1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palPolmo
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Correct for polar motion
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * palPolmo ( double elongm, double phim, double xp, double yp,
|
---|
17 | * double *elong, double *phi, double *daz );
|
---|
18 |
|
---|
19 | * Arguments:
|
---|
20 | * elongm = double (Given)
|
---|
21 | * Mean logitude of the observer (radians, east +ve)
|
---|
22 | * phim = double (Given)
|
---|
23 | * Mean geodetic latitude of the observer (radians)
|
---|
24 | * xp = double (Given)
|
---|
25 | * Polar motion x-coordinate (radians)
|
---|
26 | * yp = double (Given)
|
---|
27 | * Polar motion y-coordinate (radians)
|
---|
28 | * elong = double * (Returned)
|
---|
29 | * True longitude of the observer (radians, east +ve)
|
---|
30 | * phi = double * (Returned)
|
---|
31 | * True geodetic latitude of the observer (radians)
|
---|
32 | * daz = double * (Returned)
|
---|
33 | * Azimuth correction (terrestrial-celestial, radians)
|
---|
34 |
|
---|
35 | * Description:
|
---|
36 | * Polar motion: correct site longitude and latitude for polar
|
---|
37 | * motion and calculate azimuth difference between celestial and
|
---|
38 | * terrestrial poles.
|
---|
39 |
|
---|
40 | * Authors:
|
---|
41 | * PTW: Patrick Wallace (STFC)
|
---|
42 | * TIMJ: Tim Jenness (Cornell)
|
---|
43 | * {enter_new_authors_here}
|
---|
44 |
|
---|
45 | * Notes:
|
---|
46 | * - "Mean" longitude and latitude are the (fixed) values for the
|
---|
47 | * site's location with respect to the IERS terrestrial reference
|
---|
48 | * frame; the latitude is geodetic. TAKE CARE WITH THE LONGITUDE
|
---|
49 | * SIGN CONVENTION. The longitudes used by the present routine
|
---|
50 | * are east-positive, in accordance with geographical convention
|
---|
51 | * (and right-handed). In particular, note that the longitudes
|
---|
52 | * returned by the sla_OBS routine are west-positive, following
|
---|
53 | * astronomical usage, and must be reversed in sign before use in
|
---|
54 | * the present routine.
|
---|
55 | *
|
---|
56 | * - XP and YP are the (changing) coordinates of the Celestial
|
---|
57 | * Ephemeris Pole with respect to the IERS Reference Pole.
|
---|
58 | * XP is positive along the meridian at longitude 0 degrees,
|
---|
59 | * and YP is positive along the meridian at longitude
|
---|
60 | * 270 degrees (i.e. 90 degrees west). Values for XP,YP can
|
---|
61 | * be obtained from IERS circulars and equivalent publications;
|
---|
62 | * the maximum amplitude observed so far is about 0.3 arcseconds.
|
---|
63 | *
|
---|
64 | * - "True" longitude and latitude are the (moving) values for
|
---|
65 | * the site's location with respect to the celestial ephemeris
|
---|
66 | * pole and the meridian which corresponds to the Greenwich
|
---|
67 | * apparent sidereal time. The true longitude and latitude
|
---|
68 | * link the terrestrial coordinates with the standard celestial
|
---|
69 | * models (for precession, nutation, sidereal time etc).
|
---|
70 | *
|
---|
71 | * - The azimuths produced by sla_AOP and sla_AOPQK are with
|
---|
72 | * respect to due north as defined by the Celestial Ephemeris
|
---|
73 | * Pole, and can therefore be called "celestial azimuths".
|
---|
74 | * However, a telescope fixed to the Earth measures azimuth
|
---|
75 | * essentially with respect to due north as defined by the
|
---|
76 | * IERS Reference Pole, and can therefore be called "terrestrial
|
---|
77 | * azimuth". Uncorrected, this would manifest itself as a
|
---|
78 | * changing "azimuth zero-point error". The value DAZ is the
|
---|
79 | * correction to be added to a celestial azimuth to produce
|
---|
80 | * a terrestrial azimuth.
|
---|
81 | *
|
---|
82 | * - The present routine is rigorous. For most practical
|
---|
83 | * purposes, the following simplified formulae provide an
|
---|
84 | * adequate approximation:
|
---|
85 | *
|
---|
86 | * elong = elongm+xp*cos(elongm)-yp*sin(elongm)
|
---|
87 | * phi = phim+(xp*sin(elongm)+yp*cos(elongm))*tan(phim)
|
---|
88 | * daz = -sqrt(xp*xp+yp*yp)*cos(elongm-atan2(xp,yp))/cos(phim)
|
---|
89 | *
|
---|
90 | * An alternative formulation for DAZ is:
|
---|
91 | *
|
---|
92 | * x = cos(elongm)*cos(phim)
|
---|
93 | * y = sin(elongm)*cos(phim)
|
---|
94 | * daz = atan2(-x*yp-y*xp,x*x+y*y)
|
---|
95 | *
|
---|
96 | * - Reference: Seidelmann, P.K. (ed), 1992. "Explanatory Supplement
|
---|
97 | * to the Astronomical Almanac", ISBN 0-935702-68-7,
|
---|
98 | * sections 3.27, 4.25, 4.52.
|
---|
99 |
|
---|
100 | * History:
|
---|
101 | * 2000-11-30 (PTW):
|
---|
102 | * SLALIB implementation.
|
---|
103 | * 2014-10-18 (TIMJ):
|
---|
104 | * Initial version in C.
|
---|
105 | * {enter_further_changes_here}
|
---|
106 |
|
---|
107 | * Copyright:
|
---|
108 | * Copyright (C) 2000 Rutherford Appleton Laboratory.
|
---|
109 | * Copyright (C) 2014 Cornell University
|
---|
110 | * All Rights Reserved.
|
---|
111 |
|
---|
112 | * Licence:
|
---|
113 | * This program is free software; you can redistribute it and/or
|
---|
114 | * modify it under the terms of the GNU General Public License as
|
---|
115 | * published by the Free Software Foundation; either version 3 of
|
---|
116 | * the License, or (at your option) any later version.
|
---|
117 | *
|
---|
118 | * This program is distributed in the hope that it will be
|
---|
119 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
120 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
---|
121 | * PURPOSE. See the GNU General Public License for more details.
|
---|
122 | *
|
---|
123 | * You should have received a copy of the GNU General Public License
|
---|
124 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
125 |
|
---|
126 | * Bugs:
|
---|
127 | * {note_any_bugs_here}
|
---|
128 | *-
|
---|
129 | */
|
---|
130 |
|
---|
131 | #include <math.h>
|
---|
132 |
|
---|
133 | #include "pal.h"
|
---|
134 |
|
---|
135 | void palPolmo ( double elongm, double phim, double xp, double yp,
|
---|
136 | double *elong, double *phi, double *daz ) {
|
---|
137 |
|
---|
138 | double sel,cel,sph,cph,xm,ym,zm,xnm,ynm,znm,
|
---|
139 | sxp,cxp,syp,cyp,zw,xt,yt,zt,xnt,ynt;
|
---|
140 |
|
---|
141 | /* Site mean longitude and mean geodetic latitude as a Cartesian vector */
|
---|
142 | sel=sin(elongm);
|
---|
143 | cel=cos(elongm);
|
---|
144 | sph=sin(phim);
|
---|
145 | cph=cos(phim);
|
---|
146 |
|
---|
147 | xm=cel*cph;
|
---|
148 | ym=sel*cph;
|
---|
149 | zm=sph;
|
---|
150 |
|
---|
151 | /* Rotate site vector by polar motion, Y-component then X-component */
|
---|
152 | sxp=sin(xp);
|
---|
153 | cxp=cos(xp);
|
---|
154 | syp=sin(yp);
|
---|
155 | cyp=cos(yp);
|
---|
156 |
|
---|
157 | zw=(-ym*syp+zm*cyp);
|
---|
158 |
|
---|
159 | xt=xm*cxp-zw*sxp;
|
---|
160 | yt=ym*cyp+zm*syp;
|
---|
161 | zt=xm*sxp+zw*cxp;
|
---|
162 |
|
---|
163 | /* Rotate also the geocentric direction of the terrestrial pole (0,0,1) */
|
---|
164 | xnm=-sxp*cyp;
|
---|
165 | ynm=syp;
|
---|
166 | znm=cxp*cyp;
|
---|
167 |
|
---|
168 | cph=sqrt(xt*xt+yt*yt);
|
---|
169 | if (cph == 0.0) xt=1.0;
|
---|
170 | sel=yt/cph;
|
---|
171 | cel=xt/cph;
|
---|
172 |
|
---|
173 | /* Return true longitude and true geodetic latitude of site */
|
---|
174 | if (xt != 0.0 || yt != 0.0) {
|
---|
175 | *elong=atan2(yt,xt);
|
---|
176 | } else {
|
---|
177 | *elong=0.0;
|
---|
178 | }
|
---|
179 | *phi=atan2(zt,cph);
|
---|
180 |
|
---|
181 | /* Return current azimuth of terrestrial pole seen from site position */
|
---|
182 | xnt=(xnm*cel+ynm*sel)*zt-znm*cph;
|
---|
183 | ynt=-xnm*sel+ynm*cel;
|
---|
184 | if (xnt != 0.0 || ynt != 0.0) {
|
---|
185 | *daz=atan2(-ynt,-xnt);
|
---|
186 | } else {
|
---|
187 | *daz=0.0;
|
---|
188 | }
|
---|
189 |
|
---|
190 | }
|
---|