1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palDmat
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Matrix inversion & solution of simultaneous equations
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * void palDmat( int n, double *a, double *y, double *d, int *jf,
|
---|
17 | * int *iw );
|
---|
18 |
|
---|
19 | * Arguments:
|
---|
20 | * n = int (Given)
|
---|
21 | * Number of simultaneous equations and number of unknowns.
|
---|
22 | * a = double[] (Given & Returned)
|
---|
23 | * A non-singular NxN matrix (implemented as a contiguous block
|
---|
24 | * of memory). After calling this routine "a" contains the
|
---|
25 | * inverse of the matrix.
|
---|
26 | * y = double[] (Given & Returned)
|
---|
27 | * On input the vector of N knowns. On exit this vector contains the
|
---|
28 | * N solutions.
|
---|
29 | * d = double * (Returned)
|
---|
30 | * The determinant.
|
---|
31 | * jf = int * (Returned)
|
---|
32 | * The singularity flag. If the matrix is non-singular, jf=0
|
---|
33 | * is returned. If the matrix is singular, jf=-1 & d=0.0 are
|
---|
34 | * returned. In the latter case, the contents of array "a" on
|
---|
35 | * return are undefined.
|
---|
36 | * iw = int[] (Given)
|
---|
37 | * Integer workspace of size N.
|
---|
38 |
|
---|
39 | * Description:
|
---|
40 | * Matrix inversion & solution of simultaneous equations
|
---|
41 | * For the set of n simultaneous equations in n unknowns:
|
---|
42 | * A.Y = X
|
---|
43 | * this routine calculates the inverse of A, the determinant
|
---|
44 | * of matrix A and the vector of N unknowns.
|
---|
45 |
|
---|
46 | * Authors:
|
---|
47 | * PTW: Pat Wallace (STFC)
|
---|
48 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
49 | * {enter_new_authors_here}
|
---|
50 |
|
---|
51 | * History:
|
---|
52 | * 2012-02-11 (TIMJ):
|
---|
53 | * Combination of a port of the Fortran and a comparison
|
---|
54 | * with the obfuscated GPL C routine.
|
---|
55 | * Adapted with permission from the Fortran SLALIB library.
|
---|
56 | * {enter_further_changes_here}
|
---|
57 |
|
---|
58 | * Notes:
|
---|
59 | * - Implemented using Gaussian elimination with partial pivoting.
|
---|
60 | * - Optimized for speed rather than accuracy with errors 1 to 4
|
---|
61 | * times those of routines optimized for accuracy.
|
---|
62 |
|
---|
63 | * Copyright:
|
---|
64 | * Copyright (C) 2001 Rutherford Appleton Laboratory.
|
---|
65 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
66 | * All Rights Reserved.
|
---|
67 |
|
---|
68 | * Licence:
|
---|
69 | * This program is free software: you can redistribute it and/or
|
---|
70 | * modify it under the terms of the GNU Lesser General Public
|
---|
71 | * License as published by the Free Software Foundation, either
|
---|
72 | * version 3 of the License, or (at your option) any later
|
---|
73 | * version.
|
---|
74 | *
|
---|
75 | * This program is distributed in the hope that it will be useful,
|
---|
76 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
77 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
78 | * GNU Lesser General Public License for more details.
|
---|
79 | *
|
---|
80 | * You should have received a copy of the GNU Lesser General
|
---|
81 | * License along with this program. If not, see
|
---|
82 | * <http://www.gnu.org/licenses/>.
|
---|
83 |
|
---|
84 | * Bugs:
|
---|
85 | * {note_any_bugs_here}
|
---|
86 | *-
|
---|
87 | */
|
---|
88 |
|
---|
89 | #include "pal.h"
|
---|
90 |
|
---|
91 | void palDmat ( int n, double *a, double *y, double *d, int *jf, int *iw ) {
|
---|
92 |
|
---|
93 | const double SFA = 1e-20;
|
---|
94 |
|
---|
95 | int k;
|
---|
96 | double*aoff;
|
---|
97 |
|
---|
98 | *jf=0;
|
---|
99 | *d=1.0;
|
---|
100 | for(k=0,aoff=a; k<n; k++, aoff+=n){
|
---|
101 | int imx;
|
---|
102 | double * aoff2 = aoff;
|
---|
103 | double amx=fabs(aoff[k]);
|
---|
104 | imx=k;
|
---|
105 | if(k!=n){
|
---|
106 | int i;
|
---|
107 | double *apos2;
|
---|
108 | for(i=k+1,apos2=aoff+n;i<n;i++,apos2+=n){
|
---|
109 | double t=fabs(apos2[k]);
|
---|
110 | if(t>amx){
|
---|
111 | amx=t;
|
---|
112 | imx=i;
|
---|
113 | aoff2=apos2;
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|
117 | if(amx<SFA){
|
---|
118 | *jf=-1;
|
---|
119 | } else {
|
---|
120 | if(imx!=k){
|
---|
121 | double t;
|
---|
122 | int j;
|
---|
123 | for(j=0;j<n;j++){
|
---|
124 | t=aoff[j];
|
---|
125 | aoff[j]=aoff2[j];
|
---|
126 | aoff2[j]=t;
|
---|
127 | }
|
---|
128 | t=y[k];
|
---|
129 | y[k]=y[imx];
|
---|
130 | y[imx]=t;*d=-*d;
|
---|
131 | }
|
---|
132 | iw[k]=imx;
|
---|
133 | *d*=aoff[k];
|
---|
134 | if(fabs(*d)<SFA){
|
---|
135 | *jf=-1;
|
---|
136 | } else {
|
---|
137 | double yk;
|
---|
138 | double * apos2;
|
---|
139 | int i, j;
|
---|
140 | aoff[k]=1.0/aoff[k];
|
---|
141 | for(j=0;j<n;j++){
|
---|
142 | if(j!=k){
|
---|
143 | aoff[j]*=aoff[k];
|
---|
144 | }
|
---|
145 | }
|
---|
146 | yk=y[k]*aoff[k];
|
---|
147 | y[k]=yk;
|
---|
148 | for(i=0,apos2=a;i<n;i++,apos2+=n){
|
---|
149 | if(i!=k){
|
---|
150 | for(j=0;j<n;j++){
|
---|
151 | if(j!=k){
|
---|
152 | apos2[j]-=apos2[k]*aoff[j];
|
---|
153 | }
|
---|
154 | }
|
---|
155 | y[i]-=apos2[k]*yk;
|
---|
156 | }
|
---|
157 | }
|
---|
158 | for(i=0,apos2=a;i<n;i++,apos2+=n){
|
---|
159 | if(i!=k){
|
---|
160 | apos2[k]*=-aoff[k];
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|
165 | }
|
---|
166 | if(*jf!=0){
|
---|
167 | *d=0.0;
|
---|
168 | } else {
|
---|
169 | for(k=n;k-->0;){
|
---|
170 | int ki=iw[k];
|
---|
171 | if(k!=ki){
|
---|
172 | int i;
|
---|
173 | double *apos = a;
|
---|
174 | for(i=0;i<n;i++,apos+=n){
|
---|
175 | double t=apos[k];
|
---|
176 | apos[k]=apos[ki];
|
---|
177 | apos[ki]=t;
|
---|
178 | }
|
---|
179 | }
|
---|
180 | }
|
---|
181 | }
|
---|
182 | }
|
---|