1 | /*
|
---|
2 | *+
|
---|
3 | * Name:
|
---|
4 | * palPv2el
|
---|
5 |
|
---|
6 | * Purpose:
|
---|
7 | * Position velocity to heliocentirc osculating elements
|
---|
8 |
|
---|
9 | * Language:
|
---|
10 | * Starlink ANSI C
|
---|
11 |
|
---|
12 | * Type of Module:
|
---|
13 | * Library routine
|
---|
14 |
|
---|
15 | * Invocation:
|
---|
16 | * void palPv2el ( const double pv[6], double date, double pmass, int jformr,
|
---|
17 | * int *jform, double *epoch, double *orbinc,
|
---|
18 | * double *anode, double *perih, double *aorq, double *e,
|
---|
19 | * double *aorl, double *dm, int *jstat );
|
---|
20 |
|
---|
21 | * Arguments:
|
---|
22 | * pv = const double [6] (Given)
|
---|
23 | * Heliocentric x,y,z,xdot,ydot,zdot of date,
|
---|
24 | * J2000 equatorial triad (AU,AU/s; Note 1)
|
---|
25 | * date = double (Given)
|
---|
26 | * Date (TT Modified Julian Date = JD-2400000.5)
|
---|
27 | * pmass = double (Given)
|
---|
28 | * Mass of the planet (Sun=1; Note 2)
|
---|
29 | * jformr = int (Given)
|
---|
30 | * Requested element set (1-3; Note 3)
|
---|
31 | * jform = int * (Returned)
|
---|
32 | * Element set actually returned (1-3; Note 4)
|
---|
33 | * epoch = double * (Returned)
|
---|
34 | * Epoch of elements (TT MJD)
|
---|
35 | * orbinc = double * (Returned)
|
---|
36 | * inclination (radians)
|
---|
37 | * anode = double * (Returned)
|
---|
38 | * longitude of the ascending node (radians)
|
---|
39 | * perih = double * (Returned)
|
---|
40 | * longitude or argument of perihelion (radians)
|
---|
41 | * aorq = double * (Returned)
|
---|
42 | * mean distance or perihelion distance (AU)
|
---|
43 | * e = double * (Returned)
|
---|
44 | * eccentricity
|
---|
45 | * aorl = double * (Returned)
|
---|
46 | * mean anomaly or longitude (radians, JFORM=1,2 only)
|
---|
47 | * dm = double * (Returned)
|
---|
48 | * daily motion (radians, JFORM=1 only)
|
---|
49 | * jstat = int * (Returned)
|
---|
50 | * status: 0 = OK
|
---|
51 | * - -1 = illegal PMASS
|
---|
52 | * - -2 = illegal JFORMR
|
---|
53 | * - -3 = position/velocity out of range
|
---|
54 |
|
---|
55 | * Description:
|
---|
56 | * Heliocentric osculating elements obtained from instantaneous position
|
---|
57 | * and velocity.
|
---|
58 |
|
---|
59 | * Authors:
|
---|
60 | * PTW: Pat Wallace (STFC)
|
---|
61 | * TIMJ: Tim Jenness (JAC, Hawaii)
|
---|
62 | * {enter_new_authors_here}
|
---|
63 |
|
---|
64 | * Notes:
|
---|
65 | * - The PV 6-vector is with respect to the mean equator and equinox of
|
---|
66 | * epoch J2000. The orbital elements produced are with respect to
|
---|
67 | * the J2000 ecliptic and mean equinox.
|
---|
68 | * - The mass, PMASS, is important only for the larger planets. For
|
---|
69 | * most purposes (e.g. asteroids) use 0D0. Values less than zero
|
---|
70 | * are illegal.
|
---|
71 | * - Three different element-format options are supported:
|
---|
72 | *
|
---|
73 | * Option JFORM=1, suitable for the major planets:
|
---|
74 | *
|
---|
75 | * EPOCH = epoch of elements (TT MJD)
|
---|
76 | * ORBINC = inclination i (radians)
|
---|
77 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
78 | * PERIH = longitude of perihelion, curly pi (radians)
|
---|
79 | * AORQ = mean distance, a (AU)
|
---|
80 | * E = eccentricity, e
|
---|
81 | * AORL = mean longitude L (radians)
|
---|
82 | * DM = daily motion (radians)
|
---|
83 | *
|
---|
84 | * Option JFORM=2, suitable for minor planets:
|
---|
85 | *
|
---|
86 | * EPOCH = epoch of elements (TT MJD)
|
---|
87 | * ORBINC = inclination i (radians)
|
---|
88 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
89 | * PERIH = argument of perihelion, little omega (radians)
|
---|
90 | * AORQ = mean distance, a (AU)
|
---|
91 | * E = eccentricity, e
|
---|
92 | * AORL = mean anomaly M (radians)
|
---|
93 | *
|
---|
94 | * Option JFORM=3, suitable for comets:
|
---|
95 | *
|
---|
96 | * EPOCH = epoch of perihelion (TT MJD)
|
---|
97 | * ORBINC = inclination i (radians)
|
---|
98 | * ANODE = longitude of the ascending node, big omega (radians)
|
---|
99 | * PERIH = argument of perihelion, little omega (radians)
|
---|
100 | * AORQ = perihelion distance, q (AU)
|
---|
101 | * E = eccentricity, e
|
---|
102 | *
|
---|
103 | * - It may not be possible to generate elements in the form
|
---|
104 | * requested through JFORMR. The caller is notified of the form
|
---|
105 | * of elements actually returned by means of the JFORM argument:
|
---|
106 |
|
---|
107 | * JFORMR JFORM meaning
|
---|
108 | *
|
---|
109 | * 1 1 OK - elements are in the requested format
|
---|
110 | * 1 2 never happens
|
---|
111 | * 1 3 orbit not elliptical
|
---|
112 | *
|
---|
113 | * 2 1 never happens
|
---|
114 | * 2 2 OK - elements are in the requested format
|
---|
115 | * 2 3 orbit not elliptical
|
---|
116 | *
|
---|
117 | * 3 1 never happens
|
---|
118 | * 3 2 never happens
|
---|
119 | * 3 3 OK - elements are in the requested format
|
---|
120 | *
|
---|
121 | * - The arguments returned for each value of JFORM (cf Note 5: JFORM
|
---|
122 | * may not be the same as JFORMR) are as follows:
|
---|
123 | *
|
---|
124 | * JFORM 1 2 3
|
---|
125 | * EPOCH t0 t0 T
|
---|
126 | * ORBINC i i i
|
---|
127 | * ANODE Omega Omega Omega
|
---|
128 | * PERIH curly pi omega omega
|
---|
129 | * AORQ a a q
|
---|
130 | * E e e e
|
---|
131 | * AORL L M -
|
---|
132 | * DM n - -
|
---|
133 | *
|
---|
134 | * where:
|
---|
135 | *
|
---|
136 | * t0 is the epoch of the elements (MJD, TT)
|
---|
137 | * T " epoch of perihelion (MJD, TT)
|
---|
138 | * i " inclination (radians)
|
---|
139 | * Omega " longitude of the ascending node (radians)
|
---|
140 | * curly pi " longitude of perihelion (radians)
|
---|
141 | * omega " argument of perihelion (radians)
|
---|
142 | * a " mean distance (AU)
|
---|
143 | * q " perihelion distance (AU)
|
---|
144 | * e " eccentricity
|
---|
145 | * L " longitude (radians, 0-2pi)
|
---|
146 | * M " mean anomaly (radians, 0-2pi)
|
---|
147 | * n " daily motion (radians)
|
---|
148 | * - means no value is set
|
---|
149 | *
|
---|
150 | * - At very small inclinations, the longitude of the ascending node
|
---|
151 | * ANODE becomes indeterminate and under some circumstances may be
|
---|
152 | * set arbitrarily to zero. Similarly, if the orbit is close to
|
---|
153 | * circular, the true anomaly becomes indeterminate and under some
|
---|
154 | * circumstances may be set arbitrarily to zero. In such cases,
|
---|
155 | * the other elements are automatically adjusted to compensate,
|
---|
156 | * and so the elements remain a valid description of the orbit.
|
---|
157 | * - The osculating epoch for the returned elements is the argument
|
---|
158 | * DATE.
|
---|
159 | *
|
---|
160 | * - Reference: Sterne, Theodore E., "An Introduction to Celestial
|
---|
161 | * Mechanics", Interscience Publishers, 1960
|
---|
162 |
|
---|
163 | * History:
|
---|
164 | * 2012-03-09 (TIMJ):
|
---|
165 | * Initial version converted from SLA/F.
|
---|
166 | * Adapted with permission from the Fortran SLALIB library.
|
---|
167 | * {enter_further_changes_here}
|
---|
168 |
|
---|
169 | * Copyright:
|
---|
170 | * Copyright (C) 2005 Patrick T. Wallace
|
---|
171 | * Copyright (C) 2012 Science and Technology Facilities Council.
|
---|
172 | * All Rights Reserved.
|
---|
173 |
|
---|
174 | * Licence:
|
---|
175 | * This program is free software; you can redistribute it and/or
|
---|
176 | * modify it under the terms of the GNU General Public License as
|
---|
177 | * published by the Free Software Foundation; either version 3 of
|
---|
178 | * the License, or (at your option) any later version.
|
---|
179 | *
|
---|
180 | * This program is distributed in the hope that it will be
|
---|
181 | * useful, but WITHOUT ANY WARRANTY; without even the implied
|
---|
182 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
---|
183 | * PURPOSE. See the GNU General Public License for more details.
|
---|
184 | *
|
---|
185 | * You should have received a copy of the GNU General Public License
|
---|
186 | * along with this program; if not, write to the Free Software
|
---|
187 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
---|
188 | * MA 02110-1301, USA.
|
---|
189 |
|
---|
190 | * Bugs:
|
---|
191 | * {note_any_bugs_here}
|
---|
192 | *-
|
---|
193 | */
|
---|
194 |
|
---|
195 | #include <math.h>
|
---|
196 |
|
---|
197 | #include "pal1sofa.h"
|
---|
198 | #include "pal.h"
|
---|
199 | #include "palmac.h"
|
---|
200 |
|
---|
201 | void palPv2el ( const double pv[6], double date, double pmass, int jformr,
|
---|
202 | int *jform, double *epoch, double *orbinc,
|
---|
203 | double *anode, double *perih, double *aorq, double *e,
|
---|
204 | double *aorl, double *dm, int *jstat ) {
|
---|
205 |
|
---|
206 | /* Sin and cos of J2000 mean obliquity (IAU 1976) */
|
---|
207 | const double SE = 0.3977771559319137;
|
---|
208 | const double CE = 0.9174820620691818;
|
---|
209 |
|
---|
210 | /* Minimum allowed distance (AU) and speed (AU/day) */
|
---|
211 | const double RMIN = 1e-3;
|
---|
212 | const double VMIN = 1e-8;
|
---|
213 |
|
---|
214 | /* How close to unity the eccentricity has to be to call it a parabola */
|
---|
215 | const double PARAB = 1.0e-8;
|
---|
216 |
|
---|
217 | double X,Y,Z,XD,YD,ZD,R,V2,V,RDV,GMU,HX,HY,HZ,
|
---|
218 | HX2PY2,H2,H,OI,BIGOM,AR,ECC,S,C,AT,U,OM,
|
---|
219 | GAR3,EM1,EP1,HAT,SHAT,CHAT,AE,AM,DN,PL,
|
---|
220 | EL,Q,TP,THAT,THHF,F;
|
---|
221 |
|
---|
222 | int JF;
|
---|
223 |
|
---|
224 | /* Validate arguments PMASS and JFORMR.*/
|
---|
225 | if (pmass < 0.0) {
|
---|
226 | *jstat = -1;
|
---|
227 | return;
|
---|
228 | }
|
---|
229 | if (jformr < 1 || jformr > 3) {
|
---|
230 | *jstat = -2;
|
---|
231 | return;
|
---|
232 | }
|
---|
233 |
|
---|
234 | /* Provisionally assume the elements will be in the chosen form. */
|
---|
235 | JF = jformr;
|
---|
236 |
|
---|
237 | /* Rotate the position from equatorial to ecliptic coordinates. */
|
---|
238 | X = pv[0];
|
---|
239 | Y = pv[1]*CE+pv[2]*SE;
|
---|
240 | Z = -pv[1]*SE+pv[2]*CE;
|
---|
241 |
|
---|
242 | /* Rotate the velocity similarly, scaling to AU/day. */
|
---|
243 | XD = PAL__SPD*pv[3];
|
---|
244 | YD = PAL__SPD*(pv[4]*CE+pv[5]*SE);
|
---|
245 | ZD = PAL__SPD*(-pv[4]*SE+pv[5]*CE);
|
---|
246 |
|
---|
247 | /* Distance and speed. */
|
---|
248 | R = sqrt(X*X+Y*Y+Z*Z);
|
---|
249 | V2 = XD*XD+YD*YD+ZD*ZD;
|
---|
250 | V = sqrt(V2);
|
---|
251 |
|
---|
252 | /* Reject unreasonably small values. */
|
---|
253 | if (R < RMIN || V < VMIN) {
|
---|
254 | *jstat = -3;
|
---|
255 | return;
|
---|
256 | }
|
---|
257 |
|
---|
258 | /* R dot V. */
|
---|
259 | RDV = X*XD+Y*YD+Z*ZD;
|
---|
260 |
|
---|
261 | /* Mu. */
|
---|
262 | GMU = (1.0+pmass)*PAL__GCON*PAL__GCON;
|
---|
263 |
|
---|
264 | /* Vector angular momentum per unit reduced mass. */
|
---|
265 | HX = Y*ZD-Z*YD;
|
---|
266 | HY = Z*XD-X*ZD;
|
---|
267 | HZ = X*YD-Y*XD;
|
---|
268 |
|
---|
269 | /* Areal constant. */
|
---|
270 | HX2PY2 = HX*HX+HY*HY;
|
---|
271 | H2 = HX2PY2+HZ*HZ;
|
---|
272 | H = sqrt(H2);
|
---|
273 |
|
---|
274 | /* Inclination. */
|
---|
275 | OI = atan2(sqrt(HX2PY2),HZ);
|
---|
276 |
|
---|
277 | /* Longitude of ascending node. */
|
---|
278 | if (HX != 0.0 || HY != 0.0) {
|
---|
279 | BIGOM = atan2(HX,-HY);
|
---|
280 | } else {
|
---|
281 | BIGOM=0.0;
|
---|
282 | }
|
---|
283 |
|
---|
284 | /* Reciprocal of mean distance etc. */
|
---|
285 | AR = 2.0/R-V2/GMU;
|
---|
286 |
|
---|
287 | /* Eccentricity. */
|
---|
288 | ECC = sqrt(DMAX(1.0-AR*H2/GMU,0.0));
|
---|
289 |
|
---|
290 | /* True anomaly. */
|
---|
291 | S = H*RDV;
|
---|
292 | C = H2-R*GMU;
|
---|
293 | if (S != 0.0 || C != 0.0) {
|
---|
294 | AT = atan2(S,C);
|
---|
295 | } else {
|
---|
296 | AT = 0.0;
|
---|
297 | }
|
---|
298 |
|
---|
299 | /* Argument of the latitude. */
|
---|
300 | S = sin(BIGOM);
|
---|
301 | C = cos(BIGOM);
|
---|
302 | U = atan2((-X*S+Y*C)*cos(OI)+Z*sin(OI),X*C+Y*S);
|
---|
303 |
|
---|
304 | /* Argument of perihelion. */
|
---|
305 | OM = U-AT;
|
---|
306 |
|
---|
307 | /* Capture near-parabolic cases. */
|
---|
308 | if (fabs(ECC-1.0) < PARAB) ECC=1.0;
|
---|
309 |
|
---|
310 | /* Comply with JFORMR = 1 or 2 only if orbit is elliptical. */
|
---|
311 | if (ECC > 1.0) JF=3;
|
---|
312 |
|
---|
313 | /* Functions. */
|
---|
314 | GAR3 = GMU*AR*AR*AR;
|
---|
315 | EM1 = ECC-1.0;
|
---|
316 | EP1 = ECC+1.0;
|
---|
317 | HAT = AT/2.0;
|
---|
318 | SHAT = sin(HAT);
|
---|
319 | CHAT = cos(HAT);
|
---|
320 |
|
---|
321 | /* Variable initializations to avoid compiler warnings. */
|
---|
322 | AM = 0.0;
|
---|
323 | DN = 0.0;
|
---|
324 | PL = 0.0;
|
---|
325 | EL = 0.0;
|
---|
326 | Q = 0.0;
|
---|
327 | TP = 0.0;
|
---|
328 |
|
---|
329 | /* Ellipse? */
|
---|
330 | if (ECC < 1.0 ) {
|
---|
331 |
|
---|
332 | /* Eccentric anomaly. */
|
---|
333 | AE = 2.0*atan2(sqrt(-EM1)*SHAT,sqrt(EP1)*CHAT);
|
---|
334 |
|
---|
335 | /* Mean anomaly. */
|
---|
336 | AM = AE-ECC*sin(AE);
|
---|
337 |
|
---|
338 | /* Daily motion. */
|
---|
339 | DN = sqrt(GAR3);
|
---|
340 | }
|
---|
341 |
|
---|
342 | /* "Major planet" element set? */
|
---|
343 | if (JF == 1) {
|
---|
344 |
|
---|
345 | /* Longitude of perihelion. */
|
---|
346 | PL = BIGOM+OM;
|
---|
347 |
|
---|
348 | /* Longitude at epoch. */
|
---|
349 | EL = PL+AM;
|
---|
350 | }
|
---|
351 |
|
---|
352 | /* "Comet" element set? */
|
---|
353 | if (JF == 3) {
|
---|
354 |
|
---|
355 | /* Perihelion distance. */
|
---|
356 | Q = H2/(GMU*EP1);
|
---|
357 |
|
---|
358 | /* Ellipse, parabola, hyperbola? */
|
---|
359 | if (ECC < 1.0) {
|
---|
360 |
|
---|
361 | /* Ellipse: epoch of perihelion. */
|
---|
362 | TP = date-AM/DN;
|
---|
363 |
|
---|
364 | } else {
|
---|
365 |
|
---|
366 | /* Parabola or hyperbola: evaluate tan ( ( true anomaly ) / 2 ) */
|
---|
367 | THAT = SHAT/CHAT;
|
---|
368 | if (ECC == 1.0) {
|
---|
369 |
|
---|
370 | /* Parabola: epoch of perihelion. */
|
---|
371 | TP = date-THAT*(1.0+THAT*THAT/3.0)*H*H2/(2.0*GMU*GMU);
|
---|
372 |
|
---|
373 | } else {
|
---|
374 |
|
---|
375 | /* Hyperbola: epoch of perihelion. */
|
---|
376 | THHF = sqrt(EM1/EP1)*THAT;
|
---|
377 | F = log(1.0+THHF)-log(1.0-THHF);
|
---|
378 | TP = date-(ECC*sinh(F)-F)/sqrt(-GAR3);
|
---|
379 | }
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | /* Return the appropriate set of elements. */
|
---|
384 | *jform = JF;
|
---|
385 | *orbinc = OI;
|
---|
386 | *anode = eraAnp(BIGOM);
|
---|
387 | *e = ECC;
|
---|
388 | if (JF == 1) {
|
---|
389 | *perih = eraAnp(PL);
|
---|
390 | *aorl = eraAnp(EL);
|
---|
391 | *dm = DN;
|
---|
392 | } else {
|
---|
393 | *perih = eraAnp(OM);
|
---|
394 | if (JF == 2) *aorl = eraAnp(AM);
|
---|
395 | }
|
---|
396 | if (JF != 3) {
|
---|
397 | *epoch = date;
|
---|
398 | *aorq = 1.0/AR;
|
---|
399 | } else {
|
---|
400 | *epoch = TP;
|
---|
401 | *aorq = Q;
|
---|
402 | }
|
---|
403 | *jstat = 0;
|
---|
404 |
|
---|
405 | }
|
---|