1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2005 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2005
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MHPedestalPix
|
---|
28 | //
|
---|
29 | // A base class for events which are believed to follow a Gaussian distribution
|
---|
30 | // with time, e.g. calibration events, observables containing white noise, ...
|
---|
31 | //
|
---|
32 | // MHPedestalPix derives from MHGausEvents, thus all features of
|
---|
33 | // MHGausEvents can be used by a class deriving from MHPedestalPix
|
---|
34 | //
|
---|
35 | // As an additional feature to MHGausEvents, this class offers to skip the fitting
|
---|
36 | // to set mean, sigma and its errors directly from the histograms with the function
|
---|
37 | // BypassFit()
|
---|
38 | //
|
---|
39 | // See also: MHGausEvents
|
---|
40 | //
|
---|
41 | //////////////////////////////////////////////////////////////////////////////
|
---|
42 | #include "MHPedestalPix.h"
|
---|
43 |
|
---|
44 | #include <TH1.h>
|
---|
45 | #include <TF1.h>
|
---|
46 | #include <TGraph.h>
|
---|
47 |
|
---|
48 | #include "MLog.h"
|
---|
49 | #include "MLogManip.h"
|
---|
50 |
|
---|
51 | ClassImp(MHPedestalPix);
|
---|
52 |
|
---|
53 | using namespace std;
|
---|
54 |
|
---|
55 | // --------------------------------------------------------------------------
|
---|
56 | //
|
---|
57 | // Default Constructor.
|
---|
58 | //
|
---|
59 | MHPedestalPix::MHPedestalPix(const char *name, const char *title)
|
---|
60 | {
|
---|
61 |
|
---|
62 | fName = name ? name : "MHPedestalPix";
|
---|
63 | fTitle = title ? title : "Pedestal histogram events";
|
---|
64 |
|
---|
65 | }
|
---|
66 |
|
---|
67 | // -------------------------------------------------------------------------------
|
---|
68 | //
|
---|
69 | // Fits the histogram to a double Gauss.
|
---|
70 | //
|
---|
71 | //
|
---|
72 | Bool_t MHPedestalPix::FitDoubleGaus(const Double_t xmin, const Double_t xmax, Option_t *option)
|
---|
73 | {
|
---|
74 |
|
---|
75 | if (IsGausFitOK())
|
---|
76 | return kTRUE;
|
---|
77 |
|
---|
78 | StripZeros(&fHGausHist,0);
|
---|
79 |
|
---|
80 | TAxis *axe = fHGausHist.GetXaxis();
|
---|
81 | //
|
---|
82 | // Get the fitting ranges
|
---|
83 | //
|
---|
84 | Axis_t rmin = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetFirst()) : xmin;
|
---|
85 | Axis_t rmax = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetLast()) : xmax;
|
---|
86 |
|
---|
87 | //
|
---|
88 | // First guesses for the fit (should be as close to reality as possible,
|
---|
89 | //
|
---|
90 | const Stat_t entries = fHGausHist.Integral(axe->FindBin(rmin),axe->FindBin(rmax),"width");
|
---|
91 | const Double_t sigma_guess = fHGausHist.GetRMS();
|
---|
92 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
---|
93 |
|
---|
94 | fFGausFit = new TF1("GausFit","gaus(0)+gaus(3)",rmin,rmax);
|
---|
95 |
|
---|
96 | if (!fFGausFit)
|
---|
97 | {
|
---|
98 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit "
|
---|
99 | << "in: " << fName << endl;
|
---|
100 | return kFALSE;
|
---|
101 | }
|
---|
102 |
|
---|
103 | //
|
---|
104 | // For the fits, we have to take special care since ROOT
|
---|
105 | // has stored the function pointer in a global list which
|
---|
106 | // lead to removing the object twice. We have to take out
|
---|
107 | // the following functions of the global list of functions
|
---|
108 | // as well:
|
---|
109 | //
|
---|
110 | gROOT->GetListOfFunctions()->Remove(fFGausFit);
|
---|
111 |
|
---|
112 | fFGausFit->SetParameters(area_guess/2.,0.,sigma_guess/2.,area_guess/2.,25.,sigma_guess/2.);
|
---|
113 | fFGausFit->SetParNames("Area_{0}","#mu_{0}","#sigma_{0}","Area_{1}","#mu_{1}","#sigma_{1}");
|
---|
114 | fFGausFit->SetParLimits(0,0.,area_guess*5.);
|
---|
115 | fFGausFit->SetParLimits(1,rmin,0.);
|
---|
116 | fFGausFit->SetParLimits(2,0.,rmax-rmin);
|
---|
117 | fFGausFit->SetParLimits(3,0.,area_guess*10.);
|
---|
118 | fFGausFit->SetParLimits(4,0.,rmax/2.);
|
---|
119 | fFGausFit->SetParLimits(5,0.,rmax-rmin);
|
---|
120 | fFGausFit->SetRange(rmin,rmax);
|
---|
121 |
|
---|
122 | fHGausHist.Fit(fFGausFit,option);
|
---|
123 |
|
---|
124 | SetMean (fFGausFit->GetParameter(4)-fFGausFit->GetParameter(1));
|
---|
125 | SetSigma (TMath::Sqrt(fFGausFit->GetParameter(5)*fFGausFit->GetParameter(5)
|
---|
126 | +fFGausFit->GetParameter(2)*fFGausFit->GetParameter(2)));
|
---|
127 | SetMeanErr (TMath::Sqrt(fFGausFit->GetParError(4)*fFGausFit->GetParError(4)
|
---|
128 | +fFGausFit->GetParError(1)*fFGausFit->GetParError(1)));
|
---|
129 | SetSigmaErr (TMath::Sqrt(fFGausFit->GetParError(5)*fFGausFit->GetParError(5)
|
---|
130 | +fFGausFit->GetParError(2)*fFGausFit->GetParError(2)));
|
---|
131 | SetProb (fFGausFit->GetProb());
|
---|
132 | //
|
---|
133 | // The fit result is accepted under condition:
|
---|
134 | // 1) The results are not nan's
|
---|
135 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
---|
136 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
---|
137 | //
|
---|
138 | // !Finitite means either infinite or not-a-number
|
---|
139 | if ( !TMath::Finite(GetMean())
|
---|
140 | || !TMath::Finite(GetMeanErr())
|
---|
141 | || !TMath::Finite(GetProb())
|
---|
142 | || !TMath::Finite(GetSigma())
|
---|
143 | || !TMath::Finite(GetSigmaErr())
|
---|
144 | || fProb < GetProbLimit())
|
---|
145 | return kFALSE;
|
---|
146 |
|
---|
147 | SetGausFitOK(kTRUE);
|
---|
148 | return kTRUE;
|
---|
149 | }
|
---|
150 |
|
---|
151 |
|
---|
152 | // -------------------------------------------------------------------------------
|
---|
153 | //
|
---|
154 | // Fits the histogram to a triple Gauss.
|
---|
155 | //
|
---|
156 | Bool_t MHPedestalPix::FitTripleGaus(const Double_t xmin, const Double_t xmax, Option_t *option)
|
---|
157 | {
|
---|
158 |
|
---|
159 | if (IsGausFitOK())
|
---|
160 | return kTRUE;
|
---|
161 |
|
---|
162 | StripZeros(&fHGausHist,0);
|
---|
163 |
|
---|
164 | TAxis *axe = fHGausHist.GetXaxis();
|
---|
165 | //
|
---|
166 | // Get the fitting ranges
|
---|
167 | //
|
---|
168 | Axis_t rmin = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetFirst()) : xmin;
|
---|
169 | Axis_t rmax = ((xmin==0.) && (xmax==0.)) ? fHGausHist.GetBinCenter(axe->GetLast()) : xmax;
|
---|
170 |
|
---|
171 | //
|
---|
172 | // First guesses for the fit (should be as close to reality as possible,
|
---|
173 | //
|
---|
174 | const Stat_t entries = fHGausHist.Integral(axe->FindBin(rmin),axe->FindBin(rmax),"width");
|
---|
175 | const Double_t sigma_guess = fHGausHist.GetRMS();
|
---|
176 | const Double_t area_guess = entries/TMath::Sqrt(TMath::TwoPi())/sigma_guess;
|
---|
177 |
|
---|
178 | fFGausFit = new TF1("GausFit","gaus(0)+gaus(3)+gaus(6)",rmin,rmax);
|
---|
179 |
|
---|
180 | if (!fFGausFit)
|
---|
181 | {
|
---|
182 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Gauss fit "
|
---|
183 | << "in: " << fName << endl;
|
---|
184 | return kFALSE;
|
---|
185 | }
|
---|
186 |
|
---|
187 | //
|
---|
188 | // For the fits, we have to take special care since ROOT
|
---|
189 | // has stored the function pointer in a global list which
|
---|
190 | // lead to removing the object twice. We have to take out
|
---|
191 | // the following functions of the global list of functions
|
---|
192 | // as well:
|
---|
193 | //
|
---|
194 | gROOT->GetListOfFunctions()->Remove(fFGausFit);
|
---|
195 |
|
---|
196 | fFGausFit->SetParameters(10.,-4.0,1.5,70.,1.5,6.,5.,7.,7.);
|
---|
197 | fFGausFit->SetParNames("Area_{0}","#mu_{0}","#sigma_{0}","Area_{1}","#mu_{1}","#sigma_{1}","Area_{2}","#mu_{2}","#sigma_{2}");
|
---|
198 | fFGausFit->SetParLimits(0,0.,area_guess*2.5);
|
---|
199 | fFGausFit->SetParLimits(1,-9.0,-2.2);
|
---|
200 | fFGausFit->SetParLimits(2,-1.0,15.);
|
---|
201 | fFGausFit->SetParLimits(3,0.,area_guess*10.);
|
---|
202 | fFGausFit->SetParLimits(4,-4.5,2.);
|
---|
203 | fFGausFit->SetParLimits(5,0.,(rmax-rmin)/3.);
|
---|
204 | fFGausFit->SetParLimits(6,0.,area_guess*5.);
|
---|
205 | fFGausFit->SetParLimits(7,6.,20.);
|
---|
206 | fFGausFit->SetParLimits(8,5.,40.);
|
---|
207 | fFGausFit->SetRange(rmin,rmax);
|
---|
208 |
|
---|
209 | fHGausHist.Fit(fFGausFit,option);
|
---|
210 |
|
---|
211 | SetMean (fFGausFit->GetParameter(4)-fFGausFit->GetParameter(1));
|
---|
212 | SetSigma (TMath::Sqrt(fFGausFit->GetParameter(5)*fFGausFit->GetParameter(5)
|
---|
213 | +fFGausFit->GetParameter(2)*fFGausFit->GetParameter(2)));
|
---|
214 | SetMeanErr (TMath::Sqrt(fFGausFit->GetParError(4)*fFGausFit->GetParError(4)
|
---|
215 | +fFGausFit->GetParError(1)*fFGausFit->GetParError(1)));
|
---|
216 | SetSigmaErr (TMath::Sqrt(fFGausFit->GetParError(5)*fFGausFit->GetParError(5)
|
---|
217 | +fFGausFit->GetParError(2)*fFGausFit->GetParError(2)));
|
---|
218 | SetProb (fFGausFit->GetProb());
|
---|
219 | //
|
---|
220 | // The fit result is accepted under condition:
|
---|
221 | // 1) The results are not nan's
|
---|
222 | // 2) The NDF is not smaller than fNDFLimit (default: fgNDFLimit)
|
---|
223 | // 3) The Probability is greater than fProbLimit (default: fgProbLimit)
|
---|
224 | //
|
---|
225 | // !Finitite means either infinite or not-a-number
|
---|
226 | if ( !TMath::Finite(GetMean())
|
---|
227 | || !TMath::Finite(GetMeanErr())
|
---|
228 | || !TMath::Finite(GetProb())
|
---|
229 | || !TMath::Finite(GetSigma())
|
---|
230 | || !TMath::Finite(GetSigmaErr())
|
---|
231 | || fProb < GetProbLimit() )
|
---|
232 | return kFALSE;
|
---|
233 |
|
---|
234 | SetGausFitOK(kTRUE);
|
---|
235 | return kTRUE;
|
---|
236 | }
|
---|
237 |
|
---|
238 |
|
---|