1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palDh2e
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Horizon to equatorial coordinates: Az,El to HA,Dec
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * palDh2e( double az, double el, double phi, double * ha, double * dec );
|
---|
17 |
|
---|
18 | * Arguments:
|
---|
19 | * az = double (Given)
|
---|
20 | * Azimuth (radians)
|
---|
21 | * el = double (Given)
|
---|
22 | * Elevation (radians)
|
---|
23 | * phi = double (Given)
|
---|
24 | * Observatory latitude (radians)
|
---|
25 | * ha = double * (Returned)
|
---|
26 | * Hour angle (radians)
|
---|
27 | * dec = double * (Returned)
|
---|
28 | * Declination (radians)
|
---|
29 |
|
---|
30 | * Description:
|
---|
31 | * Convert horizon to equatorial coordinates.
|
---|
32 |
|
---|
33 | * Authors:
|
---|
34 | * PTW: Pat Wallace (STFC)
|
---|
35 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
36 | * {enter_new_authors_here}
|
---|
37 |
|
---|
38 | * Notes:
|
---|
39 | * - All the arguments are angles in radians.
|
---|
40 | * - The sign convention for azimuth is north zero, east +pi/2.
|
---|
41 | * - HA is returned in the range +/-pi. Declination is returned
|
---|
42 | * in the range +/-pi/2.
|
---|
43 | * - The latitude is (in principle) geodetic. In critical
|
---|
44 | * applications, corrections for polar motion should be applied.
|
---|
45 | * - In some applications it will be important to specify the
|
---|
46 | * correct type of elevation in order to produce the required
|
---|
47 | * type of HA,Dec. In particular, it may be important to
|
---|
48 | * distinguish between the elevation as affected by refraction,
|
---|
49 | * which will yield the "observed" HA,Dec, and the elevation
|
---|
50 | * in vacuo, which will yield the "topocentric" HA,Dec. If the
|
---|
51 | * effects of diurnal aberration can be neglected, the
|
---|
52 | * topocentric HA,Dec may be used as an approximation to the
|
---|
53 | * "apparent" HA,Dec.
|
---|
54 | * - No range checking of arguments is done.
|
---|
55 | * - In applications which involve many such calculations, rather
|
---|
56 | * than calling the present routine it will be more efficient to
|
---|
57 | * use inline code, having previously computed fixed terms such
|
---|
58 | * as sine and cosine of latitude.
|
---|
59 |
|
---|
60 | * History:
|
---|
61 | * 2012-02-08 (TIMJ):
|
---|
62 | * Initial version with documentation taken from Fortran SLA
|
---|
63 | * Adapted with permission from the Fortran SLALIB library.
|
---|
64 | * {enter_further_changes_here}
|
---|
65 |
|
---|
66 | * Copyright:
|
---|
67 | * Copyright (C) 1996 Rutherford Appleton Laboratory
|
---|
68 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
69 | * All Rights Reserved.
|
---|
70 |
|
---|
71 | * Licence:
|
---|
72 | * This program is free software: you can redistribute it and/or
|
---|
73 | * modify it under the terms of the GNU Lesser General Public
|
---|
74 | * License as published by the Free Software Foundation, either
|
---|
75 | * version 3 of the License, or (at your option) any later
|
---|
76 | * version.
|
---|
77 | *
|
---|
78 | * This program is distributed in the hope that it will be useful,
|
---|
79 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
80 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
81 | * GNU Lesser General Public License for more details.
|
---|
82 | *
|
---|
83 | * You should have received a copy of the GNU Lesser General
|
---|
84 | * License along with this program. If not, see
|
---|
85 | * <http://www.gnu.org/licenses/>.
|
---|
86 |
|
---|
87 | * Bugs:
|
---|
88 | * {note_any_bugs_here}
|
---|
89 | *-
|
---|
90 | */
|
---|
91 |
|
---|
92 | #include "pal.h"
|
---|
93 | #include <math.h>
|
---|
94 |
|
---|
95 | void
|
---|
96 | palDh2e ( double az, double el, double phi, double *ha, double *dec) {
|
---|
97 |
|
---|
98 | double sa;
|
---|
99 | double ca;
|
---|
100 | double se;
|
---|
101 | double ce;
|
---|
102 | double sp;
|
---|
103 | double cp;
|
---|
104 |
|
---|
105 | double x;
|
---|
106 | double y;
|
---|
107 | double z;
|
---|
108 | double r;
|
---|
109 |
|
---|
110 | /* Useful trig functions */
|
---|
111 | sa = sin(az);
|
---|
112 | ca = cos(az);
|
---|
113 | se = sin(el);
|
---|
114 | ce = cos(el);
|
---|
115 | sp = sin(phi);
|
---|
116 | cp = cos(phi);
|
---|
117 |
|
---|
118 | /* HA,Dec as x,y,z */
|
---|
119 | x = -ca * ce * sp + se * cp;
|
---|
120 | y = -sa * ce;
|
---|
121 | z = ca * ce * cp + se * sp;
|
---|
122 |
|
---|
123 | /* To HA,Dec */
|
---|
124 | r = sqrt(x * x + y * y);
|
---|
125 | if (r == 0.) {
|
---|
126 | *ha = 0.;
|
---|
127 | } else {
|
---|
128 | *ha = atan2(y, x);
|
---|
129 | }
|
---|
130 | *dec = atan2(z, r);
|
---|
131 |
|
---|
132 | return;
|
---|
133 | }
|
---|