1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
|
---|
18 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2002-2009
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MExtralgoSpline
|
---|
28 | //
|
---|
29 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
---|
30 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
---|
31 | //
|
---|
32 | // The coefficients "ya" are here denoted as "fVal" corresponding to
|
---|
33 | // the FADC value subtracted by the clock-noise corrected pedestal.
|
---|
34 | //
|
---|
35 | // The coefficients "y2a" get immediately divided 6. and are called here
|
---|
36 | // fDer2 although they are now not exactly the second derivative
|
---|
37 | // coefficients any more.
|
---|
38 | //
|
---|
39 | // The calculation of the cubic-spline interpolated value "y" on a point
|
---|
40 | // "x" along the FADC-slices axis becomes: EvalAt(x)
|
---|
41 | //
|
---|
42 | // The coefficients fDer2 are calculated with the simplified
|
---|
43 | // algorithm in InitDerivatives.
|
---|
44 | //
|
---|
45 | // This algorithm takes advantage of the fact that the x-values are all
|
---|
46 | // separated by exactly 1 which simplifies the Numerical Recipes algorithm.
|
---|
47 | // (Note that the variables fDer are not real first derivative coefficients.)
|
---|
48 | //
|
---|
49 | // Note, this spline is not optimized to be evaluated many many times, but
|
---|
50 | // it is optimized to be initialized very fast with new values again and
|
---|
51 | // again.
|
---|
52 | //
|
---|
53 | //////////////////////////////////////////////////////////////////////////////
|
---|
54 | #include "MExtralgoSpline.h"
|
---|
55 |
|
---|
56 | #include <iostream>
|
---|
57 | #include <TRandom.h>
|
---|
58 |
|
---|
59 | #include "../mbase/MMath.h"
|
---|
60 | #include "../mbase/MArrayF.h"
|
---|
61 |
|
---|
62 | using namespace std;
|
---|
63 |
|
---|
64 | // --------------------------------------------------------------------------
|
---|
65 | //
|
---|
66 | // Calculate the first and second derivative for the splie.
|
---|
67 | //
|
---|
68 | // The coefficients are calculated such that
|
---|
69 | // 1) fVal[i] = Eval(i, 0)
|
---|
70 | // 2) Eval(i-1, 1)==Eval(i, 0)
|
---|
71 | //
|
---|
72 | // In other words: The values with the index i describe the spline
|
---|
73 | // between fVal[i] and fVal[i+1]
|
---|
74 | //
|
---|
75 | void MExtralgoSpline::InitDerivatives() const
|
---|
76 | {
|
---|
77 | if (fNum<2)
|
---|
78 | return;
|
---|
79 |
|
---|
80 | // Look up table for coefficients
|
---|
81 | static MArrayF lut;
|
---|
82 |
|
---|
83 | // If the lut is not yet large enough: resize and reclaculate
|
---|
84 | if (fNum>(Int_t)lut.GetSize())
|
---|
85 | {
|
---|
86 | lut.Set(fNum);
|
---|
87 |
|
---|
88 | lut[0] = 0.;
|
---|
89 | for (Int_t i=1; i<fNum-1; i++)
|
---|
90 | lut[i] = -1.0/(lut[i-1] + 4);
|
---|
91 | }
|
---|
92 |
|
---|
93 | // Calculate the coefficients used to get reproduce the first and
|
---|
94 | // second derivative.
|
---|
95 | fDer1[0] = 0.;
|
---|
96 | for (Int_t i=1; i<fNum-1; i++)
|
---|
97 | {
|
---|
98 | const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
|
---|
99 | fDer1[i] = (fDer1[i-1]-d1)*lut[i];
|
---|
100 | }
|
---|
101 |
|
---|
102 | fDer2[fNum-1] = 0.;
|
---|
103 | for (Int_t k=fNum-2; k>=0; k--)
|
---|
104 | fDer2[k] = lut[k]*fDer2[k+1] + fDer1[k];
|
---|
105 | }
|
---|
106 |
|
---|
107 | // --------------------------------------------------------------------------
|
---|
108 | //
|
---|
109 | // Return the two results x1 and x2 of f'(x)=0 for the third order
|
---|
110 | // polynomial (spline) in the interval i. Return the number of results.
|
---|
111 | // (0 if the fist derivative does not have a null-point)
|
---|
112 | //
|
---|
113 | Int_t MExtralgoSpline::EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const
|
---|
114 | {
|
---|
115 | const Double_t difder = fDer2[i+1]-fDer2[i];
|
---|
116 | const Double_t difval = fVal[i+1] -fVal[i];
|
---|
117 |
|
---|
118 | return MMath::SolvePol2(3*difder, 6*fDer2[i], difval-2*fDer2[i]-fDer2[i+1], x1, x2);
|
---|
119 | }
|
---|
120 |
|
---|
121 | // --------------------------------------------------------------------------
|
---|
122 | //
|
---|
123 | // Solve the polynomial
|
---|
124 | //
|
---|
125 | // y = a*x^3 + b*x^2 + c*x + d'
|
---|
126 | // 0 = a*x^3 + b*x^2 + c*x + d' - y
|
---|
127 | //
|
---|
128 | // to find y in the i-th bin. Return the result as x1, x2, x3 and the return
|
---|
129 | // code from MMath::SolvPol3.
|
---|
130 | //
|
---|
131 | Int_t MExtralgoSpline::SolvePol3(Int_t i, Double_t y, Double_t &x1, Double_t &x2, Double_t &x3) const
|
---|
132 | {
|
---|
133 | // y = a*x^3 + b*x^2 + c*x + d'
|
---|
134 | // 0 = a*x^3 + b*x^2 + c*x + d' - y
|
---|
135 |
|
---|
136 | // Calculate coefficients
|
---|
137 | const Double_t a = fDer2[i+1]-fDer2[i];
|
---|
138 | const Double_t b = 3*fDer2[i];
|
---|
139 | const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1];
|
---|
140 | const Double_t d = fVal[i] - y;
|
---|
141 |
|
---|
142 | // If the first derivative is nowhere==0 and it is increasing
|
---|
143 | // in one point, and the value we search is outside of the
|
---|
144 | // y-interval... it cannot be there
|
---|
145 | // if (c>0 && (d>0 || fVal[i+1]<y) && b*b<3*c*a)
|
---|
146 | // return -2;
|
---|
147 |
|
---|
148 | return MMath::SolvePol3(a, b, c, d, x1, x2, x3);
|
---|
149 | }
|
---|
150 |
|
---|
151 | // --------------------------------------------------------------------------
|
---|
152 | //
|
---|
153 | // Returns the highest x value in [min;max[ at which the spline in
|
---|
154 | // the bin i is equal to y
|
---|
155 | //
|
---|
156 | // min and max must be in the range [0;1]
|
---|
157 | //
|
---|
158 | // The default for min is 0, the default for max is 1
|
---|
159 | // The default for y is 0
|
---|
160 | //
|
---|
161 | Double_t MExtralgoSpline::FindYdn(Int_t i, Double_t y, Double_t min, Double_t max) const
|
---|
162 | {
|
---|
163 | Double_t x1, x2, x3;
|
---|
164 | const Int_t rc = SolvePol3(i, y, x1, x2, x3);
|
---|
165 |
|
---|
166 | Double_t x = -1;
|
---|
167 |
|
---|
168 | if (rc>0 && x1>=min && x1<max && x1>x)
|
---|
169 | x = x1;
|
---|
170 | if (rc>1 && x2>=min && x2<max && x2>x)
|
---|
171 | x = x2;
|
---|
172 | if (rc>2 && x3>=min && x3<max && x3>x)
|
---|
173 | x = x3;
|
---|
174 |
|
---|
175 | return x<0 ? -2 : x+i;
|
---|
176 | }
|
---|
177 |
|
---|
178 | // --------------------------------------------------------------------------
|
---|
179 | //
|
---|
180 | // Returns the lowest x value in [min;max[ at which the spline in
|
---|
181 | // the bin i is equal to y
|
---|
182 | //
|
---|
183 | // min and max must be in the range [0;1]
|
---|
184 | //
|
---|
185 | // The default for min is 0, the default for max is 1
|
---|
186 | // The default for y is 0
|
---|
187 | //
|
---|
188 | Double_t MExtralgoSpline::FindYup(Int_t i, Double_t y, Double_t min, Double_t max) const
|
---|
189 | {
|
---|
190 | Double_t x1, x2, x3;
|
---|
191 | const Int_t rc = SolvePol3(i, y, x1, x2, x3);
|
---|
192 |
|
---|
193 | Double_t x = 2;
|
---|
194 |
|
---|
195 | if (rc>0 && x1>min && x1<=max && x1<x)
|
---|
196 | x = x1;
|
---|
197 | if (rc>1 && x2>min && x2<=max && x2<x)
|
---|
198 | x = x2;
|
---|
199 | if (rc>2 && x3>min && x3<=max && x3<x)
|
---|
200 | x = x3;
|
---|
201 |
|
---|
202 | return x>1 ? -2 : x+i;
|
---|
203 | }
|
---|
204 |
|
---|
205 | // --------------------------------------------------------------------------
|
---|
206 | //
|
---|
207 | // Search analytically downward for the value y of the spline, starting
|
---|
208 | // at x, until x==0. If y is not found or out of range -2 is returned.
|
---|
209 | //
|
---|
210 | Double_t MExtralgoSpline::SearchYdn(Double_t x, Double_t y) const
|
---|
211 | {
|
---|
212 | if (x>=fNum-1)
|
---|
213 | x = fNum-1.0001;
|
---|
214 |
|
---|
215 | Int_t i = TMath::FloorNint(x);
|
---|
216 | if (i<0)
|
---|
217 | return -3;
|
---|
218 |
|
---|
219 | Double_t rc = FindYdn(i, y, 0, x-i);
|
---|
220 | while (--i>=0 && rc<0)
|
---|
221 | rc = FindYdn(i, y);
|
---|
222 |
|
---|
223 | return rc;
|
---|
224 | }
|
---|
225 |
|
---|
226 | // --------------------------------------------------------------------------
|
---|
227 | //
|
---|
228 | // Search analytically upwards for the value y of the spline, starting
|
---|
229 | // at x, until x==fNum-1. If y is not found or out of range -2 is returned.
|
---|
230 | //
|
---|
231 | Double_t MExtralgoSpline::SearchYup(Double_t x, Double_t y) const
|
---|
232 | {
|
---|
233 | if (x<0)
|
---|
234 | x = 0.0001;
|
---|
235 |
|
---|
236 | Int_t i = TMath::FloorNint(x);
|
---|
237 | if (i>fNum-2)
|
---|
238 | return -3;
|
---|
239 |
|
---|
240 | Double_t rc = FindYup(i, y, x-i, 1.);
|
---|
241 | while (++i<fNum-1 && rc<0)
|
---|
242 | rc = FindYup(i, y);
|
---|
243 |
|
---|
244 | return rc;
|
---|
245 | }
|
---|
246 |
|
---|
247 | // --------------------------------------------------------------------------
|
---|
248 | //
|
---|
249 | // Do a range check an then calculate the integral from start-fRiseTime
|
---|
250 | // to start+fFallTime. An extrapolation of 0.5 slices is allowed.
|
---|
251 | //
|
---|
252 | Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const
|
---|
253 | {
|
---|
254 | // We allow extrapolation of 1/2 slice.
|
---|
255 | const Float_t min = fRiseTime; //-0.5+fRiseTime;
|
---|
256 | const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime;
|
---|
257 |
|
---|
258 | if (pos<min)
|
---|
259 | pos = min;
|
---|
260 | if (pos>max)
|
---|
261 | pos = max;
|
---|
262 |
|
---|
263 | return EvalInteg(pos-fRiseTime, pos+fFallTime);
|
---|
264 | }
|
---|
265 |
|
---|
266 | Float_t MExtralgoSpline::CalcIntegral(Float_t beg, Float_t width) const
|
---|
267 | {
|
---|
268 | Float_t end = beg + width;
|
---|
269 |
|
---|
270 | if (beg<0)
|
---|
271 | {
|
---|
272 | end -= beg;
|
---|
273 | beg = 0;
|
---|
274 | }
|
---|
275 |
|
---|
276 | if (end>fNum-1)
|
---|
277 | {
|
---|
278 | beg -= (end-fNum-1);
|
---|
279 | end = fNum-1;
|
---|
280 | }
|
---|
281 |
|
---|
282 | return EvalInteg(beg, end);
|
---|
283 | }
|
---|
284 |
|
---|
285 | MArrayF MExtralgoSpline::GetIntegral(bool norm) const
|
---|
286 | {
|
---|
287 | MArrayF val(fNum);
|
---|
288 |
|
---|
289 | //val[0] = 0;
|
---|
290 |
|
---|
291 | Double_t integ = 0;
|
---|
292 | for (int i=0; i<fNum-1; i++)
|
---|
293 | {
|
---|
294 | integ += EvalInteg(i);
|
---|
295 |
|
---|
296 | val[i+1] = integ;
|
---|
297 | }
|
---|
298 |
|
---|
299 | if (norm)
|
---|
300 | for (int i=0; i<fNum-1; i++)
|
---|
301 | val[i+1] /= val[fNum-1];
|
---|
302 |
|
---|
303 | return val;
|
---|
304 | }
|
---|
305 |
|
---|
306 | Float_t MExtralgoSpline::ExtractNoise()
|
---|
307 | {
|
---|
308 | if (fNum<5)
|
---|
309 | return 0;
|
---|
310 |
|
---|
311 | if (!(fExtractionType&kIntegral))
|
---|
312 | {
|
---|
313 | const Int_t pos = gRandom->Integer(fNum-1);
|
---|
314 | const Float_t nsx = gRandom->Uniform();
|
---|
315 | return Eval(pos, nsx);
|
---|
316 | }
|
---|
317 | else
|
---|
318 | {
|
---|
319 | const Float_t pos = gRandom->Uniform(fNum-1-fRiseTime-fFallTime)+fRiseTime;
|
---|
320 | return CalcIntegral(pos);
|
---|
321 | }
|
---|
322 | }
|
---|
323 |
|
---|
324 | void MExtralgoSpline::Extract(Int_t maxbin, Bool_t width)
|
---|
325 | {
|
---|
326 | fSignal = 0;
|
---|
327 | fTime = 0;
|
---|
328 | fWidth = 0;
|
---|
329 | fSignalDev = -1;
|
---|
330 | fTimeDev = -1;
|
---|
331 | fWidthDev = -1;
|
---|
332 |
|
---|
333 | if (fNum<2)
|
---|
334 | return;
|
---|
335 |
|
---|
336 | Float_t maxpos;
|
---|
337 | // FIXME: Check the default if no maximum found!!!
|
---|
338 | GetMaxAroundI(maxbin, maxpos, fHeight);
|
---|
339 |
|
---|
340 | const Float_t h = (fExtractionType&kTimeRel) ? fHeight*fHeightTm : fHeightTm;
|
---|
341 |
|
---|
342 | switch (fExtractionType)
|
---|
343 | {
|
---|
344 | case kAmplitude:
|
---|
345 | fSignal = fHeight;
|
---|
346 | fTime = maxpos;
|
---|
347 | fSignalDev = 0; // means: is valid
|
---|
348 | fTimeDev = 0;
|
---|
349 | break;
|
---|
350 |
|
---|
351 | case kAmplitudeAbs:
|
---|
352 | case kAmplitudeRel:
|
---|
353 | fSignal = fHeight;
|
---|
354 | fTime = SearchYdn(maxpos, h);
|
---|
355 | fSignalDev = 0; // means: is valid
|
---|
356 | fTimeDev = 0;
|
---|
357 | break;
|
---|
358 |
|
---|
359 | case kIntegralAbs:
|
---|
360 | case kIntegralRel:
|
---|
361 | fSignal = CalcIntegral(maxpos);
|
---|
362 | fTime = SearchYdn(maxpos, h);
|
---|
363 | fSignalDev = 0; // means: is valid
|
---|
364 | fTimeDev = 0;
|
---|
365 | break;
|
---|
366 |
|
---|
367 | case kIntegralDyn:
|
---|
368 | fTime = SearchYdn(maxpos, h);
|
---|
369 | fWidth = SearchYup(maxpos, h)-fTime;
|
---|
370 | fSignal = CalcIntegral(fTime, fWidth);
|
---|
371 | fTimeDev = 0;
|
---|
372 | fWidthDev = 0;
|
---|
373 | fSignalDev = 0;
|
---|
374 | break;
|
---|
375 |
|
---|
376 | case kIntegralFixed:
|
---|
377 | fTime = SearchYdn(maxpos, h);
|
---|
378 | fSignal = CalcIntegral(fTime-fRiseTime, fRiseTime+fFallTime);
|
---|
379 | fTimeDev = 0;
|
---|
380 | fSignalDev = 0;
|
---|
381 | break;
|
---|
382 | }
|
---|
383 | }
|
---|