1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palOapqk
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Quick observed to apparent place
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * void palOapqk ( const char *type, double ob1, double ob2,
|
---|
17 | * const double aoprms[14], double *rap, double *dap );
|
---|
18 |
|
---|
19 | * Arguments:
|
---|
20 | * Quick observed to apparent place.
|
---|
21 |
|
---|
22 | * Description:
|
---|
23 | * type = const char * (Given)
|
---|
24 | * Type of coordinates - 'R', 'H' or 'A' (see below)
|
---|
25 | * ob1 = double (Given)
|
---|
26 | * Observed Az, HA or RA (radians; Az is N=0;E=90)
|
---|
27 | * ob2 = double (Given)
|
---|
28 | * Observed ZD or Dec (radians)
|
---|
29 | * aoprms = const double [14] (Given)
|
---|
30 | * Star-independent apparent-to-observed parameters.
|
---|
31 | * See palAopqk for details.
|
---|
32 | * rap = double * (Given)
|
---|
33 | * Geocentric apparent right ascension
|
---|
34 | * dap = double * (Given)
|
---|
35 | * Geocentric apparent declination
|
---|
36 |
|
---|
37 | * Authors:
|
---|
38 | * PTW: Patrick T. Wallace
|
---|
39 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
40 | * {enter_new_authors_here}
|
---|
41 |
|
---|
42 | * Notes:
|
---|
43 | * - Only the first character of the TYPE argument is significant.
|
---|
44 | * 'R' or 'r' indicates that OBS1 and OBS2 are the observed right
|
---|
45 | * ascension and declination; 'H' or 'h' indicates that they are
|
---|
46 | * hour angle (west +ve) and declination; anything else ('A' or
|
---|
47 | * 'a' is recommended) indicates that OBS1 and OBS2 are azimuth
|
---|
48 | * (north zero, east 90 deg) and zenith distance. (Zenith distance
|
---|
49 | * is used rather than elevation in order to reflect the fact that
|
---|
50 | * no allowance is made for depression of the horizon.)
|
---|
51 | *
|
---|
52 | * - The accuracy of the result is limited by the corrections for
|
---|
53 | * refraction. Providing the meteorological parameters are
|
---|
54 | * known accurately and there are no gross local effects, the
|
---|
55 | * predicted apparent RA,Dec should be within about 0.1 arcsec
|
---|
56 | * for a zenith distance of less than 70 degrees. Even at a
|
---|
57 | * topocentric zenith distance of 90 degrees, the accuracy in
|
---|
58 | * elevation should be better than 1 arcmin; useful results
|
---|
59 | * are available for a further 3 degrees, beyond which the
|
---|
60 | * palREFRO routine returns a fixed value of the refraction.
|
---|
61 | * The complementary routines palAop (or palAopqk) and palOap
|
---|
62 | * (or palOapqk) are self-consistent to better than 1 micro-
|
---|
63 | * arcsecond all over the celestial sphere.
|
---|
64 | *
|
---|
65 | * - It is advisable to take great care with units, as even
|
---|
66 | * unlikely values of the input parameters are accepted and
|
---|
67 | * processed in accordance with the models used.
|
---|
68 | *
|
---|
69 | * - "Observed" Az,El means the position that would be seen by a
|
---|
70 | * perfect theodolite located at the observer. This is
|
---|
71 | * related to the observed HA,Dec via the standard rotation, using
|
---|
72 | * the geodetic latitude (corrected for polar motion), while the
|
---|
73 | * observed HA and RA are related simply through the local
|
---|
74 | * apparent ST. "Observed" RA,Dec or HA,Dec thus means the
|
---|
75 | * position that would be seen by a perfect equatorial located
|
---|
76 | * at the observer and with its polar axis aligned to the
|
---|
77 | * Earth's axis of rotation (n.b. not to the refracted pole).
|
---|
78 | * By removing from the observed place the effects of
|
---|
79 | * atmospheric refraction and diurnal aberration, the
|
---|
80 | * geocentric apparent RA,Dec is obtained.
|
---|
81 | *
|
---|
82 | * - Frequently, mean rather than apparent RA,Dec will be required,
|
---|
83 | * in which case further transformations will be necessary. The
|
---|
84 | * palAmp etc routines will convert the apparent RA,Dec produced
|
---|
85 | * by the present routine into an "FK5" (J2000) mean place, by
|
---|
86 | * allowing for the Sun's gravitational lens effect, annual
|
---|
87 | * aberration, nutation and precession. Should "FK4" (1950)
|
---|
88 | * coordinates be needed, the routines palFk524 etc will also
|
---|
89 | * need to be applied.
|
---|
90 | *
|
---|
91 | * - To convert to apparent RA,Dec the coordinates read from a
|
---|
92 | * real telescope, corrections would have to be applied for
|
---|
93 | * encoder zero points, gear and encoder errors, tube flexure,
|
---|
94 | * the position of the rotator axis and the pointing axis
|
---|
95 | * relative to it, non-perpendicularity between the mounting
|
---|
96 | * axes, and finally for the tilt of the azimuth or polar axis
|
---|
97 | * of the mounting (with appropriate corrections for mount
|
---|
98 | * flexures). Some telescopes would, of course, exhibit other
|
---|
99 | * properties which would need to be accounted for at the
|
---|
100 | * appropriate point in the sequence.
|
---|
101 | *
|
---|
102 | * - The star-independent apparent-to-observed-place parameters
|
---|
103 | * in AOPRMS may be computed by means of the palAoppa routine.
|
---|
104 | * If nothing has changed significantly except the time, the
|
---|
105 | * palAoppat routine may be used to perform the requisite
|
---|
106 | * partial recomputation of AOPRMS.
|
---|
107 | *
|
---|
108 | * - The azimuths etc used by the present routine are with respect
|
---|
109 | * to the celestial pole. Corrections from the terrestrial pole
|
---|
110 | * can be computed using palPolmo.
|
---|
111 |
|
---|
112 |
|
---|
113 | * History:
|
---|
114 | * 2012-08-27 (TIMJ):
|
---|
115 | * Initial version, direct copy of Fortran SLA
|
---|
116 | * Adapted with permission from the Fortran SLALIB library.
|
---|
117 | * {enter_further_changes_here}
|
---|
118 |
|
---|
119 | * Copyright:
|
---|
120 | * Copyright (C) 2004 Patrick T. Wallace
|
---|
121 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
122 | * All Rights Reserved.
|
---|
123 |
|
---|
124 | * Licence:
|
---|
125 | * This program is free software; you can redistribute it and/or
|
---|
126 | * modify it under the terms of the GNU General Public License as
|
---|
127 | * published by the Free Software Foundation; either version 3 of
|
---|
128 | * the License, or (at your option) any later version.
|
---|
129 | *
|
---|
130 | * This program is distributed in the hope that it will be
|
---|
131 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
132 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
---|
133 | * PURPOSE. See the GNU General Public License for more details.
|
---|
134 | *
|
---|
135 | * You should have received a copy of the GNU General Public License
|
---|
136 | * along with this program; if not, write to the Free Software
|
---|
137 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
---|
138 | * MA 02110-1301, USA.
|
---|
139 |
|
---|
140 | * Bugs:
|
---|
141 | * {note_any_bugs_here}
|
---|
142 | *-
|
---|
143 | */
|
---|
144 |
|
---|
145 | #include <math.h>
|
---|
146 |
|
---|
147 | #include "pal.h"
|
---|
148 | #include "palmac.h"
|
---|
149 |
|
---|
150 | void palOapqk ( const char *type, double ob1, double ob2, const double aoprms[14],
|
---|
151 | double *rap, double *dap ) {
|
---|
152 |
|
---|
153 | /* breakpoint for fast/slow refraction algorithm:
|
---|
154 | * zd greater than arctan(4), (see palRefco routine)
|
---|
155 | * or vector z less than cosine(arctan(z)) = 1/sqrt(17) */
|
---|
156 | const double zbreak = 0.242535625;
|
---|
157 |
|
---|
158 | char c;
|
---|
159 | double c1,c2,sphi,cphi,st,ce,xaeo,yaeo,zaeo,v[3],
|
---|
160 | xmhdo,ymhdo,zmhdo,az,sz,zdo,tz,dref,zdt,
|
---|
161 | xaet,yaet,zaet,xmhda,ymhda,zmhda,diurab,f,hma;
|
---|
162 |
|
---|
163 | /* coordinate type */
|
---|
164 | c = type[0];
|
---|
165 |
|
---|
166 | /* coordinates */
|
---|
167 | c1 = ob1;
|
---|
168 | c2 = ob2;
|
---|
169 |
|
---|
170 | /* sin, cos of latitude */
|
---|
171 | sphi = aoprms[1];
|
---|
172 | cphi = aoprms[2];
|
---|
173 |
|
---|
174 | /* local apparent sidereal time */
|
---|
175 | st = aoprms[13];
|
---|
176 |
|
---|
177 | /* standardise coordinate type */
|
---|
178 | if (c == 'r' || c == 'R') {
|
---|
179 | c = 'r';
|
---|
180 | } else if (c == 'h' || c == 'H') {
|
---|
181 | c = 'h';
|
---|
182 | } else {
|
---|
183 | c = 'a';
|
---|
184 | }
|
---|
185 |
|
---|
186 | /* if az,zd convert to cartesian (s=0,e=90) */
|
---|
187 | if (c == 'a') {
|
---|
188 | ce = sin(c2);
|
---|
189 | xaeo = -cos(c1)*ce;
|
---|
190 | yaeo = sin(c1)*ce;
|
---|
191 | zaeo = cos(c2);
|
---|
192 | } else {
|
---|
193 |
|
---|
194 | /* if ra,dec convert to ha,dec */
|
---|
195 | if (c == 'r') {
|
---|
196 | c1 = st-c1;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /* to cartesian -ha,dec */
|
---|
200 | palDcs2c( -c1, c2, v );
|
---|
201 | xmhdo = v[0];
|
---|
202 | ymhdo = v[1];
|
---|
203 | zmhdo = v[2];
|
---|
204 |
|
---|
205 | /* to cartesian az,el (s=0,e=90) */
|
---|
206 | xaeo = sphi*xmhdo-cphi*zmhdo;
|
---|
207 | yaeo = ymhdo;
|
---|
208 | zaeo = cphi*xmhdo+sphi*zmhdo;
|
---|
209 | }
|
---|
210 |
|
---|
211 | /* azimuth (s=0,e=90) */
|
---|
212 | if (xaeo != 0.0 || yaeo != 0.0) {
|
---|
213 | az = atan2(yaeo,xaeo);
|
---|
214 | } else {
|
---|
215 | az = 0.0;
|
---|
216 | }
|
---|
217 |
|
---|
218 | /* sine of observed zd, and observed zd */
|
---|
219 | sz = sqrt(xaeo*xaeo+yaeo*yaeo);
|
---|
220 | zdo = atan2(sz,zaeo);
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * refraction
|
---|
224 | * ---------- */
|
---|
225 |
|
---|
226 | /* large zenith distance? */
|
---|
227 | if (zaeo >= zbreak) {
|
---|
228 |
|
---|
229 | /* fast algorithm using two constant model */
|
---|
230 | tz = sz/zaeo;
|
---|
231 | dref = (aoprms[10]+aoprms[11]*tz*tz)*tz;
|
---|
232 |
|
---|
233 | } else {
|
---|
234 |
|
---|
235 | /* rigorous algorithm for large zd */
|
---|
236 | palRefro(zdo,aoprms[4],aoprms[5],aoprms[6],aoprms[7],
|
---|
237 | aoprms[8],aoprms[0],aoprms[9],1e-8,&dref);
|
---|
238 | }
|
---|
239 |
|
---|
240 | zdt = zdo+dref;
|
---|
241 |
|
---|
242 | /* to cartesian az,zd */
|
---|
243 | ce = sin(zdt);
|
---|
244 | xaet = cos(az)*ce;
|
---|
245 | yaet = sin(az)*ce;
|
---|
246 | zaet = cos(zdt);
|
---|
247 |
|
---|
248 | /* cartesian az,zd to cartesian -ha,dec */
|
---|
249 | xmhda = sphi*xaet+cphi*zaet;
|
---|
250 | ymhda = yaet;
|
---|
251 | zmhda = -cphi*xaet+sphi*zaet;
|
---|
252 |
|
---|
253 | /* diurnal aberration */
|
---|
254 | diurab = -aoprms[3];
|
---|
255 | f = (1.0-diurab*ymhda);
|
---|
256 | v[0] = f*xmhda;
|
---|
257 | v[1] = f*(ymhda+diurab);
|
---|
258 | v[2] = f*zmhda;
|
---|
259 |
|
---|
260 | /* to spherical -ha,dec */
|
---|
261 | palDcc2s(v,&hma,dap);
|
---|
262 |
|
---|
263 | /* Right Ascension */
|
---|
264 | *rap = palDranrm(st+hma);
|
---|
265 |
|
---|
266 | }
|
---|