1 | #ifndef MARS_MJTrainCuts
|
---|
2 | #define MARS_MJTrainCuts
|
---|
3 |
|
---|
4 | #ifndef MARS_MJTrainRanForest
|
---|
5 | #include "MJTrainRanForest.h"
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #ifndef ROOT_TObjArray
|
---|
9 | #include <TObjArray.h>
|
---|
10 | #endif
|
---|
11 |
|
---|
12 | #ifndef MARS_MDataSet
|
---|
13 | #include "MDataSet.h"
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | class MH3;
|
---|
17 | class MBinning;
|
---|
18 |
|
---|
19 | class MJTrainCuts : public MJTrainRanForest
|
---|
20 | {
|
---|
21 | public:
|
---|
22 | enum Type_t { kTrainOn, kTrainOff, kTestOn, kTestOff };
|
---|
23 |
|
---|
24 | private:
|
---|
25 | MDataSet fDataSetOn;
|
---|
26 | MDataSet fDataSetOff;
|
---|
27 |
|
---|
28 | UInt_t fNum[4];
|
---|
29 | /*
|
---|
30 | TList fPreTasksSet[4];
|
---|
31 | TList fPostTasksSet[4];
|
---|
32 |
|
---|
33 | Bool_t fEnableWeights[4];
|
---|
34 | */
|
---|
35 | Bool_t fUseRegression;
|
---|
36 |
|
---|
37 | TList fHists;
|
---|
38 | TObjArray fBinnings;
|
---|
39 |
|
---|
40 | // Result
|
---|
41 | void DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime);
|
---|
42 |
|
---|
43 | public:
|
---|
44 | MJTrainCuts() : fUseRegression(kFALSE)
|
---|
45 | {
|
---|
46 | for (int i=0; i<4; i++)
|
---|
47 | {
|
---|
48 | //fEnableWeights[i]=kFALSE;
|
---|
49 | fNum[i] = (UInt_t)-1;
|
---|
50 | }
|
---|
51 |
|
---|
52 | fHists.SetOwner();
|
---|
53 | fBinnings.SetOwner();
|
---|
54 | }
|
---|
55 |
|
---|
56 | void SetDataSetOn(const MDataSet &ds, UInt_t ntrain=(UInt_t)-1, UInt_t ntest=(UInt_t)-1)
|
---|
57 | {
|
---|
58 | ds.Copy(fDataSetOn);
|
---|
59 |
|
---|
60 | fDataSetOn.SetNumAnalysis(1);
|
---|
61 |
|
---|
62 | fNum[kTestOn] = ntrain;
|
---|
63 | fNum[kTrainOn] = ntest;
|
---|
64 | }
|
---|
65 | void SetDataSetOff(const MDataSet &ds, UInt_t ntrain=(UInt_t)-1, UInt_t ntest=(UInt_t)-1)
|
---|
66 | {
|
---|
67 | ds.Copy(fDataSetOff);
|
---|
68 |
|
---|
69 | fDataSetOff.SetNumAnalysis(2);
|
---|
70 |
|
---|
71 | fNum[kTestOff] = ntrain;
|
---|
72 | fNum[kTrainOff] = ntest;
|
---|
73 | }
|
---|
74 |
|
---|
75 | // Add Histogram
|
---|
76 | void AddHist(UInt_t nx);
|
---|
77 | void AddHist(UInt_t nx, UInt_t ny);
|
---|
78 | void AddHist(UInt_t nx, UInt_t ny, UInt_t nz);
|
---|
79 |
|
---|
80 | void AddBinning(UInt_t n, const MBinning &bins);
|
---|
81 | //void AddBinning(const MBinning &bins);
|
---|
82 |
|
---|
83 | // Standard user interface
|
---|
84 | /*
|
---|
85 | void SetWeights(Type_t typ, const char *rule) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, rule); }
|
---|
86 | void SetWeights(Type_t typ, MTask *t) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, t); }
|
---|
87 |
|
---|
88 | void AddPreTaskOn(MTask *t) { AddPreTask(kTrainOn, t); AddPreTask(kTestOn, t); }
|
---|
89 | void AddPreTaskOn(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOn, rule, name); AddPreTask(kTestOn, rule, name); }
|
---|
90 | void AddPreTaskOff(MTask *t) { AddPreTask(kTrainOff, t); AddPreTask(kTestOff, t); }
|
---|
91 | void AddPreTaskOff(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOff, rule, name); AddPreTask(kTestOff, rule, name); }
|
---|
92 |
|
---|
93 | void AddPostTaskOn(MTask *t) { AddPostTask(kTrainOn, t); AddPostTask(kTestOn, t); }
|
---|
94 | void AddPostTaskOn(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOn, rule, name); AddPostTask(kTestOn, rule, name); }
|
---|
95 | void AddPostTaskOff(MTask *t) { AddPostTask(kTrainOff, t); AddPostTask(kTestOff, t); }
|
---|
96 | void AddPostTaskOff(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOff, rule, name); AddPostTask(kTestOff, rule, name); }
|
---|
97 |
|
---|
98 | void AddPreTask(Type_t typ, MTask *t) { Add(fPreTasksSet[typ], t); }
|
---|
99 | void AddPreTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPreTasksSet[typ], rule, name); }
|
---|
100 | void AddPostTask(Type_t typ, MTask *t) { Add(fPostTasksSet[typ], t); }
|
---|
101 | void AddPostTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPostTasksSet[typ], rule, name); }
|
---|
102 |
|
---|
103 | void SetWeightsOn(const char *rule) { SetWeights(kTrainOn, rule); SetWeights(kTestOn, rule); }
|
---|
104 | void SetWeightsOn(MTask *t) { SetWeights(kTrainOn, t); SetWeights(kTestOn, t); }
|
---|
105 | void SetWeightsOff(const char *rule) { SetWeights(kTrainOff, rule); SetWeights(kTestOff, rule); }
|
---|
106 | void SetWeightsOff(MTask *t) { SetWeights(kTrainOff, t); SetWeights(kTestOff, t); }
|
---|
107 | */
|
---|
108 | void EnableRegression(Bool_t b=kTRUE) { fUseRegression = b; }
|
---|
109 | void EnableClassification(Bool_t b=kTRUE) { fUseRegression = !b; }
|
---|
110 |
|
---|
111 | // Main function to start processing
|
---|
112 | Bool_t Process(const char *out);
|
---|
113 |
|
---|
114 | ClassDef(MJTrainCuts, 0)//Class to help finding cuts using the random forest
|
---|
115 | };
|
---|
116 |
|
---|
117 | #endif
|
---|