1 | #include "erfa.h"
|
---|
2 |
|
---|
3 | int eraStarpv(double ra, double dec,
|
---|
4 | double pmr, double pmd, double px, double rv,
|
---|
5 | double pv[2][3])
|
---|
6 | /*
|
---|
7 | ** - - - - - - - - - -
|
---|
8 | ** e r a S t a r p v
|
---|
9 | ** - - - - - - - - - -
|
---|
10 | **
|
---|
11 | ** Convert star catalog coordinates to position+velocity vector.
|
---|
12 | **
|
---|
13 | ** Given (Note 1):
|
---|
14 | ** ra double right ascension (radians)
|
---|
15 | ** dec double declination (radians)
|
---|
16 | ** pmr double RA proper motion (radians/year)
|
---|
17 | ** pmd double Dec proper motion (radians/year)
|
---|
18 | ** px double parallax (arcseconds)
|
---|
19 | ** rv double radial velocity (km/s, positive = receding)
|
---|
20 | **
|
---|
21 | ** Returned (Note 2):
|
---|
22 | ** pv double[2][3] pv-vector (AU, AU/day)
|
---|
23 | **
|
---|
24 | ** Returned (function value):
|
---|
25 | ** int status:
|
---|
26 | ** 0 = no warnings
|
---|
27 | ** 1 = distance overridden (Note 6)
|
---|
28 | ** 2 = excessive speed (Note 7)
|
---|
29 | ** 4 = solution didn't converge (Note 8)
|
---|
30 | ** else = binary logical OR of the above
|
---|
31 | **
|
---|
32 | ** Notes:
|
---|
33 | **
|
---|
34 | ** 1) The star data accepted by this function are "observables" for an
|
---|
35 | ** imaginary observer at the solar-system barycenter. Proper motion
|
---|
36 | ** and radial velocity are, strictly, in terms of barycentric
|
---|
37 | ** coordinate time, TCB. For most practical applications, it is
|
---|
38 | ** permissible to neglect the distinction between TCB and ordinary
|
---|
39 | ** "proper" time on Earth (TT/TAI). The result will, as a rule, be
|
---|
40 | ** limited by the intrinsic accuracy of the proper-motion and
|
---|
41 | ** radial-velocity data; moreover, the pv-vector is likely to be
|
---|
42 | ** merely an intermediate result, so that a change of time unit
|
---|
43 | ** would cancel out overall.
|
---|
44 | **
|
---|
45 | ** In accordance with normal star-catalog conventions, the object's
|
---|
46 | ** right ascension and declination are freed from the effects of
|
---|
47 | ** secular aberration. The frame, which is aligned to the catalog
|
---|
48 | ** equator and equinox, is Lorentzian and centered on the SSB.
|
---|
49 | **
|
---|
50 | ** 2) The resulting position and velocity pv-vector is with respect to
|
---|
51 | ** the same frame and, like the catalog coordinates, is freed from
|
---|
52 | ** the effects of secular aberration. Should the "coordinate
|
---|
53 | ** direction", where the object was located at the catalog epoch, be
|
---|
54 | ** required, it may be obtained by calculating the magnitude of the
|
---|
55 | ** position vector pv[0][0-2] dividing by the speed of light in
|
---|
56 | ** AU/day to give the light-time, and then multiplying the space
|
---|
57 | ** velocity pv[1][0-2] by this light-time and adding the result to
|
---|
58 | ** pv[0][0-2].
|
---|
59 | **
|
---|
60 | ** Summarizing, the pv-vector returned is for most stars almost
|
---|
61 | ** identical to the result of applying the standard geometrical
|
---|
62 | ** "space motion" transformation. The differences, which are the
|
---|
63 | ** subject of the Stumpff paper referenced below, are:
|
---|
64 | **
|
---|
65 | ** (i) In stars with significant radial velocity and proper motion,
|
---|
66 | ** the constantly changing light-time distorts the apparent proper
|
---|
67 | ** motion. Note that this is a classical, not a relativistic,
|
---|
68 | ** effect.
|
---|
69 | **
|
---|
70 | ** (ii) The transformation complies with special relativity.
|
---|
71 | **
|
---|
72 | ** 3) Care is needed with units. The star coordinates are in radians
|
---|
73 | ** and the proper motions in radians per Julian year, but the
|
---|
74 | ** parallax is in arcseconds; the radial velocity is in km/s, but
|
---|
75 | ** the pv-vector result is in AU and AU/day.
|
---|
76 | **
|
---|
77 | ** 4) The RA proper motion is in terms of coordinate angle, not true
|
---|
78 | ** angle. If the catalog uses arcseconds for both RA and Dec proper
|
---|
79 | ** motions, the RA proper motion will need to be divided by cos(Dec)
|
---|
80 | ** before use.
|
---|
81 | **
|
---|
82 | ** 5) Straight-line motion at constant speed, in the inertial frame,
|
---|
83 | ** is assumed.
|
---|
84 | **
|
---|
85 | ** 6) An extremely small (or zero or negative) parallax is interpreted
|
---|
86 | ** to mean that the object is on the "celestial sphere", the radius
|
---|
87 | ** of which is an arbitrary (large) value (see the constant PXMIN).
|
---|
88 | ** When the distance is overridden in this way, the status,
|
---|
89 | ** initially zero, has 1 added to it.
|
---|
90 | **
|
---|
91 | ** 7) If the space velocity is a significant fraction of c (see the
|
---|
92 | ** constant VMAX), it is arbitrarily set to zero. When this action
|
---|
93 | ** occurs, 2 is added to the status.
|
---|
94 | **
|
---|
95 | ** 8) The relativistic adjustment involves an iterative calculation.
|
---|
96 | ** If the process fails to converge within a set number (IMAX) of
|
---|
97 | ** iterations, 4 is added to the status.
|
---|
98 | **
|
---|
99 | ** 9) The inverse transformation is performed by the function
|
---|
100 | ** eraPvstar.
|
---|
101 | **
|
---|
102 | ** Called:
|
---|
103 | ** eraS2pv spherical coordinates to pv-vector
|
---|
104 | ** eraPm modulus of p-vector
|
---|
105 | ** eraZp zero p-vector
|
---|
106 | ** eraPn decompose p-vector into modulus and direction
|
---|
107 | ** eraPdp scalar product of two p-vectors
|
---|
108 | ** eraSxp multiply p-vector by scalar
|
---|
109 | ** eraPmp p-vector minus p-vector
|
---|
110 | ** eraPpp p-vector plus p-vector
|
---|
111 | **
|
---|
112 | ** Reference:
|
---|
113 | **
|
---|
114 | ** Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
|
---|
115 | **
|
---|
116 | ** Copyright (C) 2013-2016, NumFOCUS Foundation.
|
---|
117 | ** Derived, with permission, from the SOFA library. See notes at end of file.
|
---|
118 | */
|
---|
119 | {
|
---|
120 | /* Smallest allowed parallax */
|
---|
121 | static const double PXMIN = 1e-7;
|
---|
122 |
|
---|
123 | /* Largest allowed speed (fraction of c) */
|
---|
124 | static const double VMAX = 0.5;
|
---|
125 |
|
---|
126 | /* Maximum number of iterations for relativistic solution */
|
---|
127 | static const int IMAX = 100;
|
---|
128 |
|
---|
129 | int i, iwarn;
|
---|
130 | double w, r, rd, rad, decd, v, x[3], usr[3], ust[3],
|
---|
131 | vsr, vst, betst, betsr, bett, betr,
|
---|
132 | dd, ddel, ur[3], ut[3],
|
---|
133 | d = 0.0, del = 0.0, /* to prevent */
|
---|
134 | odd = 0.0, oddel = 0.0, /* compiler */
|
---|
135 | od = 0.0, odel = 0.0; /* warnings */
|
---|
136 |
|
---|
137 |
|
---|
138 | /* Distance (AU). */
|
---|
139 | if (px >= PXMIN) {
|
---|
140 | w = px;
|
---|
141 | iwarn = 0;
|
---|
142 | } else {
|
---|
143 | w = PXMIN;
|
---|
144 | iwarn = 1;
|
---|
145 | }
|
---|
146 | r = ERFA_DR2AS / w;
|
---|
147 |
|
---|
148 | /* Radial velocity (AU/day). */
|
---|
149 | rd = ERFA_DAYSEC * rv * 1e3 / ERFA_DAU;
|
---|
150 |
|
---|
151 | /* Proper motion (radian/day). */
|
---|
152 | rad = pmr / ERFA_DJY;
|
---|
153 | decd = pmd / ERFA_DJY;
|
---|
154 |
|
---|
155 | /* To pv-vector (AU,AU/day). */
|
---|
156 | eraS2pv(ra, dec, r, rad, decd, rd, pv);
|
---|
157 |
|
---|
158 | /* If excessive velocity, arbitrarily set it to zero. */
|
---|
159 | v = eraPm(pv[1]);
|
---|
160 | if (v / ERFA_DC > VMAX) {
|
---|
161 | eraZp(pv[1]);
|
---|
162 | iwarn += 2;
|
---|
163 | }
|
---|
164 |
|
---|
165 | /* Isolate the radial component of the velocity (AU/day). */
|
---|
166 | eraPn(pv[0], &w, x);
|
---|
167 | vsr = eraPdp(x, pv[1]);
|
---|
168 | eraSxp(vsr, x, usr);
|
---|
169 |
|
---|
170 | /* Isolate the transverse component of the velocity (AU/day). */
|
---|
171 | eraPmp(pv[1], usr, ust);
|
---|
172 | vst = eraPm(ust);
|
---|
173 |
|
---|
174 | /* Special-relativity dimensionless parameters. */
|
---|
175 | betsr = vsr / ERFA_DC;
|
---|
176 | betst = vst / ERFA_DC;
|
---|
177 |
|
---|
178 | /* Determine the inertial-to-observed relativistic correction terms. */
|
---|
179 | bett = betst;
|
---|
180 | betr = betsr;
|
---|
181 | for (i = 0; i < IMAX; i++) {
|
---|
182 | d = 1.0 + betr;
|
---|
183 | del = sqrt(1.0 - betr*betr - bett*bett) - 1.0;
|
---|
184 | betr = d * betsr + del;
|
---|
185 | bett = d * betst;
|
---|
186 | if (i > 0) {
|
---|
187 | dd = fabs(d - od);
|
---|
188 | ddel = fabs(del - odel);
|
---|
189 | if ((i > 1) && (dd >= odd) && (ddel >= oddel)) break;
|
---|
190 | odd = dd;
|
---|
191 | oddel = ddel;
|
---|
192 | }
|
---|
193 | od = d;
|
---|
194 | odel = del;
|
---|
195 | }
|
---|
196 | if (i >= IMAX) iwarn += 4;
|
---|
197 |
|
---|
198 | /* Replace observed radial velocity with inertial value. */
|
---|
199 | w = (betsr != 0.0) ? d + del / betsr : 1.0;
|
---|
200 | eraSxp(w, usr, ur);
|
---|
201 |
|
---|
202 | /* Replace observed tangential velocity with inertial value. */
|
---|
203 | eraSxp(d, ust, ut);
|
---|
204 |
|
---|
205 | /* Combine the two to obtain the inertial space velocity. */
|
---|
206 | eraPpp(ur, ut, pv[1]);
|
---|
207 |
|
---|
208 | /* Return the status. */
|
---|
209 | return iwarn;
|
---|
210 |
|
---|
211 | }
|
---|
212 | /*----------------------------------------------------------------------
|
---|
213 | **
|
---|
214 | **
|
---|
215 | ** Copyright (C) 2013-2016, NumFOCUS Foundation.
|
---|
216 | ** All rights reserved.
|
---|
217 | **
|
---|
218 | ** This library is derived, with permission, from the International
|
---|
219 | ** Astronomical Union's "Standards of Fundamental Astronomy" library,
|
---|
220 | ** available from http://www.iausofa.org.
|
---|
221 | **
|
---|
222 | ** The ERFA version is intended to retain identical functionality to
|
---|
223 | ** the SOFA library, but made distinct through different function and
|
---|
224 | ** file names, as set out in the SOFA license conditions. The SOFA
|
---|
225 | ** original has a role as a reference standard for the IAU and IERS,
|
---|
226 | ** and consequently redistribution is permitted only in its unaltered
|
---|
227 | ** state. The ERFA version is not subject to this restriction and
|
---|
228 | ** therefore can be included in distributions which do not support the
|
---|
229 | ** concept of "read only" software.
|
---|
230 | **
|
---|
231 | ** Although the intent is to replicate the SOFA API (other than
|
---|
232 | ** replacement of prefix names) and results (with the exception of
|
---|
233 | ** bugs; any that are discovered will be fixed), SOFA is not
|
---|
234 | ** responsible for any errors found in this version of the library.
|
---|
235 | **
|
---|
236 | ** If you wish to acknowledge the SOFA heritage, please acknowledge
|
---|
237 | ** that you are using a library derived from SOFA, rather than SOFA
|
---|
238 | ** itself.
|
---|
239 | **
|
---|
240 | **
|
---|
241 | ** TERMS AND CONDITIONS
|
---|
242 | **
|
---|
243 | ** Redistribution and use in source and binary forms, with or without
|
---|
244 | ** modification, are permitted provided that the following conditions
|
---|
245 | ** are met:
|
---|
246 | **
|
---|
247 | ** 1 Redistributions of source code must retain the above copyright
|
---|
248 | ** notice, this list of conditions and the following disclaimer.
|
---|
249 | **
|
---|
250 | ** 2 Redistributions in binary form must reproduce the above copyright
|
---|
251 | ** notice, this list of conditions and the following disclaimer in
|
---|
252 | ** the documentation and/or other materials provided with the
|
---|
253 | ** distribution.
|
---|
254 | **
|
---|
255 | ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
|
---|
256 | ** the International Astronomical Union nor the names of its
|
---|
257 | ** contributors may be used to endorse or promote products derived
|
---|
258 | ** from this software without specific prior written permission.
|
---|
259 | **
|
---|
260 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
261 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
262 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
---|
263 | ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
---|
264 | ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
265 | ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
---|
266 | ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
---|
267 | ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
---|
268 | ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
269 | ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
---|
270 | ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
---|
271 | ** POSSIBILITY OF SUCH DAMAGE.
|
---|
272 | **
|
---|
273 | */
|
---|