| 1 | // ************************************************************************** | 
|---|
| 2 | /** @class Interpolator2D | 
|---|
| 3 |  | 
|---|
| 4 | @brief Extra- and interpolate in 2D | 
|---|
| 5 |  | 
|---|
| 6 | This class implements a kind of Delaunay triangulation. It calculated the | 
|---|
| 7 | Voronoi points and the corresponding Delaunay triangles. Within each | 
|---|
| 8 | triangle a bi-linear interpolation is provided. | 
|---|
| 9 |  | 
|---|
| 10 | A special selection criterion is applied for points outside the grid, | 
|---|
| 11 | so that extrapolation is possible. Note that extrapolation of far away | 
|---|
| 12 | points (as in the 1D case) is not recommended. | 
|---|
| 13 |  | 
|---|
| 14 | */ | 
|---|
| 15 | // ************************************************************************** | 
|---|
| 16 | #ifndef FACT_Interpolator2D | 
|---|
| 17 | #define FACT_Interpolator2D | 
|---|
| 18 |  | 
|---|
| 19 | #include <float.h> | 
|---|
| 20 | #include <math.h> | 
|---|
| 21 | #include <vector> | 
|---|
| 22 | #include <fstream> | 
|---|
| 23 |  | 
|---|
| 24 | class Interpolator2D | 
|---|
| 25 | { | 
|---|
| 26 | public: | 
|---|
| 27 | struct vec | 
|---|
| 28 | { | 
|---|
| 29 | double x; | 
|---|
| 30 | double y; | 
|---|
| 31 |  | 
|---|
| 32 | vec(double _x=0, double _y=0) : x(_x), y(_y) { } | 
|---|
| 33 |  | 
|---|
| 34 | vec orto() const { return vec(-y, x); } | 
|---|
| 35 |  | 
|---|
| 36 | double dist(const vec &v) const { return hypot(x-v.x, y-v.y); } | 
|---|
| 37 | double operator^(const vec &v) const { return x*v.y - y*v.x; } | 
|---|
| 38 | vec operator-(const vec &v) const { return vec(x-v.x, y-v.y); } | 
|---|
| 39 | vec operator+(const vec &v) const { return vec(x+v.x, y+v.y); } | 
|---|
| 40 | vec operator/(double b)     const { return vec(x/b, y/b); } | 
|---|
| 41 | }; | 
|---|
| 42 |  | 
|---|
| 43 |  | 
|---|
| 44 | struct point : vec | 
|---|
| 45 | { | 
|---|
| 46 | unsigned int i; | 
|---|
| 47 | point(unsigned int _i, const vec &_v) : vec(_v), i(_i) { } | 
|---|
| 48 | point(unsigned int _i=0, double _x=0, double _y=0) : vec(_x, _y), i(_i) { } | 
|---|
| 49 | }; | 
|---|
| 50 |  | 
|---|
| 51 | struct circle : point | 
|---|
| 52 | { | 
|---|
| 53 | point p[3]; | 
|---|
| 54 | double r; | 
|---|
| 55 |  | 
|---|
| 56 | static bool sameSide(const vec &p1, const vec &p2, const vec &a, const vec &b) | 
|---|
| 57 | { | 
|---|
| 58 | return ((b-a)^(p1-a))*((b-a)^(p2-a)) > 0; | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | bool isInsideTriangle(const vec &v) const | 
|---|
| 62 | { | 
|---|
| 63 | return sameSide(v, p[0], p[1], p[2]) && sameSide(v, p[1], p[0], p[2]) && sameSide(v, p[2], p[0], p[1]); | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | bool isInsideCircle(const vec &v) const | 
|---|
| 67 | { | 
|---|
| 68 | return dist(v) < r; | 
|---|
| 69 | } | 
|---|
| 70 | }; | 
|---|
| 71 |  | 
|---|
| 72 | struct weight : point | 
|---|
| 73 | { | 
|---|
| 74 | circle c; | 
|---|
| 75 | double w[3]; | 
|---|
| 76 | }; | 
|---|
| 77 |  | 
|---|
| 78 | private: | 
|---|
| 79 | std::vector<point>  inputGrid;   /// positions of the data points (e.g. sensors) | 
|---|
| 80 | std::vector<point>  outputGrid;  /// positions at which inter-/extrapolated values should be provided | 
|---|
| 81 | std::vector<circle> circles;     /// the calculated circles/triangles | 
|---|
| 82 | std::vector<weight> weights;     /// the weights used for the interpolation | 
|---|
| 83 |  | 
|---|
| 84 | // -------------------------------------------------------------------------- | 
|---|
| 85 | // | 
|---|
| 86 | //! Calculate the collection of circles/triangles which describe the | 
|---|
| 87 | //! input grid. This is the collection of circles which are calculated | 
|---|
| 88 | //! from any three points and do not contain any other point of the grid. | 
|---|
| 89 | // | 
|---|
| 90 | void CalculateGrid() | 
|---|
| 91 | { | 
|---|
| 92 | circles.reserve(2*inputGrid.size()); | 
|---|
| 93 |  | 
|---|
| 94 | // Loop over all triplets of points | 
|---|
| 95 | for (auto it0=inputGrid.cbegin(); it0<inputGrid.cend(); it0++) | 
|---|
| 96 | { | 
|---|
| 97 | for (auto it1=inputGrid.cbegin(); it1<it0; it1++) | 
|---|
| 98 | { | 
|---|
| 99 | for (auto it2=inputGrid.cbegin(); it2<it1; it2++) | 
|---|
| 100 | { | 
|---|
| 101 | // Calculate the circle through the three points | 
|---|
| 102 |  | 
|---|
| 103 | // Vectors along the side of the corresponding triangle | 
|---|
| 104 | const vec v1 = *it1 - *it0; | 
|---|
| 105 | const vec v2 = *it2 - *it1; | 
|---|
| 106 |  | 
|---|
| 107 | // Orthogonal vectors on the sides | 
|---|
| 108 | const vec n1 = v1.orto(); | 
|---|
| 109 | const vec n2 = v2.orto(); | 
|---|
| 110 |  | 
|---|
| 111 | // Center point of two of the three sides | 
|---|
| 112 | const vec p1 = (*it0 + *it1)/2; | 
|---|
| 113 | const vec p2 = (*it1 + *it2)/2; | 
|---|
| 114 |  | 
|---|
| 115 | // Calculate the crossing point of the two | 
|---|
| 116 | // orthogonal vectors originating in the | 
|---|
| 117 | // center of the sides. | 
|---|
| 118 | const double denom = n1^n2; | 
|---|
| 119 | if (denom==0) | 
|---|
| 120 | continue; | 
|---|
| 121 |  | 
|---|
| 122 | const vec x(n1.x, n2.x); | 
|---|
| 123 | const vec y(n1.y, n2.y); | 
|---|
| 124 |  | 
|---|
| 125 | const vec w(p1^(p1+n1), p2^(p2+n2)); | 
|---|
| 126 |  | 
|---|
| 127 | circle c; | 
|---|
| 128 |  | 
|---|
| 129 | // This is the x and y coordinate of the circle | 
|---|
| 130 | // through the three points and the circle's radius. | 
|---|
| 131 | c.x = (x^w)/denom; | 
|---|
| 132 | c.y = (y^w)/denom; | 
|---|
| 133 | c.r = c.dist(*it1); | 
|---|
| 134 |  | 
|---|
| 135 | // Check if any other grid point lays within this circle | 
|---|
| 136 | auto it3 = inputGrid.cbegin(); | 
|---|
| 137 | for (; it3<inputGrid.cend(); it3++) | 
|---|
| 138 | { | 
|---|
| 139 | if (it3==it0 || it3==it1 || it3==it2) | 
|---|
| 140 | continue; | 
|---|
| 141 |  | 
|---|
| 142 | if (c.isInsideCircle(*it3)) | 
|---|
| 143 | break; | 
|---|
| 144 | } | 
|---|
| 145 |  | 
|---|
| 146 | // If a point was found inside, reject the circle | 
|---|
| 147 | if (it3!=inputGrid.cend()) | 
|---|
| 148 | continue; | 
|---|
| 149 |  | 
|---|
| 150 | // Store the three points of the triangle | 
|---|
| 151 | c.p[0] = *it0; | 
|---|
| 152 | c.p[1] = *it1; | 
|---|
| 153 | c.p[2] = *it2; | 
|---|
| 154 |  | 
|---|
| 155 | // Keep in list | 
|---|
| 156 | circles.push_back(c); | 
|---|
| 157 | } | 
|---|
| 158 | } | 
|---|
| 159 | } | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | // -------------------------------------------------------------------------- | 
|---|
| 163 | // | 
|---|
| 164 | //! Calculate the weights corresponding to the points in the output grid. | 
|---|
| 165 | //! Weights are calculated by bi-linear interpolation. For interpolation, | 
|---|
| 166 | //! the triangle which contains the point and has the smallest radius | 
|---|
| 167 | //! is searched. If this is not available in case of extrapolation, | 
|---|
| 168 | //! the condition is relaxed and requires only the circle to contain | 
|---|
| 169 | //! the point. If such circle is not available, the circle with the | 
|---|
| 170 | //! closest center is chosen. | 
|---|
| 171 | // | 
|---|
| 172 | bool CalculateWeights() | 
|---|
| 173 | { | 
|---|
| 174 | weights.reserve(outputGrid.size()); | 
|---|
| 175 |  | 
|---|
| 176 | // Loop over all points in the output grid | 
|---|
| 177 | for (auto ip=outputGrid.cbegin(); ip<outputGrid.cend(); ip++) | 
|---|
| 178 | { | 
|---|
| 179 | double mindd = DBL_MAX; | 
|---|
| 180 |  | 
|---|
| 181 | auto mint = circles.cend(); | 
|---|
| 182 | auto minc = circles.cend(); | 
|---|
| 183 | auto mind = circles.cend(); | 
|---|
| 184 |  | 
|---|
| 185 | for (auto ic=circles.cbegin(); ic<circles.cend(); ic++) | 
|---|
| 186 | { | 
|---|
| 187 | // Check if point is inside the triangle | 
|---|
| 188 | if (ic->isInsideTriangle(*ip)) | 
|---|
| 189 | { | 
|---|
| 190 | if (mint==circles.cend() || ic->r<mint->r) | 
|---|
| 191 | mint = ic; | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | // If we have found such a triangle, no need to check for more | 
|---|
| 195 | if (mint!=circles.cend()) | 
|---|
| 196 | continue; | 
|---|
| 197 |  | 
|---|
| 198 | // maybe at least inside the circle | 
|---|
| 199 | const double dd = ic->dist(*ip); | 
|---|
| 200 | if (dd<ic->r) | 
|---|
| 201 | { | 
|---|
| 202 | if (minc==circles.cend() || ic->r<minc->r) | 
|---|
| 203 | minc = ic; | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | // If we found such a circle, no need to check for more | 
|---|
| 207 | if (minc!=circles.cend()) | 
|---|
| 208 | continue; | 
|---|
| 209 |  | 
|---|
| 210 | // then look for the closest circle center | 
|---|
| 211 | if (dd<mindd) | 
|---|
| 212 | { | 
|---|
| 213 | mindd = dd; | 
|---|
| 214 | mind  = ic; | 
|---|
| 215 | } | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | // Choose the best of the three options | 
|---|
| 219 | const auto it = mint==circles.cend() ? (minc==circles.cend() ? mind : minc) : mint; | 
|---|
| 220 | if (it==circles.cend()) | 
|---|
| 221 | return false; | 
|---|
| 222 |  | 
|---|
| 223 | // Calculate the bi-linear interpolation | 
|---|
| 224 | const vec &p1 = it->p[0]; | 
|---|
| 225 | const vec &p2 = it->p[1]; | 
|---|
| 226 | const vec &p3 = it->p[2]; | 
|---|
| 227 |  | 
|---|
| 228 | const double dy23 = p2.y - p3.y; | 
|---|
| 229 | const double dy31 = p3.y - p1.y; | 
|---|
| 230 | const double dy12 = p1.y - p2.y; | 
|---|
| 231 |  | 
|---|
| 232 | const double dx32 = p3.x - p2.x; | 
|---|
| 233 | const double dx13 = p1.x - p3.x; | 
|---|
| 234 | const double dx21 = p2.x - p1.x; | 
|---|
| 235 |  | 
|---|
| 236 | const double dxy23 = p2^p3; | 
|---|
| 237 | const double dxy31 = p3^p1; | 
|---|
| 238 | const double dxy12 = p1^p2; | 
|---|
| 239 |  | 
|---|
| 240 | const double det = dxy12 + dxy23 + dxy31; | 
|---|
| 241 |  | 
|---|
| 242 | const double w1 = (dy23*ip->x + dx32*ip->y + dxy23)/det; | 
|---|
| 243 | const double w2 = (dy31*ip->x + dx13*ip->y + dxy31)/det; | 
|---|
| 244 | const double w3 = (dy12*ip->x + dx21*ip->y + dxy12)/det; | 
|---|
| 245 |  | 
|---|
| 246 | // Store the original grid-point, the circle's parameters | 
|---|
| 247 | // and the calculate weights | 
|---|
| 248 | weight w; | 
|---|
| 249 | w.x = ip->x; | 
|---|
| 250 | w.y = ip->y; | 
|---|
| 251 | w.c = *it; | 
|---|
| 252 | w.w[0] = w1; | 
|---|
| 253 | w.w[1] = w2; | 
|---|
| 254 | w.w[2] = w3; | 
|---|
| 255 |  | 
|---|
| 256 | weights.push_back(w); | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 | return true; | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | public: | 
|---|
| 263 | // -------------------------------------------------------------------------- | 
|---|
| 264 | // | 
|---|
| 265 | //! Default constructor. Does nothing. | 
|---|
| 266 | // | 
|---|
| 267 | Interpolator2D() | 
|---|
| 268 | { | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | // -------------------------------------------------------------------------- | 
|---|
| 272 | // | 
|---|
| 273 | //! Initialize the input grid (the points at which values are known). | 
|---|
| 274 | //! | 
|---|
| 275 | //! @param n | 
|---|
| 276 | //!    number of data points | 
|---|
| 277 | //! | 
|---|
| 278 | //! @param x | 
|---|
| 279 | //!    x coordinates of data points | 
|---|
| 280 | //! | 
|---|
| 281 | //! @param n | 
|---|
| 282 | //!    y coordinates of data points | 
|---|
| 283 | // | 
|---|
| 284 | Interpolator2D(int n, double *x, double *y) | 
|---|
| 285 | { | 
|---|
| 286 | SetInputGrid(n, x, y); | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | Interpolator2D(const std::vector<Interpolator2D::vec> &v) | 
|---|
| 290 | { | 
|---|
| 291 | SetInputGrid(v); | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | const std::vector<Interpolator2D::weight> getWeights() const { return weights; } | 
|---|
| 295 | const std::vector<Interpolator2D::point>  getInputGrid() const { return inputGrid; } | 
|---|
| 296 | const std::vector<Interpolator2D::point>  getOutputGrid() const { return outputGrid; } | 
|---|
| 297 |  | 
|---|
| 298 | // -------------------------------------------------------------------------- | 
|---|
| 299 | // | 
|---|
| 300 | //! helper function to read a grid from a simple file | 
|---|
| 301 | //! (alternating x, y) | 
|---|
| 302 | //! | 
|---|
| 303 | //! @param filename | 
|---|
| 304 | //!    filename of ascii file with data | 
|---|
| 305 | //! | 
|---|
| 306 | //! @returns | 
|---|
| 307 | //!    a vector of point with the x and y values. | 
|---|
| 308 | //!    in case of failure the vector is empty | 
|---|
| 309 | // | 
|---|
| 310 | static std::vector<Interpolator2D::vec> ReadGrid(const std::string &filename) | 
|---|
| 311 | { | 
|---|
| 312 | std::vector<Interpolator2D::vec> grid; | 
|---|
| 313 |  | 
|---|
| 314 | std::ifstream fin(filename); | 
|---|
| 315 | if (!fin.is_open()) | 
|---|
| 316 | return std::vector<Interpolator2D::vec>(); | 
|---|
| 317 |  | 
|---|
| 318 | while (1) | 
|---|
| 319 | { | 
|---|
| 320 | double x, y; | 
|---|
| 321 | fin >> x; | 
|---|
| 322 | fin >> y; | 
|---|
| 323 | if (!fin) | 
|---|
| 324 | break; | 
|---|
| 325 |  | 
|---|
| 326 | grid.emplace_back(x, y); | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | return fin.bad() ? std::vector<Interpolator2D::vec>() : grid; | 
|---|
| 330 | } | 
|---|
| 331 |  | 
|---|
| 332 | // -------------------------------------------------------------------------- | 
|---|
| 333 | // | 
|---|
| 334 | //! Set a new input grid (the points at which values are known). | 
|---|
| 335 | //! Invalidates the output grid and the calculated weights. | 
|---|
| 336 | //! Calculates the triangles corresponding to the new grid. | 
|---|
| 337 | //! | 
|---|
| 338 | //! @param n | 
|---|
| 339 | //!    number of data points | 
|---|
| 340 | //! | 
|---|
| 341 | //! @param x | 
|---|
| 342 | //!    x coordinates of data points | 
|---|
| 343 | //! | 
|---|
| 344 | //! @param n | 
|---|
| 345 | //!    y coordinates of data points | 
|---|
| 346 | // | 
|---|
| 347 | void SetInputGrid(unsigned int n, double *x, double *y) | 
|---|
| 348 | { | 
|---|
| 349 | circles.clear(); | 
|---|
| 350 | weights.clear(); | 
|---|
| 351 | outputGrid.clear(); | 
|---|
| 352 |  | 
|---|
| 353 | inputGrid.clear(); | 
|---|
| 354 | inputGrid.reserve(n); | 
|---|
| 355 | for (unsigned int i=0; i<n; i++) | 
|---|
| 356 | inputGrid.emplace_back(i, x[i], y[i]); | 
|---|
| 357 |  | 
|---|
| 358 | CalculateGrid(); | 
|---|
| 359 | } | 
|---|
| 360 |  | 
|---|
| 361 | void SetInputGrid(const std::vector<Interpolator2D::vec> &v) | 
|---|
| 362 | { | 
|---|
| 363 | circles.clear(); | 
|---|
| 364 | weights.clear(); | 
|---|
| 365 | outputGrid.clear(); | 
|---|
| 366 |  | 
|---|
| 367 | inputGrid.clear(); | 
|---|
| 368 | inputGrid.reserve(v.size()); | 
|---|
| 369 | for (unsigned int i=0; i<v.size(); i++) | 
|---|
| 370 | inputGrid.emplace_back(i, v[i]); | 
|---|
| 371 |  | 
|---|
| 372 | CalculateGrid(); | 
|---|
| 373 | } | 
|---|
| 374 |  | 
|---|
| 375 | /* | 
|---|
| 376 | void SetInputGrid(const std::vector<Interpolator2D::point> &v) | 
|---|
| 377 | { | 
|---|
| 378 | circles.clear(); | 
|---|
| 379 | weights.clear(); | 
|---|
| 380 | outputGrid.clear(); | 
|---|
| 381 |  | 
|---|
| 382 | inputGrid.clear(); | 
|---|
| 383 | inputGrid.reserve(v.size()); | 
|---|
| 384 | for (unsigned int i=0; i<v.size(); i++) | 
|---|
| 385 | inputGrid.emplace_back(v[i], i); | 
|---|
| 386 |  | 
|---|
| 387 | CalculateGrid(); | 
|---|
| 388 | }*/ | 
|---|
| 389 |  | 
|---|
| 390 | bool ReadInputGrid(const std::string &filename) | 
|---|
| 391 | { | 
|---|
| 392 | const auto grid = ReadGrid(filename); | 
|---|
| 393 | if (grid.empty()) | 
|---|
| 394 | return false; | 
|---|
| 395 |  | 
|---|
| 396 | SetInputGrid(grid); | 
|---|
| 397 | return true; | 
|---|
| 398 | } | 
|---|
| 399 |  | 
|---|
| 400 |  | 
|---|
| 401 | // -------------------------------------------------------------------------- | 
|---|
| 402 | // | 
|---|
| 403 | //! Set a new output grid (the points at which you want interpolated | 
|---|
| 404 | //! or extrapolated values). Calculates new weights. | 
|---|
| 405 | //! | 
|---|
| 406 | //! @param n | 
|---|
| 407 | //!    number of points | 
|---|
| 408 | //! | 
|---|
| 409 | //! @param x | 
|---|
| 410 | //!    x coordinates of points | 
|---|
| 411 | //! | 
|---|
| 412 | //! @param n | 
|---|
| 413 | //!    y coordinates of points | 
|---|
| 414 | //! | 
|---|
| 415 | //! @returns | 
|---|
| 416 | //!    false if the calculation of the weights failed, true in | 
|---|
| 417 | //!    case of success | 
|---|
| 418 | // | 
|---|
| 419 | bool SetOutputGrid(std::size_t n, double *x, double *y) | 
|---|
| 420 | { | 
|---|
| 421 | if (inputGrid.empty() && n==0) | 
|---|
| 422 | return false; | 
|---|
| 423 |  | 
|---|
| 424 | weights.clear(); | 
|---|
| 425 |  | 
|---|
| 426 | outputGrid.clear(); | 
|---|
| 427 | outputGrid.reserve(n); | 
|---|
| 428 | for (std::size_t i=0; i<n; i++) | 
|---|
| 429 | outputGrid.emplace_back(i, x[i], y[i]); | 
|---|
| 430 |  | 
|---|
| 431 | return CalculateWeights(); | 
|---|
| 432 | } | 
|---|
| 433 |  | 
|---|
| 434 | /* | 
|---|
| 435 | bool SetOutputGrid(const std::vector<std::pair<double,double>> &v) | 
|---|
| 436 | { | 
|---|
| 437 | if (inputGrid.empty() || v.empty()) | 
|---|
| 438 | return false; | 
|---|
| 439 |  | 
|---|
| 440 | weights.clear(); | 
|---|
| 441 |  | 
|---|
| 442 | outputGrid.clear(); | 
|---|
| 443 | outputGrid.reserve(v.size()); | 
|---|
| 444 | for (std::size_t i=0; i<v.size(); i++) | 
|---|
| 445 | outputGrid.emplace_back(i, v[i].first, v[i].second); | 
|---|
| 446 |  | 
|---|
| 447 | return CalculateWeights(); | 
|---|
| 448 | }*/ | 
|---|
| 449 |  | 
|---|
| 450 | bool SetOutputGrid(const std::vector<Interpolator2D::vec> &v) | 
|---|
| 451 | { | 
|---|
| 452 | if (inputGrid.empty()) | 
|---|
| 453 | return false; | 
|---|
| 454 |  | 
|---|
| 455 | weights.clear(); | 
|---|
| 456 |  | 
|---|
| 457 | outputGrid.clear(); | 
|---|
| 458 | outputGrid.reserve(v.size()); | 
|---|
| 459 | for (std::size_t i=0; i<v.size(); i++) | 
|---|
| 460 | outputGrid.emplace_back(i, v[i]); | 
|---|
| 461 |  | 
|---|
| 462 | return CalculateWeights(); | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | bool ReadOutputGrid(const std::string &filename) | 
|---|
| 466 | { | 
|---|
| 467 | const auto grid = ReadGrid(filename); | 
|---|
| 468 | if (grid.empty()) | 
|---|
| 469 | return false; | 
|---|
| 470 |  | 
|---|
| 471 | return SetOutputGrid(grid); | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 |  | 
|---|
| 475 | // -------------------------------------------------------------------------- | 
|---|
| 476 | // | 
|---|
| 477 | //! Perform interpolation. | 
|---|
| 478 | //! | 
|---|
| 479 | //! @param z | 
|---|
| 480 | //!    Values at the coordinates of the input grid. The order | 
|---|
| 481 | //!    must be identical. | 
|---|
| 482 | //! | 
|---|
| 483 | //! @returns | 
|---|
| 484 | //!    A vector<double> is returned with the interpolated values in the | 
|---|
| 485 | //!    same order than the putput grid. If the provided vector does | 
|---|
| 486 | //!    not match the size of the inputGrid, an empty vector is returned. | 
|---|
| 487 | // | 
|---|
| 488 | std::vector<double> Interpolate(const std::vector<double> &z) const | 
|---|
| 489 | { | 
|---|
| 490 | if (z.size()!=inputGrid.size()) | 
|---|
| 491 | return std::vector<double>(); | 
|---|
| 492 |  | 
|---|
| 493 | std::vector<double> rc; | 
|---|
| 494 | rc.reserve(z.size()); | 
|---|
| 495 |  | 
|---|
| 496 | for (auto it=weights.cbegin(); it<weights.cend(); it++) | 
|---|
| 497 | rc.push_back(z[it->c.p[0].i] * it->w[0] + z[it->c.p[1].i] * it->w[1] + z[it->c.p[2].i] * it->w[2]); | 
|---|
| 498 |  | 
|---|
| 499 | return rc; | 
|---|
| 500 | } | 
|---|
| 501 | }; | 
|---|
| 502 | #endif | 
|---|