1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2010
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSimReflector
|
---|
28 | //
|
---|
29 | // fDetectorFrame is a radius in centimeter, defining a disk in the focal
|
---|
30 | // plane around the focal point, in which photons are absorbed. If
|
---|
31 | // fDetectorFrame<=0 the virtual HitFrame function of the camera
|
---|
32 | // geometry container is used instead.
|
---|
33 | //
|
---|
34 | // fDetectorMargin is a margin (in mm) which is given to the
|
---|
35 | // MGeomCam::HitDetector. It should define a margin around the area
|
---|
36 | // defined in HitDetector on the focal plane in which photons are kept.
|
---|
37 | // Usually this can be 0 because photons not hitting the detector are
|
---|
38 | // obsolete except they can later be "moved" inside the detector, e.g.
|
---|
39 | // if you use MSimPSF to emulate a PSF by moving photons randomly
|
---|
40 | // on the focal plane. To switch off this check set detector margin to -1.
|
---|
41 | //
|
---|
42 | //////////////////////////////////////////////////////////////////////////////
|
---|
43 | #include "MSimReflector.h"
|
---|
44 |
|
---|
45 | #include <TMath.h>
|
---|
46 | #include <TRandom.h>
|
---|
47 |
|
---|
48 | #include "MGeomCam.h"
|
---|
49 |
|
---|
50 | #include "MLog.h"
|
---|
51 | #include "MLogManip.h"
|
---|
52 |
|
---|
53 | #include "MParList.h"
|
---|
54 |
|
---|
55 | #include "MQuaternion.h"
|
---|
56 | #include "MMirror.h"
|
---|
57 | #include "MReflector.h"
|
---|
58 | #include "MReflection.h"
|
---|
59 |
|
---|
60 | #include "MCorsikaEvtHeader.h"
|
---|
61 | //#include "MCorsikaRunHeader.h"
|
---|
62 |
|
---|
63 | #include "MPhotonEvent.h"
|
---|
64 | #include "MPhotonData.h"
|
---|
65 |
|
---|
66 | #include "MPointingPos.h"
|
---|
67 |
|
---|
68 | ClassImp(MSimReflector);
|
---|
69 |
|
---|
70 | using namespace std;
|
---|
71 |
|
---|
72 | // USEFUL CORSIKA OPTIONS:
|
---|
73 | // NOCLONG
|
---|
74 |
|
---|
75 | // --------------------------------------------------------------------------
|
---|
76 | //
|
---|
77 | // Default Constructor.
|
---|
78 | //
|
---|
79 | MSimReflector::MSimReflector(const char* name, const char *title)
|
---|
80 | : fEvt(0), fMirror0(0), fMirror1(0), fMirror2(0), fMirror3(0),
|
---|
81 | fMirror4(0), /*fRunHeader(0),*/ fEvtHeader(0), fReflector(0),
|
---|
82 | fGeomCam(0), fPointing(0), fNameReflector("MReflector"),
|
---|
83 | fDetectorFrame(0), fDetectorMargin(0)
|
---|
84 | {
|
---|
85 | fName = name ? name : "MSimReflector";
|
---|
86 | fTitle = title ? title : "Task to calculate reflection os a mirror";
|
---|
87 | }
|
---|
88 |
|
---|
89 | // --------------------------------------------------------------------------
|
---|
90 | //
|
---|
91 | // Search for the necessary parameter containers.
|
---|
92 | //
|
---|
93 | Int_t MSimReflector::PreProcess(MParList *pList)
|
---|
94 | {
|
---|
95 | fMirror0 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane0");
|
---|
96 | if (!fMirror0)
|
---|
97 | return kFALSE;
|
---|
98 | fMirror1 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane1");
|
---|
99 | if (!fMirror1)
|
---|
100 | return kFALSE;
|
---|
101 | fMirror2 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane2");
|
---|
102 | if (!fMirror2)
|
---|
103 | return kFALSE;
|
---|
104 | fMirror3 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane3");
|
---|
105 | if (!fMirror3)
|
---|
106 | return kFALSE;
|
---|
107 | fMirror4 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane4");
|
---|
108 | if (!fMirror4)
|
---|
109 | return kFALSE;
|
---|
110 |
|
---|
111 | fReflector = (MReflector*)pList->FindObject(fNameReflector, "MReflector");
|
---|
112 | if (!fReflector)
|
---|
113 | {
|
---|
114 | *fLog << err << fNameReflector << " [MReflector] not found..." << endl;
|
---|
115 | return kFALSE;
|
---|
116 | }
|
---|
117 |
|
---|
118 | if (fReflector->GetNumMirrors()==0)
|
---|
119 | {
|
---|
120 | *fLog << err << "ERROR - Reflector '" << fNameReflector << "' doesn't contain a single mirror." << endl;
|
---|
121 | return kFALSE;
|
---|
122 | }
|
---|
123 |
|
---|
124 | fGeomCam = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam");
|
---|
125 | if (!fGeomCam)
|
---|
126 | {
|
---|
127 | if (!fNameGeomCam.IsNull())
|
---|
128 | *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl;
|
---|
129 |
|
---|
130 | fGeomCam = (MGeomCam*)pList->FindObject("MGeomCam");
|
---|
131 | if (!fGeomCam)
|
---|
132 | {
|
---|
133 | *fLog << err << "MGeomCam not found... aborting." << endl;
|
---|
134 | return kFALSE;
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
|
---|
139 | if (!fEvt)
|
---|
140 | {
|
---|
141 | *fLog << err << "MPhotonEvent not found... aborting." << endl;
|
---|
142 | return kFALSE;
|
---|
143 | }
|
---|
144 | /*
|
---|
145 | fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
|
---|
146 | if (!fRunHeader)
|
---|
147 | {
|
---|
148 | *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
|
---|
149 | return kFALSE;
|
---|
150 | }
|
---|
151 | */
|
---|
152 | fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader");
|
---|
153 | if (!fEvtHeader)
|
---|
154 | {
|
---|
155 | *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl;
|
---|
156 | return kFALSE;
|
---|
157 | }
|
---|
158 |
|
---|
159 | fPointing = (MPointingPos*)pList->FindObject(/*"PointingCorsika",*/ "MPointingPos");
|
---|
160 | if (!fPointing)
|
---|
161 | {
|
---|
162 | *fLog << err << "MPointingPos not found... aborting." << endl;
|
---|
163 | return kFALSE;
|
---|
164 | }
|
---|
165 |
|
---|
166 | return kTRUE;
|
---|
167 | }
|
---|
168 |
|
---|
169 | // --------------------------------------------------------------------------
|
---|
170 | //
|
---|
171 | // The main point of calculating the reflection is to determine the
|
---|
172 | // coincidence point of the particle trajectory on the mirror surface.
|
---|
173 | //
|
---|
174 | // If the position and the trajectory of a particle is known it is enough
|
---|
175 | // to calculate the z-value of coincidence. x and y are then well defined.
|
---|
176 | //
|
---|
177 | // Since the problem (mirror) has a rotational symmetry we only have to care
|
---|
178 | // about the distance from the z-axis.
|
---|
179 | //
|
---|
180 | // Given:
|
---|
181 | //
|
---|
182 | // p: position vector of particle (z=0)
|
---|
183 | // u: direction vector of particle
|
---|
184 | // F: Focal distance of the mirror
|
---|
185 | //
|
---|
186 | // We define:
|
---|
187 | //
|
---|
188 | // q := (px, py )
|
---|
189 | // v := (ux/uz, uy/uz)
|
---|
190 | // r^2 := x^2 + y^2
|
---|
191 | //
|
---|
192 | //
|
---|
193 | // Distance from z-axis:
|
---|
194 | // ---------------------
|
---|
195 | //
|
---|
196 | // q' = q - z*v (z>0)
|
---|
197 | //
|
---|
198 | // Calculate distance r (|q|)
|
---|
199 | //
|
---|
200 | // r^2 = (px-z*ux)^2 + (py-z*uy)^2
|
---|
201 | // r^2 = px^2+py^2 + z^2*(ux^2+uy^2) - 2*z*(px*ux+py*uy)
|
---|
202 | // r^2 = |q|^2 + z^2*|v|^2 - 2*z* q*v
|
---|
203 | //
|
---|
204 | //
|
---|
205 | // Spherical Mirror Surface: (distance of surface point from 0/0/0)
|
---|
206 | // -------------------------
|
---|
207 | //
|
---|
208 | // Sphere: r^2 + z^2 = R^2 | Parabola: z = p*r^2
|
---|
209 | // Mirror: r^2 + (z-R)^2 = R^2 | Mirror: z = p*r^2
|
---|
210 | // |
|
---|
211 | // Focal length: F=R/2 | Focal length: F = 1/4p
|
---|
212 | // |
|
---|
213 | // r^2 + (z-2*F)^2 = (2*F)^2 | z = r^2/4F
|
---|
214 | // |
|
---|
215 | // z = -sqrt(4*F*F - r*r) + 2*F |
|
---|
216 | // z-2*F = -sqrt(4*F*F - r*r) |
|
---|
217 | // (z-2*F)^2 = 4*F*F - r*r |
|
---|
218 | // z^2-4*F*z+4*F^2 = 4*F*F - r*r (4F^2-r^2>0) | z - r^2/4F = 0
|
---|
219 | // z^2-4*F*z+r^2 = 0
|
---|
220 | //
|
---|
221 | // Find the z for which our particle has the same distance from the z-axis
|
---|
222 | // as the mirror surface.
|
---|
223 | //
|
---|
224 | // substitute r^2
|
---|
225 | //
|
---|
226 | //
|
---|
227 | // Equation to solve:
|
---|
228 | // ------------------
|
---|
229 | //
|
---|
230 | // z^2*(1+|v|^2) - 2*z*(2*F+q*v) + |q|^2 = 0 | z^2*|v|^2 - 2*z*(2*F+q*v) + |q|^2 = 0
|
---|
231 | //
|
---|
232 | // z = (-b +- sqrt(b*b - 4ac))/(2*a)
|
---|
233 | //
|
---|
234 | // a = 1+|v|^2 | a = |v|^2
|
---|
235 | // b = - 2*b' with b' = 2*F+q*v | b = - 2*b' with b' = 2*F+q*v
|
---|
236 | // c = |q|^2 | c = |q|^2
|
---|
237 | // |
|
---|
238 | //
|
---|
239 | // substitute b := 2*b'
|
---|
240 | //
|
---|
241 | // z = (2*b' +- 2*sqrt(b'*b' - ac))/(2*a)
|
---|
242 | // z = ( b' +- sqrt(b'*b' - ac))/a
|
---|
243 | // z = (b'/a +- sqrt(b'*b' - ac))/a
|
---|
244 | //
|
---|
245 | // substitute f := b'/a
|
---|
246 | //
|
---|
247 | // z = f +- sqrt(f^2 - c/a)
|
---|
248 | //
|
---|
249 | // =======================================================================================
|
---|
250 | //
|
---|
251 | // After z of the incident point has been determined the position p is
|
---|
252 | // propagated along u to the plane with z=z. Now it is checked if the
|
---|
253 | // mirror was really hit (this is implemented in HasHit).
|
---|
254 | // From the position on the surface and the mirrors curvature we can
|
---|
255 | // now calculate the normal vector at the incident point.
|
---|
256 | // This normal vector is smeared out with MMirror::PSF (basically a
|
---|
257 | // random gaussian) and then the trajectory is reflected on the
|
---|
258 | // resulting normal vector.
|
---|
259 | //
|
---|
260 | Bool_t MMirror::ExecuteReflection(MQuaternion &p, MQuaternion &u) const
|
---|
261 | {
|
---|
262 | // If the z-componenet of the direction vector is normalized to 1
|
---|
263 | // the calculation of the incident points becomes very simple and
|
---|
264 | // the resulting z is just the z-coordinate of the incident point.
|
---|
265 | const TVector2 v(u.XYvector()/u.Z());
|
---|
266 | const TVector2 q(p.XYvector());
|
---|
267 |
|
---|
268 | // Radius of curvature
|
---|
269 | const Double_t G = 2*fFocalLength;
|
---|
270 |
|
---|
271 | // Find the incident point of the vector to the mirror
|
---|
272 | // u corresponds to downward going particles, thus we use -u here
|
---|
273 | const Double_t b = G - q*v;
|
---|
274 | const Double_t a = v.Mod2();
|
---|
275 | const Double_t c = q.Mod2();
|
---|
276 |
|
---|
277 | // Solution for q spherical (a+1) (parabolic mirror (a) instead of (a+1))
|
---|
278 | const Double_t A = fShape ? a : a+1;
|
---|
279 |
|
---|
280 | const Double_t f = b/A;
|
---|
281 | const Double_t g = c/A;
|
---|
282 |
|
---|
283 | // Solution of second order polynomial (transformed: a>0)
|
---|
284 | // (The second solution can be omitted, it is the intersection
|
---|
285 | // with the upper part of the sphere)
|
---|
286 | const Double_t z = a==0 ? c/(2*b) : f - TMath::Sqrt(f*f - g);
|
---|
287 |
|
---|
288 | // Move the photon along its trajectory to the x/y plane of the
|
---|
289 | // mirror's coordinate frame. Therefor stretch the vector
|
---|
290 | // until its z-component is the distance from the vector origin
|
---|
291 | // until the vector hits the mirror surface.
|
---|
292 | // p += z/u.Z()*u;
|
---|
293 | // p is at the mirror plane and we want to propagate back to the mirror surface
|
---|
294 | p.PropagateZ(u, z);
|
---|
295 |
|
---|
296 | // MirrorShape: Now check if the photon really hit the mirror or just missed it
|
---|
297 | if (!HasHit(p))
|
---|
298 | return kFALSE;
|
---|
299 |
|
---|
300 | // Get normal vector for reflection by calculating the derivatives
|
---|
301 | // of a the mirror's surface along x and y
|
---|
302 | const Double_t d = fShape ? G : TMath::Sqrt(G*G - p.R2());
|
---|
303 |
|
---|
304 | // The solution for the normal vector is
|
---|
305 | // TVector3 n(-p.X()/d, -p.Y()/d, 1));
|
---|
306 | // Since the normal vector doesn't need to be of normal
|
---|
307 | // length we can avoid an obsolete division
|
---|
308 | TVector3 n(p.X(), p.Y(), -d);
|
---|
309 |
|
---|
310 | if (fSigmaPSF>0)
|
---|
311 | n += SimPSF(n);
|
---|
312 |
|
---|
313 | // Changes also the sign of the z-direction of flight
|
---|
314 | // This is faster giving identical results
|
---|
315 | u *= MReflection(n);
|
---|
316 | //u *= MReflection(p.X(), p.Y(), -d);
|
---|
317 |
|
---|
318 | return kTRUE;
|
---|
319 | }
|
---|
320 |
|
---|
321 | // --------------------------------------------------------------------------
|
---|
322 | //
|
---|
323 | // Converts the coordinates into the coordinate frame of the mirror.
|
---|
324 | // Executes the reflection calling ExecuteReflection and converts
|
---|
325 | // the coordinates back.
|
---|
326 | // Depending on whether the mirror was hit kTRUE or kFALSE is returned.
|
---|
327 | // It the mirror was not hit the result coordinates are wrong.
|
---|
328 | //
|
---|
329 | Bool_t MMirror::ExecuteMirror(MQuaternion &p, MQuaternion &u) const
|
---|
330 | {
|
---|
331 | // Move the mirror to the point of origin and rotate the position into
|
---|
332 | // the individual mirrors coordinate frame.
|
---|
333 | // Rotate the direction vector into the mirror's coordinate frame
|
---|
334 | p -= fPos;
|
---|
335 | p *= fTilt;
|
---|
336 | u *= fTilt;
|
---|
337 |
|
---|
338 | // Move the photon along its trajectory to the x/y plane of the
|
---|
339 | // mirror's coordinate frame. Therefor stretch the vector
|
---|
340 | // until its z-component vanishes.
|
---|
341 | //p -= p.Z()/u.Z()*u;
|
---|
342 |
|
---|
343 | // p is at the reflector plane and we want to propagate back to the mirror plane
|
---|
344 | p.PropagateZ0(u);
|
---|
345 |
|
---|
346 | // Now try to propagate the photon from the plane to the mirror
|
---|
347 | // and reflect its direction vector on the mirror.
|
---|
348 | if (!ExecuteReflection(p, u))
|
---|
349 | return kFALSE;
|
---|
350 |
|
---|
351 | // Derotate from mirror coordinates and shift the photon back to
|
---|
352 | // reflector coordinates.
|
---|
353 | // Derotate the direction vector
|
---|
354 | u *= fTilt.Inverse();
|
---|
355 | p *= fTilt.Inverse();
|
---|
356 | p += fPos;
|
---|
357 |
|
---|
358 | return kTRUE;
|
---|
359 | }
|
---|
360 |
|
---|
361 | // Jeder Spiegel sollte eine Liste aller andern Spiegel in der
|
---|
362 | // reihenfolge Ihrer Entfernung enthalten. Wir starten mit der Suche
|
---|
363 | // immer beim zuletzt getroffenen Spiegel!
|
---|
364 | //
|
---|
365 | // --------------------------------------------------------------------------
|
---|
366 | //
|
---|
367 | // Loops over all mirrors of the reflector. After doing a rough check
|
---|
368 | // whether the mirror can be hit at all the reflection is executed
|
---|
369 | // calling the ExecuteMirror function of the mirrors.
|
---|
370 | //
|
---|
371 | // If a mirror was hit its index is retuened, -1 otherwise.
|
---|
372 | //
|
---|
373 | // FIXME: Do to lopping over all mirrors for all photons this is the
|
---|
374 | // most time consuming function in teh reflector simulation. By a more
|
---|
375 | // intelligent way of finding the right mirror then just testing all
|
---|
376 | // this could be accelerated a lot.
|
---|
377 | //
|
---|
378 | Int_t MReflector::ExecuteReflector(MQuaternion &p, MQuaternion &u) const
|
---|
379 | {
|
---|
380 | //static const TObjArray *arr = &((MMirror*)fMirrors[0])->fNeighbors;
|
---|
381 |
|
---|
382 | // This way of access is somuch faster than the program is
|
---|
383 | // a few percent slower if accessed by UncheckedAt
|
---|
384 | const MMirror **s = GetFirstPtr();
|
---|
385 | const MMirror **e = s+GetNumMirrors();
|
---|
386 | //const MMirror **s = (const MMirror**)fMirrors.GetObjectRef(0);
|
---|
387 | //const MMirror **e = s+fMirrors.GetEntriesFast();
|
---|
388 | //const MMirror **s = (const MMirror**)arr->GetObjectRef(0);
|
---|
389 | //const MMirror **e = s+arr->GetEntriesFast();
|
---|
390 |
|
---|
391 | // Loop over all mirrors
|
---|
392 | for (const MMirror **m=s; m<e; m++)
|
---|
393 | {
|
---|
394 | const MMirror &mirror = **m;
|
---|
395 |
|
---|
396 | // FIXME: Can we speed up using lookup tables or
|
---|
397 | // indexed tables?
|
---|
398 |
|
---|
399 | // MirrorShape: Check if this mirror can be hit at all
|
---|
400 | // This is to avoid time consuming calculation if there is no
|
---|
401 | // chance of a coincidence.
|
---|
402 | // FIXME: Inmprove search algorithm (2D Binary search?)
|
---|
403 | if (!mirror.CanHit(p))
|
---|
404 | continue;
|
---|
405 |
|
---|
406 | // Make a local copy of position and direction which can be
|
---|
407 | // changed by ExecuteMirror.
|
---|
408 | MQuaternion q(p);
|
---|
409 | MQuaternion v(u);
|
---|
410 |
|
---|
411 | // Check if this mirror is hit, and if it is hit return
|
---|
412 | // the reflected position and direction vector.
|
---|
413 | // If the mirror is missed we go on with the next mirror.
|
---|
414 | if (!mirror.ExecuteMirror(q, v))
|
---|
415 | continue;
|
---|
416 |
|
---|
417 | // We hit a mirror. Restore the local copy of position and
|
---|
418 | // direction back into p und u.
|
---|
419 | p = q;
|
---|
420 | u = v;
|
---|
421 |
|
---|
422 | //arr = &mirror->fNeighbors;
|
---|
423 |
|
---|
424 | return m-s;
|
---|
425 | }
|
---|
426 |
|
---|
427 | return -1;
|
---|
428 | }
|
---|
429 |
|
---|
430 | // --------------------------------------------------------------------------
|
---|
431 | //
|
---|
432 | // Converts the photons into the telscope coordinate frame using the
|
---|
433 | // pointing position from MPointingPos.
|
---|
434 | //
|
---|
435 | // Reflects all photons on all mirrors and stores the final photons on
|
---|
436 | // the focal plane. Also intermediate photons are stored for debugging.
|
---|
437 | //
|
---|
438 | Int_t MSimReflector::Process()
|
---|
439 | {
|
---|
440 | // Get arrays from event container
|
---|
441 | TClonesArray &arr = fEvt->GetArray();
|
---|
442 |
|
---|
443 | // Because we knwo in advance what the maximum storage space could
|
---|
444 | // be we allocated it in advance (or shrink it if it was extremely
|
---|
445 | // huge before)
|
---|
446 | // Note, that the drawback is that an extremly large event
|
---|
447 | // will take about five times its storage space
|
---|
448 | // for a moment even if a lot from it is unused.
|
---|
449 | // It will be freed in the next step.
|
---|
450 | fMirror0->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
---|
451 | fMirror2->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
---|
452 | fMirror3->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
---|
453 | fMirror4->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
|
---|
454 |
|
---|
455 | // Initialize mirror properties
|
---|
456 | const Double_t F = fGeomCam->GetCameraDist()*100; // Focal length [cm]
|
---|
457 |
|
---|
458 | // Local sky coordinates (direction of telescope axis)
|
---|
459 | const Double_t zd = fPointing->GetZdRad(); // x==north
|
---|
460 | const Double_t az = fPointing->GetAzRad();
|
---|
461 |
|
---|
462 | // Rotation matrix to derotate sky
|
---|
463 | // For the new coordinate system see the Wiki
|
---|
464 | TRotation rot; // The signs are positive because we align the incident point on ground to the telescope axis
|
---|
465 | rot.RotateZ( az); // Rotate point on ground to align it with the telescope axis
|
---|
466 | rot.RotateX(-zd); // tilt the point from ground to make it parallel to the mirror plane
|
---|
467 |
|
---|
468 | // Now get the impact point from Corsikas output
|
---|
469 | const TVector3 impact(fEvtHeader->GetX(), fEvtHeader->GetY(), 0);
|
---|
470 |
|
---|
471 | // Counter for number of total and final events
|
---|
472 | UInt_t cnt[6] = { 0, 0, 0, 0, 0, 0 };
|
---|
473 |
|
---|
474 | const Int_t num = arr.GetEntriesFast();
|
---|
475 | for (Int_t idx=0; idx<num; idx++)
|
---|
476 | {
|
---|
477 | MPhotonData *dat = static_cast<MPhotonData*>(arr.UncheckedAt(idx));
|
---|
478 |
|
---|
479 | // w is pointing away from the direction the photon comes from
|
---|
480 | // CORSIKA-orig: x(north), y(west), z(up), t(time)
|
---|
481 | // NOW: x(east), y(north), z(up), t(time)
|
---|
482 | MQuaternion p(dat->GetPosQ()); // z=0
|
---|
483 | MQuaternion w(dat->GetDirQ()); // z<0
|
---|
484 |
|
---|
485 | // Shift the coordinate system to the telescope. Corsika's
|
---|
486 | // coordinate system is always w.r.t. to the particle axis
|
---|
487 | p -= impact;
|
---|
488 |
|
---|
489 | // Rotate the coordinates into the reflector's coordinate system.
|
---|
490 | // It is assumed that the z-plane is parallel to the focal plane.
|
---|
491 | // (The reflector coordinate system is defined by the telescope orientation)
|
---|
492 | p *= rot;
|
---|
493 | w *= rot;
|
---|
494 |
|
---|
495 | // ---> Simulate star-light!
|
---|
496 | // w.fVectorPart.SetXYZ(0.2/17, 0.2/17, -(1-TMath::Hypot(0.3, 0.2)/17));
|
---|
497 |
|
---|
498 | // Now propagate the photon to the z-plane in the new coordinate system
|
---|
499 | p.PropagateZ0(w);
|
---|
500 |
|
---|
501 | // Store new position and direction in the reflector's coordinate frame
|
---|
502 | dat->SetPosition(p);
|
---|
503 | dat->SetDirection(w);
|
---|
504 |
|
---|
505 | (*fMirror0)[cnt[0]++] = *dat;
|
---|
506 | //*static_cast<MPhotonData*>(cpy0.UncheckedAt(cnt[0]++)) = *dat;
|
---|
507 |
|
---|
508 | // Check if the photon has hit the camera housing and holding
|
---|
509 | if (fGeomCam->HitFrame(p, w, fDetectorFrame))
|
---|
510 | continue;
|
---|
511 |
|
---|
512 | // FIXME: Do we really need this one??
|
---|
513 | //(*fMirror1)[cnt[1]++] = *dat;
|
---|
514 | //*static_cast<MPhotonData*>(cpy1.UncheckedAt(cnt[1]++)) = *dat;
|
---|
515 |
|
---|
516 | // Check if the reflector can be hit at all
|
---|
517 | if (!fReflector->CanHit(p))
|
---|
518 | continue;
|
---|
519 |
|
---|
520 | (*fMirror2)[cnt[2]++] = *dat;
|
---|
521 | //*static_cast<MPhotonData*>(cpy2.UncheckedAt(cnt[2]++)) = *dat;
|
---|
522 |
|
---|
523 | // Now execute the reflection of the photon on the mirrors' surfaces
|
---|
524 | const Int_t num = fReflector->ExecuteReflector(p, w);
|
---|
525 | if (num<0)
|
---|
526 | continue;
|
---|
527 |
|
---|
528 | // Set new position and direction (w.r.t. to the reflector's coordinate system)
|
---|
529 | // Set also the index of the mirror which was hit as tag.
|
---|
530 | dat->SetTag(num);
|
---|
531 | dat->SetPosition(p);
|
---|
532 | dat->SetDirection(w);
|
---|
533 |
|
---|
534 | // FTemme: As dat.fTag is later changed from mirror ID to pixel ID, here
|
---|
535 | // also dat.fMirrorTag is set to num:
|
---|
536 | dat->SetMirrorTag(num);
|
---|
537 |
|
---|
538 | (*fMirror3)[cnt[3]++] = *dat;
|
---|
539 | //*static_cast<MPhotonData*>(cpy3.UncheckedAt(cnt[3]++)) = *dat;
|
---|
540 |
|
---|
541 | // Propagate the photon along its trajectory to the focal plane z=F
|
---|
542 | p.PropagateZ(w, F);
|
---|
543 |
|
---|
544 | // Store new position
|
---|
545 | dat->SetPosition(p);
|
---|
546 |
|
---|
547 | (*fMirror4)[cnt[4]++] = *dat;
|
---|
548 | //*static_cast<MPhotonData*>(cpy4.UncheckedAt(cnt[4]++)) = *dat;
|
---|
549 |
|
---|
550 | // FIXME: It make make sense to move this out of this class
|
---|
551 | // It is detector specific not reflector specific
|
---|
552 | // Discard all photons which definitly can not hit the detector surface
|
---|
553 | if (fDetectorMargin>=0 && !fGeomCam->HitDetector(p, fDetectorMargin))
|
---|
554 | continue;
|
---|
555 |
|
---|
556 | // Copy this event to the next 'new' in the list
|
---|
557 | *static_cast<MPhotonData*>(arr.UncheckedAt(cnt[5]++)) = *dat;
|
---|
558 | }
|
---|
559 |
|
---|
560 | // Now we shrink the array to a storable size (for details see
|
---|
561 | // MPhotonEvent::Shrink).
|
---|
562 | fMirror0->Shrink(cnt[0]);
|
---|
563 | //fMirror1->Shrink(cnt[1]);
|
---|
564 | fMirror2->Shrink(cnt[2]);
|
---|
565 | fMirror3->Shrink(cnt[3]);
|
---|
566 | fMirror4->Shrink(cnt[4]);
|
---|
567 | fEvt->Shrink(cnt[5]);
|
---|
568 |
|
---|
569 | // Doesn't seem to be too time consuming. But we could also sort later!
|
---|
570 | // (after cones, inside the camera)
|
---|
571 | fEvt->Sort(kTRUE);
|
---|
572 |
|
---|
573 | // FIXME FIXME FIXME: Set maxindex, first and last time.
|
---|
574 | // SetMaxIndex(fReflector->GetNumMirrors()-1)
|
---|
575 | // if (fEvt->GetNumPhotons())
|
---|
576 | // {
|
---|
577 | // SetTime(fEvt->GetFirst()->GetTime(), fEvt->GetLast()->GetTime());
|
---|
578 | // }
|
---|
579 |
|
---|
580 | return kTRUE;
|
---|
581 | }
|
---|
582 |
|
---|
583 | // --------------------------------------------------------------------------
|
---|
584 | //
|
---|
585 | // DetectorMargin: 0
|
---|
586 | //
|
---|
587 | Int_t MSimReflector::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
588 | {
|
---|
589 | Bool_t rc = kFALSE;
|
---|
590 | if (IsEnvDefined(env, prefix, "DetectorFrame", print))
|
---|
591 | {
|
---|
592 | rc = kTRUE;
|
---|
593 | fDetectorFrame = GetEnvValue(env, prefix, "DetectorFrame", 0);
|
---|
594 | }
|
---|
595 | if (IsEnvDefined(env, prefix, "DetectorMargin", print))
|
---|
596 | {
|
---|
597 | rc = kTRUE;
|
---|
598 | fDetectorMargin = GetEnvValue(env, prefix, "DetectorMargin", 0);
|
---|
599 | }
|
---|
600 |
|
---|
601 | return rc;
|
---|
602 | }
|
---|