| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: CheObs Software Development, 2000-2009
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MSimRandomPhotons
|
|---|
| 28 | //
|
|---|
| 29 | // Simulate poissonian photons. Since the distribution of the arrival time
|
|---|
| 30 | // differences of these photons is an exonential we can simulate them
|
|---|
| 31 | // using exponentially distributed time differences between two consecutive
|
|---|
| 32 | // photons.
|
|---|
| 33 | //
|
|---|
| 34 | // FIXME: We should add the wavelength distribution.
|
|---|
| 35 | //
|
|---|
| 36 | // The artificial night sky background rate is calculated as follows:
|
|---|
| 37 | //
|
|---|
| 38 | // * The photon detection efficiency vs. wavelength of the detector is obtained
|
|---|
| 39 | // from "PhotonDetectionEfficiency" of type "MParSpline"
|
|---|
| 40 | //
|
|---|
| 41 | // * The angular acceptance of the light collectors is obtained
|
|---|
| 42 | // from "ConesAngularAcceptance" of type "MParSpline"
|
|---|
| 43 | //
|
|---|
| 44 | // * The spectral acceptance of the light collectors is obtained
|
|---|
| 45 | // from "ConesTransmission" of type "MParSpline"
|
|---|
| 46 | //
|
|---|
| 47 | // * The reflectivity of the mirrors vs wavelength is obtained
|
|---|
| 48 | // from "MirrorReflectivity" of type "MParSpline"
|
|---|
| 49 | //
|
|---|
| 50 | // The rate is then calculated as
|
|---|
| 51 | //
|
|---|
| 52 | // R = R0 * Ai * f
|
|---|
| 53 | //
|
|---|
| 54 | // R0 is the night sky background rate as given in Eckart's paper (divided
|
|---|
| 55 | // by the wavelength window). Ai the area of the cones acceptance window,
|
|---|
| 56 | // f is given as:
|
|---|
| 57 | //
|
|---|
| 58 | // f = nm * Min(Ar, sr*d^2)
|
|---|
| 59 | //
|
|---|
| 60 | // with
|
|---|
| 61 | //
|
|---|
| 62 | // nm being the integral of the product of the mirror reflectivity, the cone
|
|---|
| 63 | // transmission and the photon detection efficiency.
|
|---|
| 64 | //
|
|---|
| 65 | // d the distance of the focal plane to the mirror
|
|---|
| 66 | //
|
|---|
| 67 | // Ar is the total reflective area of the reflector
|
|---|
| 68 | //
|
|---|
| 69 | // sr is the effective solid angle corresponding to the integral of the
|
|---|
| 70 | // cones angular acceptance
|
|---|
| 71 | //
|
|---|
| 72 | // Alternatively, the night-sky background rate can be calculated from
|
|---|
| 73 | // a spectrum as given in Fig. 1 (but versus Nanometers) in
|
|---|
| 74 | //
|
|---|
| 75 | // Chris R. Benn & Sara L. Ellison La Palma Night-Sky Brightness
|
|---|
| 76 | //
|
|---|
| 77 | // After proper conversion of the units, the rate of the pixel 0
|
|---|
| 78 | // is then calculated by
|
|---|
| 79 | //
|
|---|
| 80 | // rate = f * nsb
|
|---|
| 81 | //
|
|---|
| 82 | // With nsb
|
|---|
| 83 | //
|
|---|
| 84 | // nsb = Integral(nsb spectrum * combines efficiencies)
|
|---|
| 85 | //
|
|---|
| 86 | // and f can be either
|
|---|
| 87 | //
|
|---|
| 88 | // Eff. angular acceptance Cones (e.g. 20deg) * Cone-Area (mm^2)
|
|---|
| 89 | // f = sr * A0
|
|---|
| 90 | //
|
|---|
| 91 | // or
|
|---|
| 92 | //
|
|---|
| 93 | // Mirror-Area * Field of view of cones (deg^2)
|
|---|
| 94 | // f = Ar * A0;
|
|---|
| 95 | //
|
|---|
| 96 | //
|
|---|
| 97 | // Input Containers:
|
|---|
| 98 | // fNameGeomCam [MGeomCam]
|
|---|
| 99 | // MPhotonEvent
|
|---|
| 100 | // MPhotonStatistics
|
|---|
| 101 | // MCorsikaEvtHeader
|
|---|
| 102 | // [MCorsikaRunHeader]
|
|---|
| 103 | //
|
|---|
| 104 | // Output Containers:
|
|---|
| 105 | // MPhotonEvent
|
|---|
| 106 | // AccidentalPhotonRate [MPedestalCam]
|
|---|
| 107 | //
|
|---|
| 108 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 109 | #include "MSimRandomPhotons.h"
|
|---|
| 110 |
|
|---|
| 111 | #include <TRandom.h>
|
|---|
| 112 |
|
|---|
| 113 | #include "MMath.h" // RndmExp
|
|---|
| 114 |
|
|---|
| 115 | #include "MLog.h"
|
|---|
| 116 | #include "MLogManip.h"
|
|---|
| 117 |
|
|---|
| 118 | #include "MParList.h"
|
|---|
| 119 |
|
|---|
| 120 | #include "MGeomCam.h"
|
|---|
| 121 | #include "MGeom.h"
|
|---|
| 122 |
|
|---|
| 123 | #include "MPhotonEvent.h"
|
|---|
| 124 | #include "MPhotonData.h"
|
|---|
| 125 |
|
|---|
| 126 | #include "MPedestalCam.h"
|
|---|
| 127 | #include "MPedestalPix.h"
|
|---|
| 128 |
|
|---|
| 129 | #include "MCorsikaRunHeader.h"
|
|---|
| 130 |
|
|---|
| 131 | #include "MSpline3.h"
|
|---|
| 132 | #include "MParSpline.h"
|
|---|
| 133 | #include "MReflector.h"
|
|---|
| 134 |
|
|---|
| 135 | ClassImp(MSimRandomPhotons);
|
|---|
| 136 |
|
|---|
| 137 | using namespace std;
|
|---|
| 138 |
|
|---|
| 139 | // --------------------------------------------------------------------------
|
|---|
| 140 | //
|
|---|
| 141 | // Default Constructor.
|
|---|
| 142 | //
|
|---|
| 143 | MSimRandomPhotons::MSimRandomPhotons(const char* name, const char *title)
|
|---|
| 144 | : fGeom(0), fEvt(0), fStat(0), /*fEvtHeader(0),*/ fRunHeader(0),
|
|---|
| 145 | fRates(0), fSimulateWavelength(kFALSE), fNameGeomCam("MGeomCam"),
|
|---|
| 146 | fFileNameNSB("resmc/night-sky-la-palma.txt")
|
|---|
| 147 | {
|
|---|
| 148 | fName = name ? name : "MSimRandomPhotons";
|
|---|
| 149 | fTitle = title ? title : "Simulate possonian photons (like NSB or dark current)";
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | // --------------------------------------------------------------------------
|
|---|
| 153 | //
|
|---|
| 154 | // Check for the necessary containers
|
|---|
| 155 | //
|
|---|
| 156 | Int_t MSimRandomPhotons::PreProcess(MParList *pList)
|
|---|
| 157 | {
|
|---|
| 158 | fGeom = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam");
|
|---|
| 159 | if (!fGeom)
|
|---|
| 160 | {
|
|---|
| 161 | *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl;
|
|---|
| 162 |
|
|---|
| 163 | fGeom = (MGeomCam*)pList->FindObject("MGeomCam");
|
|---|
| 164 | if (!fGeom)
|
|---|
| 165 | {
|
|---|
| 166 | *fLog << err << "MGeomCam not found... aborting." << endl;
|
|---|
| 167 | return kFALSE;
|
|---|
| 168 | }
|
|---|
| 169 | }
|
|---|
| 170 |
|
|---|
| 171 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
|
|---|
| 172 | if (!fEvt)
|
|---|
| 173 | {
|
|---|
| 174 | *fLog << err << "MPhotonEvent not found... aborting." << endl;
|
|---|
| 175 | return kFALSE;
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | fStat = (MPhotonStatistics*)pList->FindObject("MPhotonStatistics");
|
|---|
| 179 | if (!fStat)
|
|---|
| 180 | {
|
|---|
| 181 | *fLog << err << "MPhotonStatistics not found... aborting." << endl;
|
|---|
| 182 | return kFALSE;
|
|---|
| 183 | }
|
|---|
| 184 |
|
|---|
| 185 | fRates = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "AccidentalPhotonRates");
|
|---|
| 186 | if (!fRates)
|
|---|
| 187 | return kFALSE;
|
|---|
| 188 |
|
|---|
| 189 | /*
|
|---|
| 190 | fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader");
|
|---|
| 191 | if (!fEvtHeader)
|
|---|
| 192 | {
|
|---|
| 193 | *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl;
|
|---|
| 194 | return kFALSE;
|
|---|
| 195 | }*/
|
|---|
| 196 |
|
|---|
| 197 | fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
|
|---|
| 198 | if (fSimulateWavelength && !fRunHeader)
|
|---|
| 199 | {
|
|---|
| 200 | *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
|
|---|
| 201 | return kFALSE;
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 | MReflector *r = (MReflector*)pList->FindObject("Reflector", "MReflector");
|
|---|
| 205 | if (!r)
|
|---|
| 206 | {
|
|---|
| 207 | *fLog << err << "Reflector [MReflector] not found... aborting." << endl;
|
|---|
| 208 | return kFALSE;
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | const MParSpline *s1 = (MParSpline*)pList->FindObject("PhotonDetectionEfficiency", "MParSpline");
|
|---|
| 212 | const MParSpline *s2 = (MParSpline*)pList->FindObject("ConesTransmission", "MParSpline");
|
|---|
| 213 | const MParSpline *s3 = (MParSpline*)pList->FindObject("MirrorReflectivity", "MParSpline");
|
|---|
| 214 | const MParSpline *s4 = (MParSpline*)pList->FindObject("ConesAngularAcceptance", "MParSpline");
|
|---|
| 215 |
|
|---|
| 216 | // Ensure that all efficiencies are at least defined in the raneg of the
|
|---|
| 217 | // photon detection efficiency. We assume that this is the limiting factor
|
|---|
| 218 | // and has to be zero at both ends.
|
|---|
| 219 | if (s2->GetXmin()>s1->GetXmin())
|
|---|
| 220 | {
|
|---|
| 221 | *fLog << err << "ERROR - ConeTransmission range must be defined down to " << s1->GetXmin() << "nm (PhotonDetectionEffciency)." << endl;
|
|---|
| 222 | return kFALSE;
|
|---|
| 223 | }
|
|---|
| 224 | if (s2->GetXmax()<s1->GetXmax())
|
|---|
| 225 | {
|
|---|
| 226 | *fLog << err << "ERROR - ConeTransmission range must be defined up to " << s1->GetXmax() << "nm (PhotonDetectionEffciency)." << endl;
|
|---|
| 227 | return kFALSE;
|
|---|
| 228 | }
|
|---|
| 229 | if (s3->GetXmin()>s1->GetXmin())
|
|---|
| 230 | {
|
|---|
| 231 | *fLog << err << "ERROR - MirrorReflectivity range must be defined down to " << s1->GetXmin() << "nm (PhotonDetectionEffciency)." << endl;
|
|---|
| 232 | return kFALSE;
|
|---|
| 233 | }
|
|---|
| 234 | if (s3->GetXmax()<s1->GetXmax())
|
|---|
| 235 | {
|
|---|
| 236 | *fLog << err << "ERROR - MirrorReflectivity range must be defined up to " << s1->GetXmax() << "nm (PhotonDetectionEffciency)." << endl;
|
|---|
| 237 | return kFALSE;
|
|---|
| 238 | }
|
|---|
| 239 |
|
|---|
| 240 | // If the simulated wavelength range exists and is smaller, reduce the
|
|---|
| 241 | // range to it. Later it is checked that at both edges the transmission
|
|---|
| 242 | // is 0. This must be true in both cases: The simulated wavelength range
|
|---|
| 243 | // exceed the PDE or the PDE range exceeds the simulated waveband.
|
|---|
| 244 | const Float_t wmin = fRunHeader && fRunHeader->GetWavelengthMin()>s1->GetXmin() ? fRunHeader->GetWavelengthMin() : s1->GetXmin();
|
|---|
| 245 | const Float_t wmax = fRunHeader && fRunHeader->GetWavelengthMax()<s1->GetXmax() ? fRunHeader->GetWavelengthMax() : s1->GetXmax();
|
|---|
| 246 |
|
|---|
| 247 | const Int_t min = TMath::FloorNint(wmin);
|
|---|
| 248 | const Int_t max = TMath::CeilNint(wmax);
|
|---|
| 249 |
|
|---|
| 250 | // Multiply all relevant efficiencies to get the total transmission
|
|---|
| 251 | MParSpline eff;
|
|---|
| 252 | eff.SetFunction("1", max-min, min, max);
|
|---|
| 253 |
|
|---|
| 254 | eff.Multiply(*s1->GetSpline());
|
|---|
| 255 | eff.Multiply(*s2->GetSpline());
|
|---|
| 256 | eff.Multiply(*s3->GetSpline());
|
|---|
| 257 |
|
|---|
| 258 | // Effectively transmitted wavelength band in the simulated range
|
|---|
| 259 | const Double_t nm = eff.GetSpline()->Integral();
|
|---|
| 260 |
|
|---|
| 261 | // Angular acceptance of the cones
|
|---|
| 262 | const Double_t sr = s4 && s4->GetSpline() ? s4->GetSpline()->IntegralSolidAngle() : 1;
|
|---|
| 263 |
|
|---|
| 264 | {
|
|---|
| 265 | const Double_t d2 = fGeom->GetCameraDist()*fGeom->GetCameraDist();
|
|---|
| 266 | const Double_t conv = fGeom->GetConvMm2Deg()*TMath::DegToRad();
|
|---|
| 267 | const Double_t f1 = TMath::Min(r->GetA()/1e4, sr*d2) * conv*conv;
|
|---|
| 268 |
|
|---|
| 269 | // Rate in GHz / mm^2
|
|---|
| 270 | fScale = fFreqNSB * nm * f1; // [GHz/mm^2] efficiency * m^2 *rad^2 *mm^2
|
|---|
| 271 |
|
|---|
| 272 | const Double_t freq0 = fScale*(*fGeom)[0].GetA()*1000;
|
|---|
| 273 |
|
|---|
| 274 | *fLog << inf << "Resulting Freq. in " << fNameGeomCam << "[0]: " << Form("%.2f", freq0) << "MHz" << endl;
|
|---|
| 275 |
|
|---|
| 276 | // FIXME: Scale with the number of pixels
|
|---|
| 277 | if (freq0>1000)
|
|---|
| 278 | {
|
|---|
| 279 | *fLog << err << "ERROR - Frequency exceeds 1GHz, this might leed to too much memory consumption." << endl;
|
|---|
| 280 | return kFALSE;
|
|---|
| 281 | }
|
|---|
| 282 | }
|
|---|
| 283 |
|
|---|
| 284 | if (fFileNameNSB.IsNull())
|
|---|
| 285 | return kTRUE;
|
|---|
| 286 |
|
|---|
| 287 | // const MMcRunHeader *mcrunheader = (MMcRunHeader*)pList->FindObject("MMcRunHeader");
|
|---|
| 288 | // Set NumPheFromDNSB
|
|---|
| 289 |
|
|---|
| 290 | // # Number of photons from the diffuse NSB (nphe / ns 0.1*0.1 deg^2 239 m^2) and
|
|---|
| 291 | // nsb_mean 0.20
|
|---|
| 292 | // Magic pixel: 0.00885361 deg
|
|---|
| 293 | // dnsbpix = 0.2*50/15
|
|---|
| 294 | // ampl = MMcFadcHeader->GetAmplitud()
|
|---|
| 295 | // sqrt(pedrms*pedrms + dnsbpix*ampl*ampl/ratio)
|
|---|
| 296 |
|
|---|
| 297 | // Conversion of the y-axis
|
|---|
| 298 | // ------------------------
|
|---|
| 299 | // Double_t ff = 1; // myJy / arcsec^2 per nm
|
|---|
| 300 | // ff *= 1e-6; // Jy / arcsec^2 per nm
|
|---|
| 301 | // ff *= 3600*3600; // Jy / deg^2
|
|---|
| 302 | // ff *= 1./TMath::DegToRad()/TMath::DegToRad(); // Jy/sr = 1e-26J/s/m^2/Hz/sr
|
|---|
| 303 | // ff *= 1e-26; // J/s/m^2/Hz/sr per nm
|
|---|
| 304 |
|
|---|
| 305 | const Double_t arcsec2rad = TMath::DegToRad()/3600.;
|
|---|
| 306 | const Double_t f = 1e-32 / (arcsec2rad*arcsec2rad);
|
|---|
| 307 |
|
|---|
| 308 | // Read night sky background flux from file
|
|---|
| 309 | MParSpline flux;
|
|---|
| 310 | if (!flux.ReadFile(fFileNameNSB))
|
|---|
| 311 | return kFALSE;
|
|---|
| 312 |
|
|---|
| 313 | if (flux.GetXmin()>wmin)
|
|---|
| 314 | {
|
|---|
| 315 | *fLog << err << "ERROR - NSB flux from " << fFileNameNSB << " must be defined down to " << wmin << "nm." << endl;
|
|---|
| 316 | return kFALSE;
|
|---|
| 317 | }
|
|---|
| 318 | if (flux.GetXmax()<wmax)
|
|---|
| 319 | {
|
|---|
| 320 | *fLog << err << "ERROR - NSB flux from " << fFileNameNSB << " must be defined up to " << wmax << "nm." << endl;
|
|---|
| 321 | return kFALSE;
|
|---|
| 322 | }
|
|---|
| 323 |
|
|---|
| 324 | MParSpline nsb;
|
|---|
| 325 |
|
|---|
| 326 | // Normalization to our units,
|
|---|
| 327 | // conversion from energy flux to photon flux
|
|---|
| 328 | nsb.SetFunction(Form("%.12e/(x*TMath::H())", f), max-min, min, max);
|
|---|
| 329 |
|
|---|
| 330 | // multiply night sky background flux with normalization
|
|---|
| 331 | nsb.Multiply(*flux.GetSpline());
|
|---|
| 332 |
|
|---|
| 333 | // Multiply with the total transmission
|
|---|
| 334 | nsb.Multiply(*eff.GetSpline());
|
|---|
| 335 |
|
|---|
| 336 | // Check if the photon flux is zero at both ends of the NSB
|
|---|
| 337 | if (eff.GetSpline()->Eval(min)>1e-5)
|
|---|
| 338 | {
|
|---|
| 339 | *fLog << warn << "WARNING - Total transmission efficiency at ";
|
|---|
| 340 | *fLog << min << "nm is not zero, but " << eff.GetSpline()->Eval(min) << "... abort." << endl;
|
|---|
| 341 | }
|
|---|
| 342 | if (eff.GetSpline()->Eval(max)>1e-5)
|
|---|
| 343 | {
|
|---|
| 344 | *fLog << warn << "WARNING - Total transmission efficiency at ";
|
|---|
| 345 | *fLog << max << "nm is not zero, but " << eff.GetSpline()->Eval(max) << "... abort." << endl;
|
|---|
| 346 | }
|
|---|
| 347 |
|
|---|
| 348 | // Check if the photon flux is zero at both ends of the simulated region
|
|---|
| 349 | if (eff.GetSpline()->Eval(wmin)>1e-5)
|
|---|
| 350 | {
|
|---|
| 351 | *fLog << err << "ERROR - Total transmission efficiency at ";
|
|---|
| 352 | *fLog << wmin << "nm is not zero... abort." << endl;
|
|---|
| 353 | *fLog << " PhotonDetectionEfficency: " << s1->GetSpline()->Eval(wmin) << endl;
|
|---|
| 354 | *fLog << " ConeTransmission: " << s2->GetSpline()->Eval(wmin) << endl;
|
|---|
| 355 | *fLog << " MirrorReflectivity: " << s3->GetSpline()->Eval(wmin) << endl;
|
|---|
| 356 | *fLog << " TotalEfficiency: " << eff.GetSpline()->Eval(wmin) << endl;
|
|---|
| 357 | return kFALSE;
|
|---|
| 358 | }
|
|---|
| 359 | if (eff.GetSpline()->Eval(wmax)>1e-5)
|
|---|
| 360 | {
|
|---|
| 361 | *fLog << err << "ERROR - Total transmission efficiency at ";
|
|---|
| 362 | *fLog << wmax << "nm is not zero... abort." << endl;
|
|---|
| 363 | *fLog << " PhotonDetectionEfficency: " << s1->GetSpline()->Eval(wmax) << endl;
|
|---|
| 364 | *fLog << " ConeTransmission: " << s2->GetSpline()->Eval(wmax) << endl;
|
|---|
| 365 | *fLog << " MirrorReflectivity: " << s3->GetSpline()->Eval(wmax) << endl;
|
|---|
| 366 | *fLog << " TotalEfficiency: " << eff.GetSpline()->Eval(wmax) << endl;
|
|---|
| 367 | return kFALSE;
|
|---|
| 368 | }
|
|---|
| 369 |
|
|---|
| 370 | // Conversion from m to radians
|
|---|
| 371 | const Double_t conv = fGeom->GetConvMm2Deg()*TMath::DegToRad()*1e3;
|
|---|
| 372 |
|
|---|
| 373 | // Angular acceptance of the cones
|
|---|
| 374 | //const Double_t sr = s5.GetSpline()->IntegralSolidAngle(); // sr
|
|---|
| 375 | // Absolute reflector area
|
|---|
| 376 | const Double_t Ar = r->GetA()/1e4; // m^2
|
|---|
| 377 | // Size of the cone's entrance window
|
|---|
| 378 | const Double_t A0 = (*fGeom)[0].GetA()*1e-6; // m^2
|
|---|
| 379 |
|
|---|
| 380 | // Rate * m^2 * Solid Angle
|
|---|
| 381 | // -------------------------
|
|---|
| 382 |
|
|---|
| 383 | // Angular acceptance Cones (e.g. 20deg) * Cone-Area
|
|---|
| 384 | const Double_t f1 = A0 * sr; // m^2 sr
|
|---|
| 385 |
|
|---|
| 386 | // Mirror-Area * Field of view of cones (e.g. 0.1deg)
|
|---|
| 387 | const Double_t f2 = Ar * A0*conv*conv; // m^2 sr
|
|---|
| 388 |
|
|---|
| 389 | // FIXME: Calculate the reflectivity of the bottom by replacing
|
|---|
| 390 | // MirrorReflectivity by bottom reflectivity and reflect
|
|---|
| 391 | // and use it to reflect the difference between f1 and f2
|
|---|
| 392 | // if any.
|
|---|
| 393 |
|
|---|
| 394 | // Total NSB rate in MHz per m^2 and sr
|
|---|
| 395 | const Double_t rate = nsb.GetSpline()->Integral() * 1e-6;
|
|---|
| 396 |
|
|---|
| 397 | *fLog << inf;
|
|---|
| 398 |
|
|---|
| 399 | // Resulting rates as if Razmick's constant had been used
|
|---|
| 400 | // *fLog << 1.75e6/(600-300) * f1 * eff.GetSpline()->Integral() << " MHz" << endl;
|
|---|
| 401 | // *fLog << 1.75e6/(600-300) * f2 * eff.GetSpline()->Integral() << " MHz" << endl;
|
|---|
| 402 |
|
|---|
| 403 | *fLog << "Conversion factor Fnu: " << f << endl;
|
|---|
| 404 | *fLog << "Total reflective area: " << Form("%.2f", Ar) << " m" << UTF8::kSquare << endl;
|
|---|
| 405 | *fLog << "Acceptance area of cone 0: " << Form("%.2f", A0*1e6) << " mm" << UTF8::kSquare << " = ";
|
|---|
| 406 | *fLog << A0*conv*conv << " sr" << endl;
|
|---|
| 407 | *fLog << "Cones angular acceptance: " << sr << " sr" << endl;
|
|---|
| 408 | *fLog << "ConeArea*ConeSolidAngle (f1): " << f1 << " m^2 sr" << endl;
|
|---|
| 409 | *fLog << "MirrorArea*ConeSkyAngle (f2): " << f2 << " m^2 sr" << endl;
|
|---|
| 410 | *fLog << "Effective. transmission: " << Form("%.1f", nm) << " nm" << endl;
|
|---|
| 411 | *fLog << "NSB freq. in " << fNameGeomCam << "[0] (f1): " << Form("%.2f", rate * f1) << " MHz" << endl;
|
|---|
| 412 | *fLog << "NSB freq. in " << fNameGeomCam << "[0] (f2): " << Form("%.2f", rate * f2) << " MHz" << endl;
|
|---|
| 413 | *fLog << "Using f2." << endl;
|
|---|
| 414 |
|
|---|
| 415 | // Scale the rate per mm^2 and to GHz
|
|---|
| 416 | fScale = rate * f2 / (*fGeom)[0].GetA() / 1000;
|
|---|
| 417 |
|
|---|
| 418 | // FIXME: Scale with the number of pixels
|
|---|
| 419 | if (rate*f2>1000)
|
|---|
| 420 | {
|
|---|
| 421 | *fLog << err << "ERROR - Frequency exceeds 1GHz, this might leed to too much memory consumption." << endl;
|
|---|
| 422 | return kFALSE;
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 | return kTRUE;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | Bool_t MSimRandomPhotons::ReInit(MParList *pList)
|
|---|
| 429 | {
|
|---|
| 430 | // Overwrite the default set by MGeomApply
|
|---|
| 431 | fRates->Init(*fGeom);
|
|---|
| 432 | return kTRUE;
|
|---|
| 433 | }
|
|---|
| 434 |
|
|---|
| 435 | // --------------------------------------------------------------------------
|
|---|
| 436 | //
|
|---|
| 437 | // Check for the necessary containers
|
|---|
| 438 | //
|
|---|
| 439 | Int_t MSimRandomPhotons::Process()
|
|---|
| 440 | {
|
|---|
| 441 | // Get array from event container
|
|---|
| 442 | // const Int_t num = fEvt->GetNumPhotons();
|
|---|
| 443 | //
|
|---|
| 444 | // Do not produce pure pedestal events!
|
|---|
| 445 | // if (num==0)
|
|---|
| 446 | // return kTRUE;
|
|---|
| 447 |
|
|---|
| 448 | // Get array from event container
|
|---|
| 449 | // FIXME: Use statistics container instead
|
|---|
| 450 | const UInt_t npix = fGeom->GetNumPixels();
|
|---|
| 451 |
|
|---|
| 452 | // This is the possible window in which the triggered digitization
|
|---|
| 453 | // may take place.
|
|---|
| 454 | const Double_t start = fStat->GetTimeFirst();
|
|---|
| 455 | const Double_t end = fStat->GetTimeLast();
|
|---|
| 456 |
|
|---|
| 457 | // Loop over all pixels
|
|---|
| 458 | for (UInt_t idx=0; idx<npix; idx++)
|
|---|
| 459 | {
|
|---|
| 460 | // Scale the rate with the pixel size.
|
|---|
| 461 | const Double_t rate = fFreqFixed + fScale*(*fGeom)[idx].GetA();
|
|---|
| 462 |
|
|---|
| 463 | (*fRates)[idx].SetPedestal(rate);
|
|---|
| 464 |
|
|---|
| 465 | // Calculate the average distance between two consequtive photons
|
|---|
| 466 | const Double_t avglen = 1./rate;
|
|---|
| 467 |
|
|---|
| 468 | // Start producing photons at time "start"
|
|---|
| 469 | Double_t t = start;
|
|---|
| 470 | while (1)
|
|---|
| 471 | {
|
|---|
| 472 | // Get a random time for the photon.
|
|---|
| 473 | // The differences are exponentially distributed.
|
|---|
| 474 | t += MMath::RndmExp(avglen);
|
|---|
| 475 |
|
|---|
| 476 | // Check if we reached the end of the useful time window
|
|---|
| 477 | if (t>end)
|
|---|
| 478 | break;
|
|---|
| 479 |
|
|---|
| 480 | // Add a new photon
|
|---|
| 481 | // FIXME: SLOW!
|
|---|
| 482 | MPhotonData &ph = fEvt->Add();
|
|---|
| 483 |
|
|---|
| 484 | // Set source to NightSky, time to t and tag to pixel index
|
|---|
| 485 | ph.SetPrimary(MMcEvtBasic::kNightSky);
|
|---|
| 486 | ph.SetWeight();
|
|---|
| 487 | ph.SetTime(t);
|
|---|
| 488 | ph.SetTag(idx);
|
|---|
| 489 |
|
|---|
| 490 | // fProductionHeight, fPosX, fPosY, fCosU, fCosV (irrelevant) FIXME: Reset?
|
|---|
| 491 |
|
|---|
| 492 | if (fSimulateWavelength)
|
|---|
| 493 | {
|
|---|
| 494 | const Float_t wmin = fRunHeader->GetWavelengthMin();
|
|---|
| 495 | const Float_t wmax = fRunHeader->GetWavelengthMax();
|
|---|
| 496 |
|
|---|
| 497 | ph.SetWavelength(TMath::Nint(gRandom->Uniform(wmin, wmax)));
|
|---|
| 498 | }
|
|---|
| 499 | }
|
|---|
| 500 | }
|
|---|
| 501 |
|
|---|
| 502 | // Re-sort the photons by time!
|
|---|
| 503 | fEvt->Sort(kTRUE);
|
|---|
| 504 |
|
|---|
| 505 | // Update maximum index
|
|---|
| 506 | fStat->SetMaxIndex(npix-1);
|
|---|
| 507 |
|
|---|
| 508 | // Shrink
|
|---|
| 509 | return kTRUE;
|
|---|
| 510 | }
|
|---|
| 511 |
|
|---|
| 512 | // --------------------------------------------------------------------------
|
|---|
| 513 | //
|
|---|
| 514 | // Read the parameters from the resource file.
|
|---|
| 515 | //
|
|---|
| 516 | // FrequencyFixed: 0.040
|
|---|
| 517 | // FrequencyNSB: 5.8
|
|---|
| 518 | //
|
|---|
| 519 | // The fixed frequency is given in units fitting the units of the time.
|
|---|
| 520 | // Usually the time is given in nanoseconds thus, e.g., 0.040 means 40MHz.
|
|---|
| 521 | //
|
|---|
| 522 | // The FrequencyNSB is scaled by the area of the pixel in cm^2. Therefore
|
|---|
| 523 | // 0.040 would mean 40MHz/cm^2
|
|---|
| 524 | //
|
|---|
| 525 | Int_t MSimRandomPhotons::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 526 | {
|
|---|
| 527 | Bool_t rc = kFALSE;
|
|---|
| 528 | if (IsEnvDefined(env, prefix, "FrequencyFixed", print))
|
|---|
| 529 | {
|
|---|
| 530 | rc = kTRUE;
|
|---|
| 531 | fFreqFixed = GetEnvValue(env, prefix, "FrequencyFixed", fFreqFixed);
|
|---|
| 532 | }
|
|---|
| 533 |
|
|---|
| 534 | if (IsEnvDefined(env, prefix, "FrequencyNSB", print))
|
|---|
| 535 | {
|
|---|
| 536 | rc = kTRUE;
|
|---|
| 537 | fFreqNSB = GetEnvValue(env, prefix, "FrequencyNSB", fFreqNSB);
|
|---|
| 538 | }
|
|---|
| 539 |
|
|---|
| 540 | if (IsEnvDefined(env, prefix, "FileNameNSB", print))
|
|---|
| 541 | {
|
|---|
| 542 | rc = kTRUE;
|
|---|
| 543 | fFileNameNSB = GetEnvValue(env, prefix, "FileNameNSB", fFileNameNSB);
|
|---|
| 544 | }
|
|---|
| 545 |
|
|---|
| 546 | if (IsEnvDefined(env, prefix, "SimulateCherenkovSpectrum", print))
|
|---|
| 547 | {
|
|---|
| 548 | rc = kTRUE;
|
|---|
| 549 | fSimulateWavelength = GetEnvValue(env, prefix, "SimulateCherenkovSpectrum", fSimulateWavelength);
|
|---|
| 550 | }
|
|---|
| 551 |
|
|---|
| 552 | return rc;
|
|---|
| 553 | }
|
|---|