| 1 | #include "erfa.h"
|
|---|
| 2 |
|
|---|
| 3 | void eraApcs(double date1, double date2, double pv[2][3],
|
|---|
| 4 | double ebpv[2][3], double ehp[3],
|
|---|
| 5 | eraASTROM *astrom)
|
|---|
| 6 | /*
|
|---|
| 7 | ** - - - - - - - -
|
|---|
| 8 | ** e r a A p c s
|
|---|
| 9 | ** - - - - - - - -
|
|---|
| 10 | **
|
|---|
| 11 | ** For an observer whose geocentric position and velocity are known,
|
|---|
| 12 | ** prepare star-independent astrometry parameters for transformations
|
|---|
| 13 | ** between ICRS and GCRS. The Earth ephemeris is supplied by the
|
|---|
| 14 | ** caller.
|
|---|
| 15 | **
|
|---|
| 16 | ** The parameters produced by this function are required in the space
|
|---|
| 17 | ** motion, parallax, light deflection and aberration parts of the
|
|---|
| 18 | ** astrometric transformation chain.
|
|---|
| 19 | **
|
|---|
| 20 | ** Given:
|
|---|
| 21 | ** date1 double TDB as a 2-part...
|
|---|
| 22 | ** date2 double ...Julian Date (Note 1)
|
|---|
| 23 | ** pv double[2][3] observer's geocentric pos/vel (m, m/s)
|
|---|
| 24 | ** ebpv double[2][3] Earth barycentric PV (au, au/day)
|
|---|
| 25 | ** ehp double[3] Earth heliocentric P (au)
|
|---|
| 26 | **
|
|---|
| 27 | ** Returned:
|
|---|
| 28 | ** astrom eraASTROM* star-independent astrometry parameters:
|
|---|
| 29 | ** pmt double PM time interval (SSB, Julian years)
|
|---|
| 30 | ** eb double[3] SSB to observer (vector, au)
|
|---|
| 31 | ** eh double[3] Sun to observer (unit vector)
|
|---|
| 32 | ** em double distance from Sun to observer (au)
|
|---|
| 33 | ** v double[3] barycentric observer velocity (vector, c)
|
|---|
| 34 | ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
|
|---|
| 35 | ** bpn double[3][3] bias-precession-nutation matrix
|
|---|
| 36 | ** along double unchanged
|
|---|
| 37 | ** xpl double unchanged
|
|---|
| 38 | ** ypl double unchanged
|
|---|
| 39 | ** sphi double unchanged
|
|---|
| 40 | ** cphi double unchanged
|
|---|
| 41 | ** diurab double unchanged
|
|---|
| 42 | ** eral double unchanged
|
|---|
| 43 | ** refa double unchanged
|
|---|
| 44 | ** refb double unchanged
|
|---|
| 45 | **
|
|---|
| 46 | ** Notes:
|
|---|
| 47 | **
|
|---|
| 48 | ** 1) The TDB date date1+date2 is a Julian Date, apportioned in any
|
|---|
| 49 | ** convenient way between the two arguments. For example,
|
|---|
| 50 | ** JD(TDB)=2450123.7 could be expressed in any of these ways, among
|
|---|
| 51 | ** others:
|
|---|
| 52 | **
|
|---|
| 53 | ** date1 date2
|
|---|
| 54 | **
|
|---|
| 55 | ** 2450123.7 0.0 (JD method)
|
|---|
| 56 | ** 2451545.0 -1421.3 (J2000 method)
|
|---|
| 57 | ** 2400000.5 50123.2 (MJD method)
|
|---|
| 58 | ** 2450123.5 0.2 (date & time method)
|
|---|
| 59 | **
|
|---|
| 60 | ** The JD method is the most natural and convenient to use in cases
|
|---|
| 61 | ** where the loss of several decimal digits of resolution is
|
|---|
| 62 | ** acceptable. The J2000 method is best matched to the way the
|
|---|
| 63 | ** argument is handled internally and will deliver the optimum
|
|---|
| 64 | ** resolution. The MJD method and the date & time methods are both
|
|---|
| 65 | ** good compromises between resolution and convenience. For most
|
|---|
| 66 | ** applications of this function the choice will not be at all
|
|---|
| 67 | ** critical.
|
|---|
| 68 | **
|
|---|
| 69 | ** TT can be used instead of TDB without any significant impact on
|
|---|
| 70 | ** accuracy.
|
|---|
| 71 | **
|
|---|
| 72 | ** 2) All the vectors are with respect to BCRS axes.
|
|---|
| 73 | **
|
|---|
| 74 | ** 3) Providing separate arguments for (i) the observer's geocentric
|
|---|
| 75 | ** position and velocity and (ii) the Earth ephemeris is done for
|
|---|
| 76 | ** convenience in the geocentric, terrestrial and Earth orbit cases.
|
|---|
| 77 | ** For deep space applications it maybe more convenient to specify
|
|---|
| 78 | ** zero geocentric position and velocity and to supply the
|
|---|
| 79 | ** observer's position and velocity information directly instead of
|
|---|
| 80 | ** with respect to the Earth. However, note the different units:
|
|---|
| 81 | ** m and m/s for the geocentric vectors, au and au/day for the
|
|---|
| 82 | ** heliocentric and barycentric vectors.
|
|---|
| 83 | **
|
|---|
| 84 | ** 4) In cases where the caller does not wish to provide the Earth
|
|---|
| 85 | ** ephemeris, the function eraApcs13 can be used instead of the
|
|---|
| 86 | ** present function. This computes the Earth ephemeris using the
|
|---|
| 87 | ** ERFA function eraEpv00.
|
|---|
| 88 | **
|
|---|
| 89 | ** 5) This is one of several functions that inserts into the astrom
|
|---|
| 90 | ** structure star-independent parameters needed for the chain of
|
|---|
| 91 | ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
|
|---|
| 92 | **
|
|---|
| 93 | ** The various functions support different classes of observer and
|
|---|
| 94 | ** portions of the transformation chain:
|
|---|
| 95 | **
|
|---|
| 96 | ** functions observer transformation
|
|---|
| 97 | **
|
|---|
| 98 | ** eraApcg eraApcg13 geocentric ICRS <-> GCRS
|
|---|
| 99 | ** eraApci eraApci13 terrestrial ICRS <-> CIRS
|
|---|
| 100 | ** eraApco eraApco13 terrestrial ICRS <-> observed
|
|---|
| 101 | ** eraApcs eraApcs13 space ICRS <-> GCRS
|
|---|
| 102 | ** eraAper eraAper13 terrestrial update Earth rotation
|
|---|
| 103 | ** eraApio eraApio13 terrestrial CIRS <-> observed
|
|---|
| 104 | **
|
|---|
| 105 | ** Those with names ending in "13" use contemporary ERFA models to
|
|---|
| 106 | ** compute the various ephemerides. The others accept ephemerides
|
|---|
| 107 | ** supplied by the caller.
|
|---|
| 108 | **
|
|---|
| 109 | ** The transformation from ICRS to GCRS covers space motion,
|
|---|
| 110 | ** parallax, light deflection, and aberration. From GCRS to CIRS
|
|---|
| 111 | ** comprises frame bias and precession-nutation. From CIRS to
|
|---|
| 112 | ** observed takes account of Earth rotation, polar motion, diurnal
|
|---|
| 113 | ** aberration and parallax (unless subsumed into the ICRS <-> GCRS
|
|---|
| 114 | ** transformation), and atmospheric refraction.
|
|---|
| 115 | **
|
|---|
| 116 | ** 6) The context structure astrom produced by this function is used by
|
|---|
| 117 | ** eraAtciq* and eraAticq*.
|
|---|
| 118 | **
|
|---|
| 119 | ** Called:
|
|---|
| 120 | ** eraCp copy p-vector
|
|---|
| 121 | ** eraPm modulus of p-vector
|
|---|
| 122 | ** eraPn decompose p-vector into modulus and direction
|
|---|
| 123 | ** eraIr initialize r-matrix to identity
|
|---|
| 124 | **
|
|---|
| 125 | ** Copyright (C) 2013-2016, NumFOCUS Foundation.
|
|---|
| 126 | ** Derived, with permission, from the SOFA library. See notes at end of file.
|
|---|
| 127 | */
|
|---|
| 128 | {
|
|---|
| 129 | /* au/d to m/s */
|
|---|
| 130 | const double AUDMS = ERFA_DAU/ERFA_DAYSEC;
|
|---|
| 131 |
|
|---|
| 132 | /* Light time for 1 AU (day) */
|
|---|
| 133 | const double CR = ERFA_AULT/ERFA_DAYSEC;
|
|---|
| 134 |
|
|---|
| 135 | int i;
|
|---|
| 136 | double dp, dv, pb[3], vb[3], ph[3], v2, w;
|
|---|
| 137 |
|
|---|
| 138 |
|
|---|
| 139 | /* Time since reference epoch, years (for proper motion calculation). */
|
|---|
| 140 | astrom->pmt = ( (date1 - ERFA_DJ00) + date2 ) / ERFA_DJY;
|
|---|
| 141 |
|
|---|
| 142 | /* Adjust Earth ephemeris to observer. */
|
|---|
| 143 | for (i = 0; i < 3; i++) {
|
|---|
| 144 | dp = pv[0][i] / ERFA_DAU;
|
|---|
| 145 | dv = pv[1][i] / AUDMS;
|
|---|
| 146 | pb[i] = ebpv[0][i] + dp;
|
|---|
| 147 | vb[i] = ebpv[1][i] + dv;
|
|---|
| 148 | ph[i] = ehp[i] + dp;
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 | /* Barycentric position of observer (au). */
|
|---|
| 152 | eraCp(pb, astrom->eb);
|
|---|
| 153 |
|
|---|
| 154 | /* Heliocentric direction and distance (unit vector and au). */
|
|---|
| 155 | eraPn(ph, &astrom->em, astrom->eh);
|
|---|
| 156 |
|
|---|
| 157 | /* Barycentric vel. in units of c, and reciprocal of Lorenz factor. */
|
|---|
| 158 | v2 = 0.0;
|
|---|
| 159 | for (i = 0; i < 3; i++) {
|
|---|
| 160 | w = vb[i] * CR;
|
|---|
| 161 | astrom->v[i] = w;
|
|---|
| 162 | v2 += w*w;
|
|---|
| 163 | }
|
|---|
| 164 | astrom->bm1 = sqrt(1.0 - v2);
|
|---|
| 165 |
|
|---|
| 166 | /* Reset the NPB matrix. */
|
|---|
| 167 | eraIr(astrom->bpn);
|
|---|
| 168 |
|
|---|
| 169 | /* Finished. */
|
|---|
| 170 |
|
|---|
| 171 | }
|
|---|
| 172 | /*----------------------------------------------------------------------
|
|---|
| 173 | **
|
|---|
| 174 | **
|
|---|
| 175 | ** Copyright (C) 2013-2016, NumFOCUS Foundation.
|
|---|
| 176 | ** All rights reserved.
|
|---|
| 177 | **
|
|---|
| 178 | ** This library is derived, with permission, from the International
|
|---|
| 179 | ** Astronomical Union's "Standards of Fundamental Astronomy" library,
|
|---|
| 180 | ** available from http://www.iausofa.org.
|
|---|
| 181 | **
|
|---|
| 182 | ** The ERFA version is intended to retain identical functionality to
|
|---|
| 183 | ** the SOFA library, but made distinct through different function and
|
|---|
| 184 | ** file names, as set out in the SOFA license conditions. The SOFA
|
|---|
| 185 | ** original has a role as a reference standard for the IAU and IERS,
|
|---|
| 186 | ** and consequently redistribution is permitted only in its unaltered
|
|---|
| 187 | ** state. The ERFA version is not subject to this restriction and
|
|---|
| 188 | ** therefore can be included in distributions which do not support the
|
|---|
| 189 | ** concept of "read only" software.
|
|---|
| 190 | **
|
|---|
| 191 | ** Although the intent is to replicate the SOFA API (other than
|
|---|
| 192 | ** replacement of prefix names) and results (with the exception of
|
|---|
| 193 | ** bugs; any that are discovered will be fixed), SOFA is not
|
|---|
| 194 | ** responsible for any errors found in this version of the library.
|
|---|
| 195 | **
|
|---|
| 196 | ** If you wish to acknowledge the SOFA heritage, please acknowledge
|
|---|
| 197 | ** that you are using a library derived from SOFA, rather than SOFA
|
|---|
| 198 | ** itself.
|
|---|
| 199 | **
|
|---|
| 200 | **
|
|---|
| 201 | ** TERMS AND CONDITIONS
|
|---|
| 202 | **
|
|---|
| 203 | ** Redistribution and use in source and binary forms, with or without
|
|---|
| 204 | ** modification, are permitted provided that the following conditions
|
|---|
| 205 | ** are met:
|
|---|
| 206 | **
|
|---|
| 207 | ** 1 Redistributions of source code must retain the above copyright
|
|---|
| 208 | ** notice, this list of conditions and the following disclaimer.
|
|---|
| 209 | **
|
|---|
| 210 | ** 2 Redistributions in binary form must reproduce the above copyright
|
|---|
| 211 | ** notice, this list of conditions and the following disclaimer in
|
|---|
| 212 | ** the documentation and/or other materials provided with the
|
|---|
| 213 | ** distribution.
|
|---|
| 214 | **
|
|---|
| 215 | ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
|
|---|
| 216 | ** the International Astronomical Union nor the names of its
|
|---|
| 217 | ** contributors may be used to endorse or promote products derived
|
|---|
| 218 | ** from this software without specific prior written permission.
|
|---|
| 219 | **
|
|---|
| 220 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|---|
| 221 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|---|
| 222 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|---|
| 223 | ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|---|
| 224 | ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 225 | ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|---|
| 226 | ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|---|
| 227 | ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|---|
| 228 | ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|---|
| 229 | ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|---|
| 230 | ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|---|
| 231 | ** POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 232 | **
|
|---|
| 233 | */
|
|---|