source: branches/Corsika7500Compatibility/msimreflector/MSimReflector.cc@ 19845

Last change on this file since 19845 was 18449, checked in by ftemme, 9 years ago
Added an additional mirrortag, so that the information which mirror was hit is not lost later in the process
File size: 21.1 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
19!
20! Copyright: CheObs Software Development, 2000-2010
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MSimReflector
28//
29// fDetectorFrame is a radius in centimeter, defining a disk in the focal
30// plane around the focal point, in which photons are absorbed. If
31// fDetectorFrame<=0 the virtual HitFrame function of the camera
32// geometry container is used instead.
33//
34// fDetectorMargin is a margin (in mm) which is given to the
35// MGeomCam::HitDetector. It should define a margin around the area
36// defined in HitDetector on the focal plane in which photons are kept.
37// Usually this can be 0 because photons not hitting the detector are
38// obsolete except they can later be "moved" inside the detector, e.g.
39// if you use MSimPSF to emulate a PSF by moving photons randomly
40// on the focal plane. To switch off this check set detector margin to -1.
41//
42//////////////////////////////////////////////////////////////////////////////
43#include "MSimReflector.h"
44
45#include <TMath.h>
46#include <TRandom.h>
47
48#include "MGeomCam.h"
49
50#include "MLog.h"
51#include "MLogManip.h"
52
53#include "MParList.h"
54
55#include "MQuaternion.h"
56#include "MMirror.h"
57#include "MReflector.h"
58#include "MReflection.h"
59
60#include "MCorsikaEvtHeader.h"
61//#include "MCorsikaRunHeader.h"
62
63#include "MPhotonEvent.h"
64#include "MPhotonData.h"
65
66#include "MPointingPos.h"
67
68ClassImp(MSimReflector);
69
70using namespace std;
71
72// USEFUL CORSIKA OPTIONS:
73// NOCLONG
74
75// --------------------------------------------------------------------------
76//
77// Default Constructor.
78//
79MSimReflector::MSimReflector(const char* name, const char *title)
80 : fEvt(0), fMirror0(0), fMirror1(0), fMirror2(0), fMirror3(0),
81 fMirror4(0), /*fRunHeader(0),*/ fEvtHeader(0), fReflector(0),
82 fGeomCam(0), fPointing(0), fNameReflector("MReflector"),
83 fDetectorFrame(0), fDetectorMargin(0)
84{
85 fName = name ? name : "MSimReflector";
86 fTitle = title ? title : "Task to calculate reflection os a mirror";
87}
88
89// --------------------------------------------------------------------------
90//
91// Search for the necessary parameter containers.
92//
93Int_t MSimReflector::PreProcess(MParList *pList)
94{
95 fMirror0 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane0");
96 if (!fMirror0)
97 return kFALSE;
98 fMirror1 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane1");
99 if (!fMirror1)
100 return kFALSE;
101 fMirror2 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane2");
102 if (!fMirror2)
103 return kFALSE;
104 fMirror3 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane3");
105 if (!fMirror3)
106 return kFALSE;
107 fMirror4 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane4");
108 if (!fMirror4)
109 return kFALSE;
110
111 fReflector = (MReflector*)pList->FindObject(fNameReflector, "MReflector");
112 if (!fReflector)
113 {
114 *fLog << err << fNameReflector << " [MReflector] not found..." << endl;
115 return kFALSE;
116 }
117
118 if (fReflector->GetNumMirrors()==0)
119 {
120 *fLog << err << "ERROR - Reflector '" << fNameReflector << "' doesn't contain a single mirror." << endl;
121 return kFALSE;
122 }
123
124 fGeomCam = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam");
125 if (!fGeomCam)
126 {
127 if (!fNameGeomCam.IsNull())
128 *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl;
129
130 fGeomCam = (MGeomCam*)pList->FindObject("MGeomCam");
131 if (!fGeomCam)
132 {
133 *fLog << err << "MGeomCam not found... aborting." << endl;
134 return kFALSE;
135 }
136 }
137
138 fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
139 if (!fEvt)
140 {
141 *fLog << err << "MPhotonEvent not found... aborting." << endl;
142 return kFALSE;
143 }
144 /*
145 fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
146 if (!fRunHeader)
147 {
148 *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
149 return kFALSE;
150 }
151 */
152 fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader");
153 if (!fEvtHeader)
154 {
155 *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl;
156 return kFALSE;
157 }
158
159 fPointing = (MPointingPos*)pList->FindObject(/*"PointingCorsika",*/ "MPointingPos");
160 if (!fPointing)
161 {
162 *fLog << err << "MPointingPos not found... aborting." << endl;
163 return kFALSE;
164 }
165
166 return kTRUE;
167}
168
169// --------------------------------------------------------------------------
170//
171// The main point of calculating the reflection is to determine the
172// coincidence point of the particle trajectory on the mirror surface.
173//
174// If the position and the trajectory of a particle is known it is enough
175// to calculate the z-value of coincidence. x and y are then well defined.
176//
177// Since the problem (mirror) has a rotational symmetry we only have to care
178// about the distance from the z-axis.
179//
180// Given:
181//
182// p: position vector of particle (z=0)
183// u: direction vector of particle
184// F: Focal distance of the mirror
185//
186// We define:
187//
188// q := (px, py )
189// v := (ux/uz, uy/uz)
190// r^2 := x^2 + y^2
191//
192//
193// Distance from z-axis:
194// ---------------------
195//
196// q' = q - z*v (z>0)
197//
198// Calculate distance r (|q|)
199//
200// r^2 = (px-z*ux)^2 + (py-z*uy)^2
201// r^2 = px^2+py^2 + z^2*(ux^2+uy^2) - 2*z*(px*ux+py*uy)
202// r^2 = |q|^2 + z^2*|v|^2 - 2*z* q*v
203//
204//
205// Spherical Mirror Surface: (distance of surface point from 0/0/0)
206// -------------------------
207//
208// Sphere: r^2 + z^2 = R^2 | Parabola: z = p*r^2
209// Mirror: r^2 + (z-R)^2 = R^2 | Mirror: z = p*r^2
210// |
211// Focal length: F=R/2 | Focal length: F = 1/4p
212// |
213// r^2 + (z-2*F)^2 = (2*F)^2 | z = r^2/4F
214// |
215// z = -sqrt(4*F*F - r*r) + 2*F |
216// z-2*F = -sqrt(4*F*F - r*r) |
217// (z-2*F)^2 = 4*F*F - r*r |
218// z^2-4*F*z+4*F^2 = 4*F*F - r*r (4F^2-r^2>0) | z - r^2/4F = 0
219// z^2-4*F*z+r^2 = 0
220//
221// Find the z for which our particle has the same distance from the z-axis
222// as the mirror surface.
223//
224// substitute r^2
225//
226//
227// Equation to solve:
228// ------------------
229//
230// z^2*(1+|v|^2) - 2*z*(2*F+q*v) + |q|^2 = 0 | z^2*|v|^2 - 2*z*(2*F+q*v) + |q|^2 = 0
231//
232// z = (-b +- sqrt(b*b - 4ac))/(2*a)
233//
234// a = 1+|v|^2 | a = |v|^2
235// b = - 2*b' with b' = 2*F+q*v | b = - 2*b' with b' = 2*F+q*v
236// c = |q|^2 | c = |q|^2
237// |
238//
239// substitute b := 2*b'
240//
241// z = (2*b' +- 2*sqrt(b'*b' - ac))/(2*a)
242// z = ( b' +- sqrt(b'*b' - ac))/a
243// z = (b'/a +- sqrt(b'*b' - ac))/a
244//
245// substitute f := b'/a
246//
247// z = f +- sqrt(f^2 - c/a)
248//
249// =======================================================================================
250//
251// After z of the incident point has been determined the position p is
252// propagated along u to the plane with z=z. Now it is checked if the
253// mirror was really hit (this is implemented in HasHit).
254// From the position on the surface and the mirrors curvature we can
255// now calculate the normal vector at the incident point.
256// This normal vector is smeared out with MMirror::PSF (basically a
257// random gaussian) and then the trajectory is reflected on the
258// resulting normal vector.
259//
260Bool_t MMirror::ExecuteReflection(MQuaternion &p, MQuaternion &u) const
261{
262 // If the z-componenet of the direction vector is normalized to 1
263 // the calculation of the incident points becomes very simple and
264 // the resulting z is just the z-coordinate of the incident point.
265 const TVector2 v(u.XYvector()/u.Z());
266 const TVector2 q(p.XYvector());
267
268 // Radius of curvature
269 const Double_t G = 2*fFocalLength;
270
271 // Find the incident point of the vector to the mirror
272 // u corresponds to downward going particles, thus we use -u here
273 const Double_t b = G - q*v;
274 const Double_t a = v.Mod2();
275 const Double_t c = q.Mod2();
276
277 // Solution for q spherical (a+1) (parabolic mirror (a) instead of (a+1))
278 const Double_t A = fShape ? a : a+1;
279
280 const Double_t f = b/A;
281 const Double_t g = c/A;
282
283 // Solution of second order polynomial (transformed: a>0)
284 // (The second solution can be omitted, it is the intersection
285 // with the upper part of the sphere)
286 const Double_t z = a==0 ? c/(2*b) : f - TMath::Sqrt(f*f - g);
287
288 // Move the photon along its trajectory to the x/y plane of the
289 // mirror's coordinate frame. Therefor stretch the vector
290 // until its z-component is the distance from the vector origin
291 // until the vector hits the mirror surface.
292 // p += z/u.Z()*u;
293 // p is at the mirror plane and we want to propagate back to the mirror surface
294 p.PropagateZ(u, z);
295
296 // MirrorShape: Now check if the photon really hit the mirror or just missed it
297 if (!HasHit(p))
298 return kFALSE;
299
300 // Get normal vector for reflection by calculating the derivatives
301 // of a the mirror's surface along x and y
302 const Double_t d = fShape ? G : TMath::Sqrt(G*G - p.R2());
303
304 // The solution for the normal vector is
305 // TVector3 n(-p.X()/d, -p.Y()/d, 1));
306 // Since the normal vector doesn't need to be of normal
307 // length we can avoid an obsolete division
308 TVector3 n(p.X(), p.Y(), -d);
309
310 if (fSigmaPSF>0)
311 n += SimPSF(n);
312
313 // Changes also the sign of the z-direction of flight
314 // This is faster giving identical results
315 u *= MReflection(n);
316 //u *= MReflection(p.X(), p.Y(), -d);
317
318 return kTRUE;
319}
320
321// --------------------------------------------------------------------------
322//
323// Converts the coordinates into the coordinate frame of the mirror.
324// Executes the reflection calling ExecuteReflection and converts
325// the coordinates back.
326// Depending on whether the mirror was hit kTRUE or kFALSE is returned.
327// It the mirror was not hit the result coordinates are wrong.
328//
329Bool_t MMirror::ExecuteMirror(MQuaternion &p, MQuaternion &u) const
330{
331 // Move the mirror to the point of origin and rotate the position into
332 // the individual mirrors coordinate frame.
333 // Rotate the direction vector into the mirror's coordinate frame
334 p -= fPos;
335 p *= fTilt;
336 u *= fTilt;
337
338 // Move the photon along its trajectory to the x/y plane of the
339 // mirror's coordinate frame. Therefor stretch the vector
340 // until its z-component vanishes.
341 //p -= p.Z()/u.Z()*u;
342
343 // p is at the reflector plane and we want to propagate back to the mirror plane
344 p.PropagateZ0(u);
345
346 // Now try to propagate the photon from the plane to the mirror
347 // and reflect its direction vector on the mirror.
348 if (!ExecuteReflection(p, u))
349 return kFALSE;
350
351 // Derotate from mirror coordinates and shift the photon back to
352 // reflector coordinates.
353 // Derotate the direction vector
354 u *= fTilt.Inverse();
355 p *= fTilt.Inverse();
356 p += fPos;
357
358 return kTRUE;
359}
360
361// Jeder Spiegel sollte eine Liste aller andern Spiegel in der
362// reihenfolge Ihrer Entfernung enthalten. Wir starten mit der Suche
363// immer beim zuletzt getroffenen Spiegel!
364//
365// --------------------------------------------------------------------------
366//
367// Loops over all mirrors of the reflector. After doing a rough check
368// whether the mirror can be hit at all the reflection is executed
369// calling the ExecuteMirror function of the mirrors.
370//
371// If a mirror was hit its index is retuened, -1 otherwise.
372//
373// FIXME: Do to lopping over all mirrors for all photons this is the
374// most time consuming function in teh reflector simulation. By a more
375// intelligent way of finding the right mirror then just testing all
376// this could be accelerated a lot.
377//
378Int_t MReflector::ExecuteReflector(MQuaternion &p, MQuaternion &u) const
379{
380 //static const TObjArray *arr = &((MMirror*)fMirrors[0])->fNeighbors;
381
382 // This way of access is somuch faster than the program is
383 // a few percent slower if accessed by UncheckedAt
384 const MMirror **s = GetFirstPtr();
385 const MMirror **e = s+GetNumMirrors();
386 //const MMirror **s = (const MMirror**)fMirrors.GetObjectRef(0);
387 //const MMirror **e = s+fMirrors.GetEntriesFast();
388 //const MMirror **s = (const MMirror**)arr->GetObjectRef(0);
389 //const MMirror **e = s+arr->GetEntriesFast();
390
391 // Loop over all mirrors
392 for (const MMirror **m=s; m<e; m++)
393 {
394 const MMirror &mirror = **m;
395
396 // FIXME: Can we speed up using lookup tables or
397 // indexed tables?
398
399 // MirrorShape: Check if this mirror can be hit at all
400 // This is to avoid time consuming calculation if there is no
401 // chance of a coincidence.
402 // FIXME: Inmprove search algorithm (2D Binary search?)
403 if (!mirror.CanHit(p))
404 continue;
405
406 // Make a local copy of position and direction which can be
407 // changed by ExecuteMirror.
408 MQuaternion q(p);
409 MQuaternion v(u);
410
411 // Check if this mirror is hit, and if it is hit return
412 // the reflected position and direction vector.
413 // If the mirror is missed we go on with the next mirror.
414 if (!mirror.ExecuteMirror(q, v))
415 continue;
416
417 // We hit a mirror. Restore the local copy of position and
418 // direction back into p und u.
419 p = q;
420 u = v;
421
422 //arr = &mirror->fNeighbors;
423
424 return m-s;
425 }
426
427 return -1;
428}
429
430// --------------------------------------------------------------------------
431//
432// Converts the photons into the telscope coordinate frame using the
433// pointing position from MPointingPos.
434//
435// Reflects all photons on all mirrors and stores the final photons on
436// the focal plane. Also intermediate photons are stored for debugging.
437//
438Int_t MSimReflector::Process()
439{
440 // Get arrays from event container
441 TClonesArray &arr = fEvt->GetArray();
442
443 // Because we knwo in advance what the maximum storage space could
444 // be we allocated it in advance (or shrink it if it was extremely
445 // huge before)
446 // Note, that the drawback is that an extremly large event
447 // will take about five times its storage space
448 // for a moment even if a lot from it is unused.
449 // It will be freed in the next step.
450 fMirror0->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
451 fMirror2->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
452 fMirror3->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
453 fMirror4->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData
454
455 // Initialize mirror properties
456 const Double_t F = fGeomCam->GetCameraDist()*100; // Focal length [cm]
457
458 // Local sky coordinates (direction of telescope axis)
459 const Double_t zd = fPointing->GetZdRad(); // x==north
460 const Double_t az = fPointing->GetAzRad();
461
462 // Rotation matrix to derotate sky
463 // For the new coordinate system see the Wiki
464 TRotation rot; // The signs are positive because we align the incident point on ground to the telescope axis
465 rot.RotateZ( az); // Rotate point on ground to align it with the telescope axis
466 rot.RotateX(-zd); // tilt the point from ground to make it parallel to the mirror plane
467
468 // Now get the impact point from Corsikas output
469 const TVector3 impact(fEvtHeader->GetX(), fEvtHeader->GetY(), 0);
470
471 // Counter for number of total and final events
472 UInt_t cnt[6] = { 0, 0, 0, 0, 0, 0 };
473
474 const Int_t num = arr.GetEntriesFast();
475 for (Int_t idx=0; idx<num; idx++)
476 {
477 MPhotonData *dat = static_cast<MPhotonData*>(arr.UncheckedAt(idx));
478
479 // w is pointing away from the direction the photon comes from
480 // CORSIKA-orig: x(north), y(west), z(up), t(time)
481 // NOW: x(east), y(north), z(up), t(time)
482 MQuaternion p(dat->GetPosQ()); // z=0
483 MQuaternion w(dat->GetDirQ()); // z<0
484
485 // Shift the coordinate system to the telescope. Corsika's
486 // coordinate system is always w.r.t. to the particle axis
487 p -= impact;
488
489 // Rotate the coordinates into the reflector's coordinate system.
490 // It is assumed that the z-plane is parallel to the focal plane.
491 // (The reflector coordinate system is defined by the telescope orientation)
492 p *= rot;
493 w *= rot;
494
495 // ---> Simulate star-light!
496 // w.fVectorPart.SetXYZ(0.2/17, 0.2/17, -(1-TMath::Hypot(0.3, 0.2)/17));
497
498 // Now propagate the photon to the z-plane in the new coordinate system
499 p.PropagateZ0(w);
500
501 // Store new position and direction in the reflector's coordinate frame
502 dat->SetPosition(p);
503 dat->SetDirection(w);
504
505 (*fMirror0)[cnt[0]++] = *dat;
506 //*static_cast<MPhotonData*>(cpy0.UncheckedAt(cnt[0]++)) = *dat;
507
508 // Check if the photon has hit the camera housing and holding
509 if (fGeomCam->HitFrame(p, w, fDetectorFrame))
510 continue;
511
512 // FIXME: Do we really need this one??
513 //(*fMirror1)[cnt[1]++] = *dat;
514 //*static_cast<MPhotonData*>(cpy1.UncheckedAt(cnt[1]++)) = *dat;
515
516 // Check if the reflector can be hit at all
517 if (!fReflector->CanHit(p))
518 continue;
519
520 (*fMirror2)[cnt[2]++] = *dat;
521 //*static_cast<MPhotonData*>(cpy2.UncheckedAt(cnt[2]++)) = *dat;
522
523 // Now execute the reflection of the photon on the mirrors' surfaces
524 const Int_t num = fReflector->ExecuteReflector(p, w);
525 if (num<0)
526 continue;
527
528 // Set new position and direction (w.r.t. to the reflector's coordinate system)
529 // Set also the index of the mirror which was hit as tag.
530 dat->SetTag(num);
531 dat->SetPosition(p);
532 dat->SetDirection(w);
533
534 // FTemme: As dat.fTag is later changed from mirror ID to pixel ID, here
535 // also dat.fMirrorTag is set to num:
536 dat->SetMirrorTag(num);
537
538 (*fMirror3)[cnt[3]++] = *dat;
539 //*static_cast<MPhotonData*>(cpy3.UncheckedAt(cnt[3]++)) = *dat;
540
541 // Propagate the photon along its trajectory to the focal plane z=F
542 p.PropagateZ(w, F);
543
544 // Store new position
545 dat->SetPosition(p);
546
547 (*fMirror4)[cnt[4]++] = *dat;
548 //*static_cast<MPhotonData*>(cpy4.UncheckedAt(cnt[4]++)) = *dat;
549
550 // FIXME: It make make sense to move this out of this class
551 // It is detector specific not reflector specific
552 // Discard all photons which definitly can not hit the detector surface
553 if (fDetectorMargin>=0 && !fGeomCam->HitDetector(p, fDetectorMargin))
554 continue;
555
556 // Copy this event to the next 'new' in the list
557 *static_cast<MPhotonData*>(arr.UncheckedAt(cnt[5]++)) = *dat;
558 }
559
560 // Now we shrink the array to a storable size (for details see
561 // MPhotonEvent::Shrink).
562 fMirror0->Shrink(cnt[0]);
563 //fMirror1->Shrink(cnt[1]);
564 fMirror2->Shrink(cnt[2]);
565 fMirror3->Shrink(cnt[3]);
566 fMirror4->Shrink(cnt[4]);
567 fEvt->Shrink(cnt[5]);
568
569 // Doesn't seem to be too time consuming. But we could also sort later!
570 // (after cones, inside the camera)
571 fEvt->Sort(kTRUE);
572
573 // FIXME FIXME FIXME: Set maxindex, first and last time.
574 // SetMaxIndex(fReflector->GetNumMirrors()-1)
575 // if (fEvt->GetNumPhotons())
576 // {
577 // SetTime(fEvt->GetFirst()->GetTime(), fEvt->GetLast()->GetTime());
578 // }
579
580 return kTRUE;
581}
582
583// --------------------------------------------------------------------------
584//
585// DetectorMargin: 0
586//
587Int_t MSimReflector::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
588{
589 Bool_t rc = kFALSE;
590 if (IsEnvDefined(env, prefix, "DetectorFrame", print))
591 {
592 rc = kTRUE;
593 fDetectorFrame = GetEnvValue(env, prefix, "DetectorFrame", 0);
594 }
595 if (IsEnvDefined(env, prefix, "DetectorMargin", print))
596 {
597 rc = kTRUE;
598 fDetectorMargin = GetEnvValue(env, prefix, "DetectorMargin", 0);
599 }
600
601 return rc;
602}
Note: See TracBrowser for help on using the repository browser.