);
|
---|
2973 |
|
---|
2974 | //..............................................
|
---|
2975 | // Error definition :
|
---|
2976 | //
|
---|
2977 | // for2 chisquare function :
|
---|
2978 | // up = 1.0 means calculate 1-standard deviation error
|
---|
2979 | // = 4.0 means calculate 2-standard deviation error
|
---|
2980 | //
|
---|
2981 | // for log(likelihood) function :
|
---|
2982 | // up = 0.5 means calculate 1-standard deviation error
|
---|
2983 | // = 2.0 means calculate 2-standard deviation error
|
---|
2984 | Double_t up = 1.0;
|
---|
2985 | minuit.SetErrorDef(up);
|
---|
2986 |
|
---|
2987 |
|
---|
2988 |
|
---|
2989 | // Int_t errMigrad;
|
---|
2990 | // Double_t tmp = 0;
|
---|
2991 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad);
|
---|
2992 |
|
---|
2993 |
|
---|
2994 | //..............................................
|
---|
2995 | // fix a parameter
|
---|
2996 | for (UInt_t i=0; i<npar; i++)
|
---|
2997 | {
|
---|
2998 | if (fix[i] > 0)
|
---|
2999 | {
|
---|
3000 | Int_t parNo = i;
|
---|
3001 | minuit.FixParameter(parNo);
|
---|
3002 | }
|
---|
3003 | }
|
---|
3004 |
|
---|
3005 | //..............................................
|
---|
3006 | // Set maximum number of iterations (default = 500)
|
---|
3007 | Int_t maxiter = 100000;
|
---|
3008 | minuit.SetMaxIterations(maxiter);
|
---|
3009 |
|
---|
3010 | //..............................................
|
---|
3011 | // minimization by the method of Migrad
|
---|
3012 | // Int_t errMigrad;
|
---|
3013 | // Double_t tmp = 0;
|
---|
3014 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad);
|
---|
3015 |
|
---|
3016 | //..............................................
|
---|
3017 | // same minimization as by Migrad
|
---|
3018 | // but switches to the SIMPLEX method if MIGRAD fails to converge
|
---|
3019 | Int_t errMinimize;
|
---|
3020 | Double_t tmp = 0;
|
---|
3021 | minuit.mnexcm("MINIMIZE", &tmp, 0, errMinimize);
|
---|
3022 |
|
---|
3023 | //..............................................
|
---|
3024 | // check quality of minimization
|
---|
3025 | // istat = 0 covariance matrix not calculated
|
---|
3026 | // 1 diagonal approximation only (not accurate)
|
---|
3027 | // 2 full matrix, but forced positive-definite
|
---|
3028 | // 3 full accurate covariance matrix
|
---|
3029 | // (indication of normal convergence)
|
---|
3030 | Double_t fmin, fedm, errdef;
|
---|
3031 | Int_t npari, nparx, istat;
|
---|
3032 | minuit.mnstat(fmin, fedm, errdef, npari, nparx, istat);
|
---|
3033 |
|
---|
3034 | if (errMinimize || istat < 3)
|
---|
3035 | {
|
---|
3036 | *fLog << "MUnfold::CallMinuit : Minimization failed" << endl;
|
---|
3037 | *fLog << " fmin = " << fmin << ", fedm = " << fedm
|
---|
3038 | << ", errdef = " << errdef << ", istat = " << istat
|
---|
3039 | << endl;
|
---|
3040 | return kFALSE;
|
---|
3041 | }
|
---|
3042 |
|
---|
3043 | //..............................................
|
---|
3044 | // Minos error analysis
|
---|
3045 | // minuit.mnmnos();
|
---|
3046 |
|
---|
3047 | //..............................................
|
---|
3048 | // Print current status of minimization
|
---|
3049 | // if nkode = 0 only function value
|
---|
3050 | // 1 parameter values, errors, limits
|
---|
3051 | // 2 values, errors, step sizes, internal values
|
---|
3052 | // 3 values, errors, step sizes, 1st derivatives
|
---|
3053 | // 4 values, paraboloc errors, MINOS errors
|
---|
3054 |
|
---|
3055 | //Int_t nkode = 4;
|
---|
3056 | //minuit.mnprin(nkode, fmin);
|
---|
3057 |
|
---|
3058 | //..............................................
|
---|
3059 | // call fcn with IFLAG = 3 (final calculation : calculate p(chi2))
|
---|
3060 | // iflag = 1 initial calculations only
|
---|
3061 | // 2 calculate 1st derivatives and function
|
---|
3062 | // 3 calculate function only
|
---|
3063 | // 4 calculate function + final calculations
|
---|
3064 | const char *command = "CALL";
|
---|
3065 | Double_t iflag = 3;
|
---|
3066 | Int_t errfcn3;
|
---|
3067 | minuit.mnexcm(command, &iflag, 1, errfcn3);
|
---|
3068 |
|
---|
3069 | return kTRUE;
|
---|
3070 | }
|
---|
3071 |
|
---|
3072 |
|
---|
3073 |
|
---|
3074 |
|
---|
3075 |
|
---|
3076 |
|
---|
3077 |
|
---|
3078 |
|
---|
3079 |
|
---|