1 | #ifndef MARS_MRanForestCalc
|
---|
2 | #define MARS_MRanForestCalc
|
---|
3 |
|
---|
4 | #ifndef MARS_MTask
|
---|
5 | #include "MTask.h"
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #ifndef ROOT_TObjArray
|
---|
9 | #include <TObjArray.h>
|
---|
10 | #endif
|
---|
11 |
|
---|
12 | #ifndef ROOT_TArrayD
|
---|
13 | #include <TArrayD.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #ifndef ROOT_MDataPhrase
|
---|
17 | #include "MDataPhrase.h"
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | class MDataArray;
|
---|
21 | class MParameterD;
|
---|
22 | class MHMatrix;
|
---|
23 |
|
---|
24 | class MRanForestCalc : public MTask
|
---|
25 | {
|
---|
26 | public:
|
---|
27 | enum EstimationMode_t
|
---|
28 | {
|
---|
29 | kMean,
|
---|
30 | kMaximum,
|
---|
31 | kFit
|
---|
32 | };
|
---|
33 |
|
---|
34 | private:
|
---|
35 | static const TString gsDefName; //! Default Name
|
---|
36 | static const TString gsDefTitle; //! Default Title
|
---|
37 | static const TString gsNameOutput; //! Default Output name
|
---|
38 | static const TString gsNameEvalFunc; //! Evaluation function name
|
---|
39 |
|
---|
40 | MDataArray *fData; //! Used to store the MDataChains to get the event values
|
---|
41 | MParameterD *fRFOut; //! Used to store result
|
---|
42 | MHMatrix *fTestMatrix; //! Test Matrix used in Process (together with MMatrixLoop)
|
---|
43 | MDataPhrase fFunc; //! Function to apply to the result
|
---|
44 |
|
---|
45 | TObjArray fEForests; //! List of forests read or to be written
|
---|
46 |
|
---|
47 | Int_t fNumTrees; //! Training parameters
|
---|
48 | Int_t fNumTry; //! Training parameters
|
---|
49 | Int_t fNdSize; //! Training parameters
|
---|
50 |
|
---|
51 | Int_t fNumObsoleteVariables; //! Training parameters
|
---|
52 | Bool_t fLastDataColumnHasWeights; //! Training parameters
|
---|
53 |
|
---|
54 | TString fFileName; // File name to forest
|
---|
55 | TString fNameOutput; // Name of output container
|
---|
56 |
|
---|
57 | Bool_t fDebug; // Debugging of eventloop while training on/off
|
---|
58 |
|
---|
59 | EstimationMode_t fEstimationMode; // Mode of estimation in case of multi random forest regression
|
---|
60 |
|
---|
61 | private:
|
---|
62 | // MTask
|
---|
63 | Int_t PreProcess(MParList *plist);
|
---|
64 | Int_t Process();
|
---|
65 |
|
---|
66 | // MRanForestCalc
|
---|
67 | Int_t ReadForests(MParList &plist);
|
---|
68 | Double_t Eval() const;
|
---|
69 |
|
---|
70 | // MParContainer
|
---|
71 | Int_t ReadEnv(const TEnv &env, TString prefix, Bool_t print);
|
---|
72 |
|
---|
73 | // Train Interface
|
---|
74 | Int_t Train(const MHMatrix &n, const TArrayD &grid, Int_t ver);
|
---|
75 |
|
---|
76 | public:
|
---|
77 | MRanForestCalc(const char *name=NULL, const char *title=NULL);
|
---|
78 | ~MRanForestCalc();
|
---|
79 |
|
---|
80 | // TObject
|
---|
81 | void Print(Option_t *o="") const; //*MENU*
|
---|
82 |
|
---|
83 | // Setter for estimation
|
---|
84 | void SetFileName(TString filename) { fFileName = filename; }
|
---|
85 | void SetEstimationMode(EstimationMode_t op) { fEstimationMode = op; }
|
---|
86 | void SetNameOutput(TString name=gsNameOutput) { fNameOutput = name; }
|
---|
87 |
|
---|
88 | // Setter for training
|
---|
89 | void SetNumTrees(UShort_t n=100) { fNumTrees = n; }
|
---|
90 | void SetNdSize(UShort_t n=5) { fNdSize = n; }
|
---|
91 | void SetNumTry(UShort_t n=0) { fNumTry = n; }
|
---|
92 | void SetDebug(Bool_t b=kTRUE) { fDebug = b; }
|
---|
93 |
|
---|
94 | Bool_t SetFunction(const char *name="x");
|
---|
95 |
|
---|
96 | void SetNumObsoleteVariables(Int_t n=1) { fNumObsoleteVariables = n; }
|
---|
97 | void SetLastDataColumnHasWeights(Bool_t b=kTRUE) { fLastDataColumnHasWeights = b; }
|
---|
98 |
|
---|
99 | // Train Interface
|
---|
100 | Int_t TrainMultiRF(const MHMatrix &n, const TArrayD &grid)
|
---|
101 | {
|
---|
102 | // One yes/no-classification forest is trained for each bin
|
---|
103 | return Train(n, grid, 0);
|
---|
104 | }
|
---|
105 | Int_t TrainSingleRF(const MHMatrix &n, const TArrayD &grid=TArrayD())
|
---|
106 | {
|
---|
107 | // w/o Grid: Last Column contains classifier
|
---|
108 | // w/ Grid: Last Column will be converted by grid into classifier
|
---|
109 | return Train(n, grid, grid.GetSize()==0 ? 2 : 1);
|
---|
110 | }
|
---|
111 | Int_t TrainRegression(const MHMatrix &n)
|
---|
112 | {
|
---|
113 | // Use last column for regression
|
---|
114 | return Train(n, TArrayD(), 3);
|
---|
115 | }
|
---|
116 |
|
---|
117 | Int_t Train(const MHMatrix &m, Bool_t regression)
|
---|
118 | {
|
---|
119 | return regression ? TrainRegression(m) : TrainSingleRF(m);
|
---|
120 | }
|
---|
121 |
|
---|
122 | // Test Interface
|
---|
123 | void SetTestMatrix(MHMatrix *m=0) { fTestMatrix=m; }
|
---|
124 | void InitMapping(MHMatrix *m=0) { fTestMatrix=m; }
|
---|
125 |
|
---|
126 | ClassDef(MRanForestCalc, 1) // Task to calculate RF output and for RF training
|
---|
127 | };
|
---|
128 |
|
---|
129 | #endif
|
---|