| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | !   Author(s) : T. Bretz  02/2002 <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 18 | !               W. Wittek 09/2002 <mailto:wittek@mppmu.mpg.de> | 
|---|
| 19 | !               R. Wagner, 11/2004 <mailto:rwagner@mppmu.mpg.de> | 
|---|
| 20 | ! | 
|---|
| 21 | !   Copyright: MAGIC Software Development, 2000-2005 | 
|---|
| 22 | ! | 
|---|
| 23 | ! | 
|---|
| 24 | \* ======================================================================== */ | 
|---|
| 25 |  | 
|---|
| 26 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 27 | // | 
|---|
| 28 | //  MUnfold | 
|---|
| 29 | // | 
|---|
| 30 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 31 | #include "MUnfold.h" | 
|---|
| 32 |  | 
|---|
| 33 | #include <TMath.h> | 
|---|
| 34 | #include <TRandom3.h> | 
|---|
| 35 | #include <TVector.h> | 
|---|
| 36 | #include <TMatrixD.h> | 
|---|
| 37 | #include <TMatrix.h> | 
|---|
| 38 | #include <TH1.h> | 
|---|
| 39 | #include <TH2.h> | 
|---|
| 40 | #include <TH3.h> | 
|---|
| 41 | #include <TProfile.h> | 
|---|
| 42 | #include <TF1.h> | 
|---|
| 43 | #include <TMinuit.h> | 
|---|
| 44 | #include <TCanvas.h> | 
|---|
| 45 | #include <TMarker.h> | 
|---|
| 46 |  | 
|---|
| 47 | #include "MLog.h" | 
|---|
| 48 | #include "MLogManip.h" | 
|---|
| 49 |  | 
|---|
| 50 | ClassImp(MUnfold); | 
|---|
| 51 | using namespace std; | 
|---|
| 52 |  | 
|---|
| 53 | // ----------------------------------------------------------------------- | 
|---|
| 54 | // | 
|---|
| 55 | // fcnSmooth     (used by SmoothMigrationMatrix) | 
|---|
| 56 | // | 
|---|
| 57 | // is called by MINUIT | 
|---|
| 58 | // for given values of the parameters it calculates the function | 
|---|
| 59 | //                                               to be minimized | 
|---|
| 60 | // | 
|---|
| 61 | static void fcnSmooth(Int_t &npar, Double_t *gin, Double_t &f, | 
|---|
| 62 | Double_t *par, Int_t iflag) | 
|---|
| 63 | { | 
|---|
| 64 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit(); | 
|---|
| 65 |  | 
|---|
| 66 | Double_t a0 = par[0]; | 
|---|
| 67 | Double_t a1 = par[1]; | 
|---|
| 68 | Double_t a2 = par[2]; | 
|---|
| 69 |  | 
|---|
| 70 | Double_t b0 = par[3]; | 
|---|
| 71 | Double_t b1 = par[4]; | 
|---|
| 72 | Double_t b2 = par[5]; | 
|---|
| 73 |  | 
|---|
| 74 | // loop over bins of log10(E-true) | 
|---|
| 75 | Double_t chi2 = 0.0; | 
|---|
| 76 | Int_t npoints = 0; | 
|---|
| 77 | Double_t func[20]; | 
|---|
| 78 |  | 
|---|
| 79 | for (UInt_t j=0; j<gUnfold.fNb; j++) | 
|---|
| 80 | { | 
|---|
| 81 | Double_t yj   = ((double)j) + 0.5; | 
|---|
| 82 | Double_t mean = a0 + a1*yj + a2*yj*yj + yj; | 
|---|
| 83 | Double_t RMS  = b0 + b1*yj + b2*yj*yj; | 
|---|
| 84 |  | 
|---|
| 85 | if (RMS <= 0.0) | 
|---|
| 86 | { | 
|---|
| 87 | chi2 = 1.e20; | 
|---|
| 88 | break; | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | // loop over bins of log10(E-est) | 
|---|
| 92 |  | 
|---|
| 93 | //....................................... | 
|---|
| 94 | Double_t function; | 
|---|
| 95 | Double_t sum=0.0; | 
|---|
| 96 | for (UInt_t i=0; i<gUnfold.fNa; i++) | 
|---|
| 97 | { | 
|---|
| 98 | Double_t xlow = (double)i; | 
|---|
| 99 | Double_t xup  = xlow + 1.0; | 
|---|
| 100 | Double_t xl  = (xlow- mean) / RMS; | 
|---|
| 101 | Double_t xu  = (xup - mean) / RMS; | 
|---|
| 102 | function = (TMath::Freq(xu) - TMath::Freq(xl)); | 
|---|
| 103 |  | 
|---|
| 104 | //*fLog << "i, xl, xu, function = " <<  i <<  ",  "  << xl << ",  " | 
|---|
| 105 | //     << xu  << ",  " << function << endl; | 
|---|
| 106 |  | 
|---|
| 107 | if (function < 1.e-10) | 
|---|
| 108 | function = 0.0; | 
|---|
| 109 |  | 
|---|
| 110 | func[i] = function; | 
|---|
| 111 | sum += function; | 
|---|
| 112 | } | 
|---|
| 113 |  | 
|---|
| 114 | //      *fLog << "mean, RMS = "  << mean << ",  " << RMS | 
|---|
| 115 | //     << ",   j , sum of function = " << j << ",  " << sum << endl; | 
|---|
| 116 |  | 
|---|
| 117 | //....................................... | 
|---|
| 118 |  | 
|---|
| 119 | for (UInt_t i=0; i<gUnfold.fNa; i++) | 
|---|
| 120 | { | 
|---|
| 121 | if (sum != 0.0) | 
|---|
| 122 | func[i] /= sum; | 
|---|
| 123 |  | 
|---|
| 124 | gUnfold.fMigSmoo(i,j) = func[i]; | 
|---|
| 125 | gUnfold.fMigChi2(i,j) = 0.0; | 
|---|
| 126 |  | 
|---|
| 127 | // if relative error is greater than 30 % ignore the point | 
|---|
| 128 |  | 
|---|
| 129 | if (gUnfold.fMigOrig(i,j)     != 0 && | 
|---|
| 130 | gUnfold.fMigOrigerr2(i,j) != 0 && | 
|---|
| 131 | func[i] != 0  ) | 
|---|
| 132 | { | 
|---|
| 133 | if (gUnfold.fMigOrigerr2(i,j)/ | 
|---|
| 134 | (gUnfold.fMigOrig(i,j)*gUnfold.fMigOrig(i,j)) <= 0.09) | 
|---|
| 135 | { | 
|---|
| 136 | gUnfold.fMigChi2(i,j) =   ( gUnfold.fMigOrig(i,j) - func[i] ) | 
|---|
| 137 | * ( gUnfold.fMigOrig(i,j) - func[i] ) | 
|---|
| 138 | /   gUnfold.fMigOrigerr2(i,j); | 
|---|
| 139 | chi2 += gUnfold.fMigChi2(i,j); | 
|---|
| 140 | npoints += 1; | 
|---|
| 141 | } | 
|---|
| 142 | } | 
|---|
| 143 | } | 
|---|
| 144 | //....................................... | 
|---|
| 145 |  | 
|---|
| 146 | } | 
|---|
| 147 | f = chi2; | 
|---|
| 148 |  | 
|---|
| 149 | //*fLog << "fcnSmooth : f = " << f << endl; | 
|---|
| 150 |  | 
|---|
| 151 | //-------------------------------------------------------------------- | 
|---|
| 152 | // final calculations | 
|---|
| 153 | if (iflag == 3) | 
|---|
| 154 | { | 
|---|
| 155 | Int_t     NDF = npoints - npar; | 
|---|
| 156 | Double_t prob = TMath::Prob(chi2, NDF); | 
|---|
| 157 |  | 
|---|
| 158 | gLog << "fcnSmooth : npoints, chi2, NDF, prob = " << npoints << ",  "; | 
|---|
| 159 | gLog << chi2 << ",  " << NDF << ",  " << prob << endl; | 
|---|
| 160 | gLog << "=======================================" << endl; | 
|---|
| 161 | } | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 |  | 
|---|
| 165 | // ----------------------------------------------------------------------- | 
|---|
| 166 | // | 
|---|
| 167 | // fcnTikhonov2     (used by Tikhonov2) | 
|---|
| 168 | // | 
|---|
| 169 | // is called by MINUIT | 
|---|
| 170 | // for given values of the parameters it calculates the function F | 
|---|
| 171 | // the free parameters are the first (fNb-1) elements | 
|---|
| 172 | //                     of the normalized unfolded distribution | 
|---|
| 173 | // | 
|---|
| 174 | static void fcnTikhonov2(Int_t &npar, Double_t *gin, Double_t &f, | 
|---|
| 175 | Double_t *par, Int_t iflag) | 
|---|
| 176 | { | 
|---|
| 177 | MUnfold &gUnfold = *(MUnfold*)gMinuit->GetObjectFit(); | 
|---|
| 178 |  | 
|---|
| 179 | // (npar+1) is the number of bins of the unfolded distribuition (fNb) | 
|---|
| 180 | //  npar    is the number of free parameters                    (fNb-1) | 
|---|
| 181 |  | 
|---|
| 182 | UInt_t npar1 = npar + 1; | 
|---|
| 183 |  | 
|---|
| 184 | UInt_t fNa = gUnfold.fNa; | 
|---|
| 185 | UInt_t fNb = gUnfold.fNb; | 
|---|
| 186 | if (npar1 != fNb) | 
|---|
| 187 | { | 
|---|
| 188 | gLog << "fcnTikhonov2 : inconsistency in number of parameters; npar, fNb = "; | 
|---|
| 189 | gLog << npar << ",  " << fNb << endl; | 
|---|
| 190 | //return; | 
|---|
| 191 | } | 
|---|
| 192 | npar1 = fNb; | 
|---|
| 193 |  | 
|---|
| 194 | TMatrixD p(npar1, 1); | 
|---|
| 195 | TMatrixD &fVb = gUnfold.fVb; | 
|---|
| 196 |  | 
|---|
| 197 | // p is the normalized unfolded distribution | 
|---|
| 198 | // sum(p(i,0)) from i=0 to npar is equal to 1 | 
|---|
| 199 | Double_t sum = 0.0; | 
|---|
| 200 | for (Int_t i=0; i<npar; i++) | 
|---|
| 201 | { | 
|---|
| 202 | p(i,0) = par[i]; | 
|---|
| 203 | sum += par[i]; | 
|---|
| 204 | } | 
|---|
| 205 | p(npar,0) = 1.0 - sum; | 
|---|
| 206 |  | 
|---|
| 207 |  | 
|---|
| 208 | // all p(i,0) have to be greater than zero | 
|---|
| 209 | for (UInt_t i=0; i<npar1; i++) | 
|---|
| 210 | if (p(i,0) <= 0.0) | 
|---|
| 211 | { | 
|---|
| 212 | f = 1.e20; | 
|---|
| 213 | return; | 
|---|
| 214 | } | 
|---|
| 215 |  | 
|---|
| 216 | //....................... | 
|---|
| 217 | // take least squares result for the normaliztion | 
|---|
| 218 | TMatrixD alpha(gUnfold.fMigrat, TMatrixD::kMult, p); | 
|---|
| 219 |  | 
|---|
| 220 | //TMatrixD v4   (gUnfold.fVa, TMatrixD::kTransposeMult, | 
|---|
| 221 | //                                 gUnfold.fVacovInv); | 
|---|
| 222 | //TMatrixD norma(v4,  TMatrixD::kMult, gUnfold.fVa); | 
|---|
| 223 |  | 
|---|
| 224 | TMatrixD v5   (alpha, TMatrixD::kTransposeMult, gUnfold.fVacovInv); | 
|---|
| 225 | TMatrixD normb(v5,    TMatrixD::kMult, alpha); | 
|---|
| 226 |  | 
|---|
| 227 | TMatrixD normc(v5,    TMatrixD::kMult, gUnfold.fVa); | 
|---|
| 228 |  | 
|---|
| 229 | Double_t norm  = normc(0,0)/normb(0,0); | 
|---|
| 230 |  | 
|---|
| 231 | //....................... | 
|---|
| 232 |  | 
|---|
| 233 | // b is the unnormalized unfolded distribution | 
|---|
| 234 | // sum(b(i,0)) from i=0 to npar is equal to norm | 
|---|
| 235 | //                       (the total number of events) | 
|---|
| 236 | for (UInt_t i=0; i<npar1; i++) | 
|---|
| 237 | fVb(i,0) = p(i,0) * norm; | 
|---|
| 238 |  | 
|---|
| 239 | TMatrixD Gb(gUnfold.fMigrat, TMatrixD::kMult, fVb); | 
|---|
| 240 | TMatrixD v3(fNa, 1); | 
|---|
| 241 | v3 = gUnfold.fVa; | 
|---|
| 242 | v3 -= Gb; | 
|---|
| 243 |  | 
|---|
| 244 | TMatrixD v1(1,fNa); | 
|---|
| 245 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 246 | { | 
|---|
| 247 | v1(0,i) = 0; | 
|---|
| 248 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 249 | v1(0,i) += v3(j,0) * gUnfold.fVacovInv(j,i) ; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | for (UInt_t i = 0; i<fNa; i++) | 
|---|
| 253 | gUnfold.Chi2(i,0) = v1(0,i) * v3(i,0); | 
|---|
| 254 |  | 
|---|
| 255 | Double_t chisqsum = 0; | 
|---|
| 256 | for (Int_t i=0; i<gUnfold.Chi2.GetNrows(); i++) | 
|---|
| 257 | chisqsum += gUnfold.Chi2(i, 0); | 
|---|
| 258 | gUnfold.Chisq = chisqsum; | 
|---|
| 259 |  | 
|---|
| 260 | //----------------------------------------------------- | 
|---|
| 261 | // calculate 2nd derivative squared | 
|---|
| 262 | // regularization term (second derivative squared) | 
|---|
| 263 | gUnfold.SecDeriv = 0; | 
|---|
| 264 | for (UInt_t j=1; j<(fNb-1); j++) | 
|---|
| 265 | { | 
|---|
| 266 | const Double_t temp = | 
|---|
| 267 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0)) | 
|---|
| 268 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0)); | 
|---|
| 269 |  | 
|---|
| 270 | gUnfold.SecDeriv += temp*temp; | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | gUnfold.ZerDeriv = 0; | 
|---|
| 274 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 275 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0); | 
|---|
| 276 |  | 
|---|
| 277 | f = gUnfold.Chisq/2 * gUnfold.fW + gUnfold.SecDeriv; | 
|---|
| 278 |  | 
|---|
| 279 | //*fLog << "F=" << f      << " \tSecDeriv=" << gUnfold.SecDeriv | 
|---|
| 280 | //     << " \tchi2=" | 
|---|
| 281 | //    << gUnfold.Chisq << " \tfW=" << gUnfold.fW << endl; | 
|---|
| 282 |  | 
|---|
| 283 | //-------------------------------------------------------------------- | 
|---|
| 284 | // final calculations | 
|---|
| 285 | if (iflag == 3) | 
|---|
| 286 | { | 
|---|
| 287 | //.............................................. | 
|---|
| 288 | // calculate external error matrix of the fitted parameters 'val' | 
|---|
| 289 | // extend it with the covariances for y=1-sum(val) | 
|---|
| 290 | Double_t emat[20][20]; | 
|---|
| 291 | Int_t    ndim = 20; | 
|---|
| 292 | gMinuit->mnemat(&emat[0][0], ndim); | 
|---|
| 293 |  | 
|---|
| 294 | Double_t covv = 0; | 
|---|
| 295 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++) | 
|---|
| 296 | { | 
|---|
| 297 | Double_t cov = 0; | 
|---|
| 298 | for (UInt_t k=0; k<(gUnfold.fNb-1); k++) | 
|---|
| 299 | cov += emat[i][k]; | 
|---|
| 300 |  | 
|---|
| 301 | emat[i][gUnfold.fNb-1] = -cov; | 
|---|
| 302 | emat[gUnfold.fNb-1][i] = -cov; | 
|---|
| 303 |  | 
|---|
| 304 | covv += cov; | 
|---|
| 305 | } | 
|---|
| 306 | emat[gUnfold.fNb-1][gUnfold.fNb-1] = covv; | 
|---|
| 307 |  | 
|---|
| 308 | for (UInt_t i=0; i<gUnfold.fNb; i++) | 
|---|
| 309 | for (UInt_t k=0; k<gUnfold.fNb; k++) | 
|---|
| 310 | gUnfold.fVbcov(i,k) = emat[i][k] *norm*norm; | 
|---|
| 311 |  | 
|---|
| 312 | //----------------------------------------------------- | 
|---|
| 313 | //.............................................. | 
|---|
| 314 | // put unfolded distribution into fResult | 
|---|
| 315 | //     fResult(i,0)   value in bin i | 
|---|
| 316 | //     fResult(i,1)   error of value in bin i | 
|---|
| 317 |  | 
|---|
| 318 | gUnfold.fResult.ResizeTo(gUnfold.fNb, 5); | 
|---|
| 319 |  | 
|---|
| 320 | Double_t sum = 0; | 
|---|
| 321 | for (UInt_t i=0; i<(gUnfold.fNb-1); i++) | 
|---|
| 322 | { | 
|---|
| 323 | Double_t val; | 
|---|
| 324 | Double_t err; | 
|---|
| 325 | if (!gMinuit->GetParameter(i, val, err)) | 
|---|
| 326 | { | 
|---|
| 327 | gLog << "Error getting parameter #" << i << endl; | 
|---|
| 328 | return; | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | Double_t eplus; | 
|---|
| 332 | Double_t eminus; | 
|---|
| 333 | Double_t eparab; | 
|---|
| 334 | Double_t gcc; | 
|---|
| 335 | gMinuit->mnerrs(i, eplus, eminus, eparab, gcc); | 
|---|
| 336 |  | 
|---|
| 337 | gUnfold.fVb(i, 0)     = val    * norm; | 
|---|
| 338 |  | 
|---|
| 339 | gUnfold.fResult(i, 0) = val    * norm; | 
|---|
| 340 | gUnfold.fResult(i, 1) = eparab * norm; | 
|---|
| 341 | gUnfold.fResult(i, 2) = eplus  * norm; | 
|---|
| 342 | gUnfold.fResult(i, 3) = eminus * norm; | 
|---|
| 343 | gUnfold.fResult(i, 4) = gcc; | 
|---|
| 344 | sum += val; | 
|---|
| 345 | } | 
|---|
| 346 | gUnfold.fVb(gUnfold.fNb-1, 0)     = (1.0-sum) * norm; | 
|---|
| 347 |  | 
|---|
| 348 | gUnfold.fResult(gUnfold.fNb-1, 0) = (1.0-sum) * norm; | 
|---|
| 349 | gUnfold.fResult(gUnfold.fNb-1, 1) = | 
|---|
| 350 | sqrt(gUnfold.fVbcov(gUnfold.fNb-1,gUnfold.fNb-1)); | 
|---|
| 351 | gUnfold.fResult(gUnfold.fNb-1, 2) = 0; | 
|---|
| 352 | gUnfold.fResult(gUnfold.fNb-1, 3) = 0; | 
|---|
| 353 | gUnfold.fResult(gUnfold.fNb-1, 4) = 1; | 
|---|
| 354 | //.............................................. | 
|---|
| 355 |  | 
|---|
| 356 | //----------------------------------------------------- | 
|---|
| 357 | // calculate 0th derivative squared | 
|---|
| 358 | gUnfold.ZerDeriv = 0; | 
|---|
| 359 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 360 | gUnfold.ZerDeriv += fVb(j,0) * fVb(j,0); | 
|---|
| 361 |  | 
|---|
| 362 | //----------------------------------------------------- | 
|---|
| 363 | // calculate the entropy | 
|---|
| 364 |  | 
|---|
| 365 | gUnfold.Entropy = 0; | 
|---|
| 366 | for (UInt_t j=0; j<gUnfold.fNb; j++) | 
|---|
| 367 | if (p(j,0) > 0) | 
|---|
| 368 | gUnfold.Entropy += p(j,0) * log( p(j,0) ); | 
|---|
| 369 |  | 
|---|
| 370 |  | 
|---|
| 371 | //----------------------------------------------------- | 
|---|
| 372 | // calculate SpurSigma | 
|---|
| 373 | gUnfold.SpurSigma = 0.0; | 
|---|
| 374 | for (UInt_t m=0; m<fNb; m++) | 
|---|
| 375 | gUnfold.SpurSigma += gUnfold.fVbcov(m,m); | 
|---|
| 376 | // *fLog << "SpurSigma =" << SpurSigma << endl; | 
|---|
| 377 |  | 
|---|
| 378 | //----------------------------------------------------- | 
|---|
| 379 | gUnfold.SpurAR  = 0; | 
|---|
| 380 | gUnfold.DiffAR2 = 0; | 
|---|
| 381 |  | 
|---|
| 382 | //----------------------------------------------------- | 
|---|
| 383 | gUnfold.fNdf   = gUnfold.fNa; | 
|---|
| 384 | gUnfold.fChisq   = gUnfold.Chisq; | 
|---|
| 385 |  | 
|---|
| 386 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 387 | { | 
|---|
| 388 | gUnfold.fChi2(i,0) = gUnfold.Chi2(i,0); | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 |  | 
|---|
| 392 | UInt_t iNdf = (UInt_t) (gUnfold.fNdf+0.5); | 
|---|
| 393 |  | 
|---|
| 394 | //*fLog << "fcnTikhonov2 : fW, chisq (from fcnF) = " | 
|---|
| 395 | //     << gUnfold.fW << ",  " << gUnfold.fChisq << endl; | 
|---|
| 396 |  | 
|---|
| 397 | gUnfold.fProb = iNdf>0 ? TMath::Prob(gUnfold.fChisq, iNdf) : 0; | 
|---|
| 398 | } | 
|---|
| 399 | } | 
|---|
| 400 |  | 
|---|
| 401 |  | 
|---|
| 402 | TH1 *MUnfold::DrawMatrixClone(const TMatrixD &m, Option_t *opt="") | 
|---|
| 403 | { | 
|---|
| 404 | const Int_t nrows = m.GetNrows(); | 
|---|
| 405 | const Int_t ncols = m.GetNcols(); | 
|---|
| 406 |  | 
|---|
| 407 | TMatrix m2(nrows, ncols); | 
|---|
| 408 | for (int i=0; i<nrows; i++) | 
|---|
| 409 | for (int j=0; j<ncols; j++) | 
|---|
| 410 | m2(i, j) = m(i, j); | 
|---|
| 411 |  | 
|---|
| 412 | TH2F *hist = new TH2F(m2); | 
|---|
| 413 | hist->SetBit(kCanDelete); | 
|---|
| 414 | hist->Draw(opt); | 
|---|
| 415 | hist->SetDirectory(NULL); | 
|---|
| 416 |  | 
|---|
| 417 | return hist; | 
|---|
| 418 |  | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 |  | 
|---|
| 422 | TH1 *MUnfold::DrawMatrixColClone(const TMatrixD &m, Option_t *opt="", Int_t col=0) | 
|---|
| 423 | { | 
|---|
| 424 | const Int_t nrows = m.GetNrows(); | 
|---|
| 425 |  | 
|---|
| 426 | TVector vec(nrows); | 
|---|
| 427 | for (int i=0; i<nrows; i++) | 
|---|
| 428 | vec(i) = m(i, col); | 
|---|
| 429 |  | 
|---|
| 430 | TH1F *hist = new TH1F("TVector","",nrows,0,nrows); | 
|---|
| 431 | for (int i=0; i<nrows; i++) | 
|---|
| 432 | hist->SetBinContent(i+1, vec(i)); | 
|---|
| 433 |  | 
|---|
| 434 | hist->SetBit(kCanDelete); | 
|---|
| 435 | hist->Draw(opt); | 
|---|
| 436 | hist->SetDirectory(NULL); | 
|---|
| 437 |  | 
|---|
| 438 | return hist; | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 |  | 
|---|
| 442 | void MUnfold::PrintTH3Content(const TH3 &hist) | 
|---|
| 443 | { | 
|---|
| 444 | *fLog << hist.GetName() << ": " << hist.GetTitle() << endl; | 
|---|
| 445 | *fLog << "-----------------------------------------------------" << endl; | 
|---|
| 446 | for (Int_t i=1; i<=hist.GetNbinsX(); i++) | 
|---|
| 447 | { | 
|---|
| 448 | for (Int_t j=1; j<=hist.GetNbinsY(); j++) | 
|---|
| 449 | for (Int_t k=1; k<=hist.GetNbinsZ(); k++) | 
|---|
| 450 | *fLog << hist.GetBinContent(i,j,k) << " \t"; | 
|---|
| 451 | *fLog << endl << endl; | 
|---|
| 452 | } | 
|---|
| 453 | } | 
|---|
| 454 |  | 
|---|
| 455 | void MUnfold::PrintTH3Error(const TH3 &hist) | 
|---|
| 456 | { | 
|---|
| 457 | *fLog << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl; | 
|---|
| 458 | *fLog << "-----------------------------------------------------" << endl; | 
|---|
| 459 | for (Int_t i=1; i<=hist.GetNbinsX(); i++) | 
|---|
| 460 | { | 
|---|
| 461 | for (Int_t j=1; j<=hist.GetNbinsY(); j++) | 
|---|
| 462 | for (Int_t k=1; k<=hist.GetNbinsZ(); k++) | 
|---|
| 463 | *fLog << hist.GetBinError(i, j, k) << " \t"; | 
|---|
| 464 | *fLog << endl << endl; | 
|---|
| 465 | } | 
|---|
| 466 | } | 
|---|
| 467 |  | 
|---|
| 468 | void MUnfold::PrintTH2Content(const TH2 &hist) | 
|---|
| 469 | { | 
|---|
| 470 | *fLog << hist.GetName() << ": " << hist.GetTitle() << endl; | 
|---|
| 471 | *fLog << "-----------------------------------------------------" << endl; | 
|---|
| 472 | for (Int_t i=1; i<=hist.GetNbinsX(); i++) | 
|---|
| 473 | for (Int_t j=1; j<=hist.GetNbinsY(); j++) | 
|---|
| 474 | *fLog << hist.GetBinContent(i,j) << " \t"; | 
|---|
| 475 | *fLog << endl << endl; | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | void MUnfold::PrintTH2Error(const TH2 &hist) | 
|---|
| 479 | { | 
|---|
| 480 | *fLog << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl; | 
|---|
| 481 | *fLog << "-----------------------------------------------------" << endl; | 
|---|
| 482 | for (Int_t i=1; i<=hist.GetNbinsX(); i++) | 
|---|
| 483 | for (Int_t j=1; j<=hist.GetNbinsY(); j++) | 
|---|
| 484 | *fLog << hist.GetBinError(i, j) << " \t"; | 
|---|
| 485 | *fLog << endl << endl; | 
|---|
| 486 | } | 
|---|
| 487 |  | 
|---|
| 488 | void MUnfold::PrintTH1Content(const TH1 &hist) | 
|---|
| 489 | { | 
|---|
| 490 | *fLog << hist.GetName() << ": " << hist.GetTitle() << endl; | 
|---|
| 491 | *fLog << "-----------------------------------------------------" << endl; | 
|---|
| 492 | for (Int_t i=1; i<=hist.GetNbinsX(); i++) | 
|---|
| 493 | *fLog << hist.GetBinContent(i) << " \t"; | 
|---|
| 494 | *fLog << endl << endl; | 
|---|
| 495 | } | 
|---|
| 496 |  | 
|---|
| 497 | void MUnfold::PrintTH1Error(const TH1 &hist) | 
|---|
| 498 | { | 
|---|
| 499 | *fLog << hist.GetName() << ": " << hist.GetTitle() << " <error>" << endl; | 
|---|
| 500 | *fLog << "-----------------------------------------------------" << endl; | 
|---|
| 501 | for (Int_t i=1; i<=hist.GetNbinsX(); i++) | 
|---|
| 502 | *fLog << hist.GetBinError(i) << " \t"; | 
|---|
| 503 | *fLog << endl << endl; | 
|---|
| 504 | } | 
|---|
| 505 |  | 
|---|
| 506 | void MUnfold::CopyCol(TMatrixD &m, const TH1 &h, Int_t col=0) | 
|---|
| 507 | { | 
|---|
| 508 | const Int_t n = m.GetNrows(); | 
|---|
| 509 |  | 
|---|
| 510 | for (Int_t i=0; i<n; i++) | 
|---|
| 511 | m(i, col) = h.GetBinContent(i+1); | 
|---|
| 512 | } | 
|---|
| 513 |  | 
|---|
| 514 | void MUnfold::CopyCol(TH1 &h, const TMatrixD &m, Int_t col=0) | 
|---|
| 515 | { | 
|---|
| 516 | const Int_t n = m.GetNrows(); | 
|---|
| 517 |  | 
|---|
| 518 | for (Int_t i=0; i<n; i++) | 
|---|
| 519 | h.SetBinContent(i+1, m(i, col)); | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | void MUnfold::CopyH2M(TMatrixD &m, const TH2 &h) | 
|---|
| 523 | { | 
|---|
| 524 | const Int_t nx = m.GetNrows(); | 
|---|
| 525 | const Int_t ny = m.GetNcols(); | 
|---|
| 526 |  | 
|---|
| 527 | for (Int_t i=0; i<nx; i++) | 
|---|
| 528 | for (Int_t j=0; j<ny; j++) | 
|---|
| 529 | m(i, j) = h.GetBinContent(i+1, j+1); | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 | void MUnfold::CopySqr(TMatrixD &m, const TH1 &h) | 
|---|
| 533 | { | 
|---|
| 534 | const Int_t nx = m.GetNrows(); | 
|---|
| 535 | const Int_t ny = m.GetNcols(); | 
|---|
| 536 |  | 
|---|
| 537 | for (Int_t i=0; i<nx; i++) | 
|---|
| 538 | for (Int_t j=0; j<ny; j++) | 
|---|
| 539 | { | 
|---|
| 540 | const Double_t bin =  h.GetBinContent(i+1, j+1); | 
|---|
| 541 | m(i, j) = bin*bin; | 
|---|
| 542 | } | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | Double_t MUnfold::GetMatrixSumRow(const TMatrixD &m, Int_t row) | 
|---|
| 546 | { | 
|---|
| 547 | const Int_t n = m.GetNcols(); | 
|---|
| 548 |  | 
|---|
| 549 | Double_t sum = 0; | 
|---|
| 550 | for (Int_t i=0; i<n; i++) | 
|---|
| 551 | sum += m(row, i); | 
|---|
| 552 |  | 
|---|
| 553 | return sum; | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | Double_t MUnfold::GetMatrixSumDiag(const TMatrixD &m) | 
|---|
| 557 | { | 
|---|
| 558 | const Int_t n = m.GetNcols(); | 
|---|
| 559 |  | 
|---|
| 560 | Double_t sum = 0; | 
|---|
| 561 | for (Int_t i=0; i<n; i++) | 
|---|
| 562 | sum += m(i, i); | 
|---|
| 563 |  | 
|---|
| 564 | return sum; | 
|---|
| 565 | } | 
|---|
| 566 |  | 
|---|
| 567 | Double_t MUnfold::GetMatrixSumCol(const TMatrixD &m, Int_t col=0) | 
|---|
| 568 | { | 
|---|
| 569 | const Int_t n = m.GetNrows(); | 
|---|
| 570 |  | 
|---|
| 571 | Double_t sum = 0; | 
|---|
| 572 | for (Int_t i=0; i<n; i++) | 
|---|
| 573 | sum += m(i, col); | 
|---|
| 574 |  | 
|---|
| 575 | return sum; | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 | Double_t MUnfold::GetMatrixSum(const TMatrixD &m) | 
|---|
| 579 | { | 
|---|
| 580 | const Int_t n = m.GetNrows(); | 
|---|
| 581 |  | 
|---|
| 582 | Double_t sum = 0; | 
|---|
| 583 | for (Int_t i=0; i<n; i++) | 
|---|
| 584 | sum += GetMatrixSumRow(m, i); | 
|---|
| 585 |  | 
|---|
| 586 | return sum; | 
|---|
| 587 | } | 
|---|
| 588 |  | 
|---|
| 589 |  | 
|---|
| 590 | Double_t MUnfold::CalcSpurSigma(TMatrixD &T, Double_t norm) | 
|---|
| 591 | { | 
|---|
| 592 | Double_t spursigma = 0; | 
|---|
| 593 |  | 
|---|
| 594 | for (UInt_t a=0; a<fNb; a++) | 
|---|
| 595 | { | 
|---|
| 596 | for (UInt_t b=0; b<fNb; b++) | 
|---|
| 597 | { | 
|---|
| 598 | fVbcov(a,b) = 0; | 
|---|
| 599 |  | 
|---|
| 600 | for (UInt_t c=0; c<fNa; c++) | 
|---|
| 601 | for (UInt_t d=0; d<fNa; d++) | 
|---|
| 602 | fVbcov(a,b) += T(a,d)*fVacov(d,c)*T(b,c); | 
|---|
| 603 |  | 
|---|
| 604 | fVbcov(a,b) *= norm*norm; | 
|---|
| 605 | } | 
|---|
| 606 | spursigma += fVbcov(a,a); | 
|---|
| 607 | } | 
|---|
| 608 |  | 
|---|
| 609 | return spursigma; | 
|---|
| 610 | } | 
|---|
| 611 |  | 
|---|
| 612 |  | 
|---|
| 613 | MUnfold::MUnfold(TH1D &ha, TH2D &hacov, TH2D &hmig) | 
|---|
| 614 | : fVEps(hmig.GetYaxis()->GetNbins(),1), fVEps0(fVEps, 0) | 
|---|
| 615 | { | 
|---|
| 616 | // ha      is the distribution to be unfolded | 
|---|
| 617 | // hacov   is the covariance matrix of ha | 
|---|
| 618 | // hmig    is the migration matrix; | 
|---|
| 619 | //         this matrix will be used in the unfolding | 
|---|
| 620 | //         unless SmoothMigrationMatrix(*hmigrat) is called; | 
|---|
| 621 | //         in the latter case hmigrat is smoothed | 
|---|
| 622 | //         and the smoothed matrix is used in the unfolding | 
|---|
| 623 |  | 
|---|
| 624 | // Eigen values of the matrix G, which are smaller than EpsLambda | 
|---|
| 625 | // will be considered as being zero | 
|---|
| 626 | EpsLambda = 1.e-10; | 
|---|
| 627 | fW = 0.0; | 
|---|
| 628 |  | 
|---|
| 629 | fNa  = hmig.GetXaxis()->GetNbins(); | 
|---|
| 630 | const Double_t alow = hmig.GetXaxis()->GetXmin(); | 
|---|
| 631 | const Double_t aup  = hmig.GetXaxis()->GetXmax(); | 
|---|
| 632 |  | 
|---|
| 633 | fNb  = hmig.GetYaxis()->GetNbins(); | 
|---|
| 634 | const Double_t blow = hmig.GetYaxis()->GetXmin(); | 
|---|
| 635 | const Double_t bup  = hmig.GetYaxis()->GetXmax(); | 
|---|
| 636 |  | 
|---|
| 637 |  | 
|---|
| 638 | UInt_t Na = ha.GetNbinsX(); | 
|---|
| 639 | if (fNa != Na) | 
|---|
| 640 | { | 
|---|
| 641 | *fLog << "MUnfold::MUnfold : dimensions do not match,  fNa = "; | 
|---|
| 642 | *fLog << fNa << ",   Na = " << Na << endl; | 
|---|
| 643 | } | 
|---|
| 644 |  | 
|---|
| 645 | *fLog << "MUnfold::MUnfold :" << endl; | 
|---|
| 646 | *fLog << "==================" << endl; | 
|---|
| 647 | *fLog << "   fNa = " << fNa << ",   fNb = " << fNb << endl; | 
|---|
| 648 |  | 
|---|
| 649 | // ------------------------ | 
|---|
| 650 |  | 
|---|
| 651 | fVa.ResizeTo(fNa, 1); | 
|---|
| 652 | CopyCol(fVa, ha, 0); | 
|---|
| 653 |  | 
|---|
| 654 | *fLog << "   fVa = "; | 
|---|
| 655 |  | 
|---|
| 656 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 657 | *fLog << fVa(i,0) << " \t"; | 
|---|
| 658 | *fLog << endl; | 
|---|
| 659 |  | 
|---|
| 660 | Double_t vaevents = GetMatrixSumCol(fVa, 0); | 
|---|
| 661 | *fLog << "   Total number of events in fVa = " << vaevents << endl; | 
|---|
| 662 |  | 
|---|
| 663 | // ------------------------ | 
|---|
| 664 |  | 
|---|
| 665 | fChi2.ResizeTo(fNa,1); | 
|---|
| 666 | Chi2.ResizeTo(fNa,1); | 
|---|
| 667 |  | 
|---|
| 668 | // ------------------------ | 
|---|
| 669 |  | 
|---|
| 670 | fVacov.ResizeTo(fNa, fNa); | 
|---|
| 671 | fSpurVacov = 0; | 
|---|
| 672 |  | 
|---|
| 673 | CopyH2M(fVacov, hacov); | 
|---|
| 674 |  | 
|---|
| 675 | fVapoints = 0; | 
|---|
| 676 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 677 | if (fVa(i,0)>0 && fVacov(i,i)<fVa(i,0)*fVa(i,0)) | 
|---|
| 678 | fVapoints++; | 
|---|
| 679 |  | 
|---|
| 680 | fSpurVacov = GetMatrixSumDiag(fVacov); | 
|---|
| 681 |  | 
|---|
| 682 | //*fLog << "MUnfold::MUnfold :   fVacov = " << endl; | 
|---|
| 683 | //*fLog << "==============================" << endl; | 
|---|
| 684 | //fVacov.Print(); | 
|---|
| 685 |  | 
|---|
| 686 | *fLog << "   Number of significant points in fVa = "; | 
|---|
| 687 | *fLog << fVapoints << endl; | 
|---|
| 688 |  | 
|---|
| 689 | *fLog << "   Spur of fVacov = "; | 
|---|
| 690 | *fLog << fSpurVacov << endl; | 
|---|
| 691 |  | 
|---|
| 692 | // ------------------------ | 
|---|
| 693 |  | 
|---|
| 694 | fVacovInv.ResizeTo(fNa, fNa); | 
|---|
| 695 | fVacovInv = fVacov; | 
|---|
| 696 | fVacovInv.InvertPosDef(); | 
|---|
| 697 |  | 
|---|
| 698 | //*fLog << "MUnfold::MUnfold :   fVacovInv = " << endl; | 
|---|
| 699 | //*fLog << "==================================" << endl; | 
|---|
| 700 | //fVacovInv.Print(); | 
|---|
| 701 |  | 
|---|
| 702 | // ------------------------ | 
|---|
| 703 | // fMigrat is the migration matrix to be used in the unfolding; | 
|---|
| 704 | // fMigrat may be overwritten by SmoothMigrationMatrix | 
|---|
| 705 |  | 
|---|
| 706 | fMigrat.ResizeTo(fNa, fNb); // row, col | 
|---|
| 707 |  | 
|---|
| 708 | CopyH2M(fMigrat, hmig); | 
|---|
| 709 |  | 
|---|
| 710 |  | 
|---|
| 711 | // ------------------------ | 
|---|
| 712 |  | 
|---|
| 713 | fMigraterr2.ResizeTo(fNa, fNb); // row, col | 
|---|
| 714 | CopySqr(fMigraterr2, hmig); | 
|---|
| 715 |  | 
|---|
| 716 | // normaxlize | 
|---|
| 717 |  | 
|---|
| 718 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 719 | { | 
|---|
| 720 | const Double_t sum = GetMatrixSumCol(fMigrat, j); | 
|---|
| 721 |  | 
|---|
| 722 | if (sum==0) | 
|---|
| 723 | continue; | 
|---|
| 724 |  | 
|---|
| 725 | TMatrixDColumn col1(fMigrat, j); | 
|---|
| 726 | col1 *= 1./sum; | 
|---|
| 727 |  | 
|---|
| 728 | TMatrixDColumn col2(fMigraterr2, j); | 
|---|
| 729 | col2 *= 1./(sum*sum); | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 | //*fLog << "MUnfold::MUnfold :   fMigrat = " << endl; | 
|---|
| 733 | //*fLog << "===============================" << endl; | 
|---|
| 734 | //fMigrat.Print(); | 
|---|
| 735 |  | 
|---|
| 736 | //*fLog << "MUnfold::MUnfold :   fMigraterr2 = " << endl; | 
|---|
| 737 | //*fLog << "===================================" << endl; | 
|---|
| 738 | //fMigraterr2.Print(); | 
|---|
| 739 |  | 
|---|
| 740 | // ------------------------ | 
|---|
| 741 | G.ResizeTo(fNa, fNa); | 
|---|
| 742 | EigenValue.ResizeTo(fNa); | 
|---|
| 743 | Eigen.ResizeTo(fNa, fNa); | 
|---|
| 744 |  | 
|---|
| 745 | fMigOrig.ResizeTo(fNa, fNb); | 
|---|
| 746 | fMigOrigerr2.ResizeTo(fNa, fNb); | 
|---|
| 747 |  | 
|---|
| 748 | fMigSmoo.ResizeTo    (fNa, fNb); | 
|---|
| 749 | fMigSmooerr2.ResizeTo(fNa, fNb); | 
|---|
| 750 | fMigChi2.ResizeTo    (fNa, fNb); | 
|---|
| 751 |  | 
|---|
| 752 | // ------------------------ | 
|---|
| 753 |  | 
|---|
| 754 | fVEps0 = 1./fNb; | 
|---|
| 755 |  | 
|---|
| 756 | //*fLog << "MUnfold::MUnfold :   Default prior distribution fVEps = " << endl; | 
|---|
| 757 | //*fLog << "========================================================" << endl; | 
|---|
| 758 | //fVEps.Print(); | 
|---|
| 759 |  | 
|---|
| 760 | // ------------------------ | 
|---|
| 761 |  | 
|---|
| 762 | fVb.ResizeTo(fNb,1); | 
|---|
| 763 | fVbcov.ResizeTo(fNb,fNb); | 
|---|
| 764 |  | 
|---|
| 765 | // ---------------------------------------------------- | 
|---|
| 766 | // number and range of weights to be scanned | 
|---|
| 767 | Nix  = 30; | 
|---|
| 768 | xmin = 1.e-5; | 
|---|
| 769 | xmax = 1.e5; | 
|---|
| 770 | dlogx = (log10(xmax)-log10(xmin)) / Nix; | 
|---|
| 771 |  | 
|---|
| 772 | SpSig.ResizeTo (Nix); | 
|---|
| 773 | SpAR.ResizeTo  (Nix); | 
|---|
| 774 | chisq.ResizeTo (Nix); | 
|---|
| 775 | SecDer.ResizeTo(Nix); | 
|---|
| 776 | ZerDer.ResizeTo(Nix); | 
|---|
| 777 | Entrop.ResizeTo(Nix); | 
|---|
| 778 | DAR2.ResizeTo  (Nix); | 
|---|
| 779 | Dsqbar.ResizeTo(Nix); | 
|---|
| 780 |  | 
|---|
| 781 | //------------------------------------ | 
|---|
| 782 | // plots as a function of the iteration  number | 
|---|
| 783 |  | 
|---|
| 784 | hBchisq = new TH1D("Bchisq", "chisq", | 
|---|
| 785 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 786 |  | 
|---|
| 787 | hBSpAR  = new TH1D("BSpAR", "SpurAR", | 
|---|
| 788 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 789 |  | 
|---|
| 790 | hBDSpAR  = new TH1D("BDSpAR", "Delta(SpurAR)", | 
|---|
| 791 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 792 |  | 
|---|
| 793 | hBSpSig = new TH1D("BSpSig", "SpurSigma/SpurC", | 
|---|
| 794 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 795 |  | 
|---|
| 796 | hBDSpSig = new TH1D("BDSpSig", "Delta(SpurSigma/SpurC)", | 
|---|
| 797 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 798 |  | 
|---|
| 799 | hBSecDeriv = new TH1D("BSecDeriv", "Second Derivative squared", | 
|---|
| 800 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 801 |  | 
|---|
| 802 | hBDSecDeriv = new TH1D("BDSecDeriv", "Delta(Second Derivative squared)", | 
|---|
| 803 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 804 |  | 
|---|
| 805 | hBZerDeriv = new TH1D("BZerDeriv", "Zero Derivative squared", | 
|---|
| 806 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 807 |  | 
|---|
| 808 | hBDZerDeriv = new TH1D("BDZerDeriv", "Delta(Zero Derivative squared)", | 
|---|
| 809 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 810 |  | 
|---|
| 811 | hBEntropy = new TH1D("BEntrop", "Entropy", | 
|---|
| 812 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 813 |  | 
|---|
| 814 | hBDEntropy = new TH1D("BDEntrop", "Delta(Entropy)", | 
|---|
| 815 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 816 |  | 
|---|
| 817 | hBDAR2 = new TH1D("BDAR2", "norm(AR-AR+)", | 
|---|
| 818 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 819 |  | 
|---|
| 820 | hBD2bar = new TH1D("BD2bar", "(b_unfolded-b_ideal)**2", | 
|---|
| 821 | Nix, log10(xmin)-dlogx/2.0, log10(xmax)-dlogx/2.0 ); | 
|---|
| 822 |  | 
|---|
| 823 | //------------------------------------- | 
|---|
| 824 | // original migration matrix | 
|---|
| 825 | fhmig = new TH2D("fMigrat", "Migration matrix", | 
|---|
| 826 | fNa, alow, aup, fNb, blow, bup); | 
|---|
| 827 | fhmig->Sumw2(); | 
|---|
| 828 |  | 
|---|
| 829 | //------------------------------------- | 
|---|
| 830 | // smoothed migration matrix | 
|---|
| 831 | shmig = new TH2D("sMigrat", "Smoothed migration matrix", | 
|---|
| 832 | fNa, alow, aup, fNb, blow, bup); | 
|---|
| 833 | shmig->Sumw2(); | 
|---|
| 834 |  | 
|---|
| 835 | //------------------------------------- | 
|---|
| 836 | // chi2 contributions for smoothing of migration matrix | 
|---|
| 837 | shmigChi2 = new TH2D("sMigratChi2", "Chi2 contr. for smoothing", | 
|---|
| 838 | fNa, alow, aup, fNb, blow, bup); | 
|---|
| 839 |  | 
|---|
| 840 | //------------------------------------- | 
|---|
| 841 | // eigen values of matrix G = M * M(transposed) | 
|---|
| 842 | hEigen = new TH1D("Eigen", "Eigen values of M*MT", | 
|---|
| 843 | fNa, 0.5, fNa+0.5); | 
|---|
| 844 |  | 
|---|
| 845 | //------------------------------------ | 
|---|
| 846 | // Ideal distribution | 
|---|
| 847 |  | 
|---|
| 848 | fhb0 = new TH1D("fhb0", "Ideal distribution", fNb, blow, bup); | 
|---|
| 849 | fhb0->Sumw2(); | 
|---|
| 850 |  | 
|---|
| 851 |  | 
|---|
| 852 | //------------------------------------ | 
|---|
| 853 | // Distribution to be unfolded | 
|---|
| 854 | fha = new TH1D("fha", "Distribution to be unfolded", fNa, alow, aup); | 
|---|
| 855 | fha->Sumw2(); | 
|---|
| 856 |  | 
|---|
| 857 | //------------------------------------ | 
|---|
| 858 | // Prior distribution | 
|---|
| 859 | hprior = new TH1D("Prior", "Prior distribution", fNb, blow, bup); | 
|---|
| 860 |  | 
|---|
| 861 | //-----------------------------S------- | 
|---|
| 862 | // Unfolded distribution | 
|---|
| 863 | hb = new TH1D("DataSp", "Unfolded distribution", fNb, blow, bup); | 
|---|
| 864 | hb->Sumw2(); | 
|---|
| 865 |  | 
|---|
| 866 | } | 
|---|
| 867 |  | 
|---|
| 868 |  | 
|---|
| 869 | // -------------------------------------------------------------------------- | 
|---|
| 870 | // | 
|---|
| 871 | // Default destructor. | 
|---|
| 872 | // | 
|---|
| 873 | MUnfold::~MUnfold() | 
|---|
| 874 | { | 
|---|
| 875 | //       if (hBchisq) delete hBchisq; | 
|---|
| 876 | //       if (hBSpAR) delete hBSpAR; | 
|---|
| 877 | //       if (hBDSpAR) delete hBDSpAR; | 
|---|
| 878 | //       if (hBSpSig) delete hBSpSig; | 
|---|
| 879 | //       if (hBDSpSig) delete hBDSpSig; | 
|---|
| 880 | //       if (hBSecDeriv) delete hBSecDeriv; | 
|---|
| 881 | //       if (hBSecDeriv) delete hBDSecDeriv; | 
|---|
| 882 | //       if (hBZerDeriv) delete hBZerDeriv; | 
|---|
| 883 | //       if (hBDZerDeriv) delete hBDZerDeriv; | 
|---|
| 884 | //       if (hBEntropy) delete hBEntropy; | 
|---|
| 885 | //       if (hBDEntropy) delete hBDEntropy; | 
|---|
| 886 | //       if (hBDAR2) delete hBDAR2; | 
|---|
| 887 | //       if (hBD2bar) delete hBD2bar; | 
|---|
| 888 | //       if (fhmig) delete fhmig; | 
|---|
| 889 | //       if (shmig) delete shmig; | 
|---|
| 890 | //       if (shmigChi2) delete shmigChi2; | 
|---|
| 891 | //       if (hEigen) delete hEigen; | 
|---|
| 892 | //       if (fhb0) delete fhb0; | 
|---|
| 893 | //       if (fha) delete fha; | 
|---|
| 894 | //       if (hprior) delete hprior; | 
|---|
| 895 | //       if (hb) delete hb; | 
|---|
| 896 | } | 
|---|
| 897 |  | 
|---|
| 898 | // ----------------------------------------------------------------------- | 
|---|
| 899 | // | 
|---|
| 900 | // Define prior distribution to be a constant | 
|---|
| 901 | // | 
|---|
| 902 | void MUnfold::SetPriorConstant() | 
|---|
| 903 | { | 
|---|
| 904 | fVEps0 = 1./fNb; | 
|---|
| 905 |  | 
|---|
| 906 | CopyCol(*hprior, fVEps); | 
|---|
| 907 |  | 
|---|
| 908 | //*fLog << "SetPriorConstant : Prior distribution fVEps = " << endl; | 
|---|
| 909 | //*fLog << "==============================================" << endl; | 
|---|
| 910 | //fVEps.Print(); | 
|---|
| 911 | } | 
|---|
| 912 |  | 
|---|
| 913 | // ----------------------------------------------------------------------- | 
|---|
| 914 | // | 
|---|
| 915 | // Take prior distribution from the histogram 'ha' | 
|---|
| 916 | // which may have a different binning than 'hprior' | 
|---|
| 917 | // | 
|---|
| 918 | Bool_t MUnfold::SetPriorRebin(TH1D &ha) | 
|---|
| 919 | { | 
|---|
| 920 |  | 
|---|
| 921 | // ------------------------------------------------------------------ | 
|---|
| 922 | // | 
|---|
| 923 | // fill the contents of histogram 'ha' into the histogram 'hprior'; | 
|---|
| 924 | // the histograms need not have the same binning; | 
|---|
| 925 | // if the binnings are different, the bin contents of histogram 'ha' | 
|---|
| 926 | //    are distributed properly (linearly) over the bins of 'hprior' | 
|---|
| 927 | // | 
|---|
| 928 |  | 
|---|
| 929 | const Int_t    na   = ha.GetNbinsX(); | 
|---|
| 930 | const Double_t alow = ha.GetBinLowEdge(1); | 
|---|
| 931 | const Double_t aup  = ha.GetBinLowEdge(na+1); | 
|---|
| 932 |  | 
|---|
| 933 | const Int_t    nb   = hprior->GetNbinsX(); | 
|---|
| 934 | const Double_t blow = hprior->GetBinLowEdge(1); | 
|---|
| 935 | const Double_t bup  = hprior->GetBinLowEdge(nb+1); | 
|---|
| 936 |  | 
|---|
| 937 | // check whether there is an overlap | 
|---|
| 938 | //       between the x ranges of the 2 histograms | 
|---|
| 939 | if (alow>bup || aup<blow) | 
|---|
| 940 | { | 
|---|
| 941 | *fLog << "Rebinning not possible because there is no overlap of the x ranges of the two histograms" << endl; | 
|---|
| 942 | return kFALSE; | 
|---|
| 943 | } | 
|---|
| 944 |  | 
|---|
| 945 | // there is an overlap | 
|---|
| 946 | //******************** | 
|---|
| 947 | Double_t sum = 0; | 
|---|
| 948 | for (Int_t j=1; j<=nb; j++) | 
|---|
| 949 | { | 
|---|
| 950 | const Double_t yl = hprior->GetBinLowEdge(j); | 
|---|
| 951 | const Double_t yh = hprior->GetBinLowEdge(j+1); | 
|---|
| 952 |  | 
|---|
| 953 | // search bins of histogram ha which contribute | 
|---|
| 954 | // to bin j of histogram hb | 
|---|
| 955 | //---------------- | 
|---|
| 956 | Int_t il=0; | 
|---|
| 957 | Int_t ih=0; | 
|---|
| 958 | for (Int_t i=2; i<=na+1; i++) | 
|---|
| 959 | { | 
|---|
| 960 | const Double_t xl = ha.GetBinLowEdge(i); | 
|---|
| 961 | if (xl>yl) | 
|---|
| 962 | { | 
|---|
| 963 | il = i-1; | 
|---|
| 964 |  | 
|---|
| 965 | //................................. | 
|---|
| 966 | ih = 0; | 
|---|
| 967 | for (Int_t k=(il+1); k<=(na+1); k++) | 
|---|
| 968 | { | 
|---|
| 969 | const Double_t xh = ha.GetBinLowEdge(k); | 
|---|
| 970 | if (xh >= yh) | 
|---|
| 971 | { | 
|---|
| 972 | ih = k-1; | 
|---|
| 973 | break; | 
|---|
| 974 | } | 
|---|
| 975 | } | 
|---|
| 976 | //................................. | 
|---|
| 977 | if (ih == 0) | 
|---|
| 978 | ih = na; | 
|---|
| 979 | break; | 
|---|
| 980 | } | 
|---|
| 981 | } | 
|---|
| 982 | //---------------- | 
|---|
| 983 | if (il == 0) | 
|---|
| 984 | { | 
|---|
| 985 | *fLog << "Something is wrong " << endl; | 
|---|
| 986 | *fLog << "          na, alow, aup = " << na << ",  " << alow | 
|---|
| 987 | << ",  " << aup << endl; | 
|---|
| 988 | *fLog << "          nb, blow, bup = " << nb << ",  " << blow | 
|---|
| 989 | << ",  " << bup << endl; | 
|---|
| 990 | return kFALSE; | 
|---|
| 991 | } | 
|---|
| 992 |  | 
|---|
| 993 | Double_t content=0; | 
|---|
| 994 | // sum up the contribution to bin j | 
|---|
| 995 | for (Int_t i=il; i<=ih; i++) | 
|---|
| 996 | { | 
|---|
| 997 | const Double_t xl = ha.GetBinLowEdge(i); | 
|---|
| 998 | const Double_t xh = ha.GetBinLowEdge(i+1); | 
|---|
| 999 | const Double_t bina = xh-xl; | 
|---|
| 1000 |  | 
|---|
| 1001 | if (xl<yl  &&  xh<yh) | 
|---|
| 1002 | content += ha.GetBinContent(i) * (xh-yl) / bina; | 
|---|
| 1003 | else | 
|---|
| 1004 | if (xl<yl  &&  xh>=yh) | 
|---|
| 1005 | content += ha.GetBinContent(i) * (yh-yl) / bina; | 
|---|
| 1006 | else | 
|---|
| 1007 | if (xl>=yl  &&  xh<yh) | 
|---|
| 1008 | content += ha.GetBinContent(i); | 
|---|
| 1009 | else if (xl>=yl  &&  xh>=yh) | 
|---|
| 1010 | content += ha.GetBinContent(i) * (yh-xl) / bina; | 
|---|
| 1011 | } | 
|---|
| 1012 | hprior->SetBinContent(j, content); | 
|---|
| 1013 | sum += content; | 
|---|
| 1014 | } | 
|---|
| 1015 |  | 
|---|
| 1016 | // normalize histogram hb | 
|---|
| 1017 | if (sum==0) | 
|---|
| 1018 | { | 
|---|
| 1019 | *fLog << "histogram hb is empty; sum of weights in ha = "; | 
|---|
| 1020 | *fLog << ha.GetSumOfWeights() << endl; | 
|---|
| 1021 | return kFALSE; | 
|---|
| 1022 | } | 
|---|
| 1023 |  | 
|---|
| 1024 | for (Int_t j=1; j<=nb; j++) | 
|---|
| 1025 | { | 
|---|
| 1026 | const Double_t content = hprior->GetBinContent(j)/sum; | 
|---|
| 1027 | hprior->SetBinContent(j, content); | 
|---|
| 1028 | fVEps0(j-1) = content; | 
|---|
| 1029 | } | 
|---|
| 1030 |  | 
|---|
| 1031 | //*fLog << "SetPriorRebin : Prior distribution fVEps = " << endl; | 
|---|
| 1032 | //*fLog << "===========================================" << endl; | 
|---|
| 1033 | //fVEps.Print(); | 
|---|
| 1034 |  | 
|---|
| 1035 | return kTRUE; | 
|---|
| 1036 | } | 
|---|
| 1037 |  | 
|---|
| 1038 |  | 
|---|
| 1039 | // ----------------------------------------------------------------------- | 
|---|
| 1040 | // | 
|---|
| 1041 | // Set prior distribution to a given distribution 'hpr' | 
|---|
| 1042 | // | 
|---|
| 1043 | Bool_t MUnfold::SetPriorInput(TH1D &hpr) | 
|---|
| 1044 | { | 
|---|
| 1045 | CopyCol(fVEps, hpr); | 
|---|
| 1046 |  | 
|---|
| 1047 | const Double_t sum = GetMatrixSumCol(fVEps, 0); | 
|---|
| 1048 |  | 
|---|
| 1049 | if (sum<=0) | 
|---|
| 1050 | { | 
|---|
| 1051 | *fLog << "MUnfold::SetPriorInput: invalid prior distribution" << endl; | 
|---|
| 1052 | return kFALSE; | 
|---|
| 1053 | } | 
|---|
| 1054 |  | 
|---|
| 1055 | // normalize prior distribution | 
|---|
| 1056 | fVEps0 *= 1./sum; | 
|---|
| 1057 |  | 
|---|
| 1058 | CopyCol(*hprior, fVEps); | 
|---|
| 1059 |  | 
|---|
| 1060 | //*fLog << "SetPriorInput : Prior distribution fVEps = " << endl; | 
|---|
| 1061 | //*fLog << "===========================================" << endl; | 
|---|
| 1062 | //fVEps.Print(); | 
|---|
| 1063 |  | 
|---|
| 1064 | return kTRUE; | 
|---|
| 1065 | } | 
|---|
| 1066 |  | 
|---|
| 1067 | // ----------------------------------------------------------------------- | 
|---|
| 1068 | // | 
|---|
| 1069 | // Define prior distribution to be a power law | 
|---|
| 1070 | // use input distribution 'hprior' only | 
|---|
| 1071 | //           for defining the histogram parameters | 
|---|
| 1072 | // | 
|---|
| 1073 | Bool_t MUnfold::SetPriorPower(Double_t gamma) | 
|---|
| 1074 | { | 
|---|
| 1075 | // generate distribution according to a power law | 
|---|
| 1076 | //                        dN/dE = E^{-gamma} | 
|---|
| 1077 | //  or with y = lo10(E),  E = 10^y : | 
|---|
| 1078 | //                        dN/dy = ln10 * 10^{y*(1-gamma)} | 
|---|
| 1079 | TH1D hpower(*hprior); | 
|---|
| 1080 |  | 
|---|
| 1081 | const UInt_t   nbin = hprior->GetNbinsX(); | 
|---|
| 1082 | const Double_t xmin = hprior->GetBinLowEdge(1); | 
|---|
| 1083 | const Double_t xmax = hprior->GetBinLowEdge(nbin+1); | 
|---|
| 1084 |  | 
|---|
| 1085 | *fLog << "nbin, xmin, xmax = " << nbin << ",  "; | 
|---|
| 1086 | *fLog << xmin << ",  " << xmax << endl; | 
|---|
| 1087 |  | 
|---|
| 1088 | TF1* fpow = new TF1("fpow", "pow(10.0, x*(1.0-[0]))", xmin,xmax); | 
|---|
| 1089 | fpow->SetParName  (0,"gamma"); | 
|---|
| 1090 | fpow->SetParameter(0, gamma ); | 
|---|
| 1091 |  | 
|---|
| 1092 | hpower.FillRandom("fpow", 100000); | 
|---|
| 1093 |  | 
|---|
| 1094 | // fill prior distribution | 
|---|
| 1095 | CopyCol(fVEps, hpower); | 
|---|
| 1096 |  | 
|---|
| 1097 | const Double_t sum = GetMatrixSumCol(fVEps, 0); | 
|---|
| 1098 | if (sum <= 0) | 
|---|
| 1099 | { | 
|---|
| 1100 | *fLog << "MUnfold::SetPriorPower : invalid prior distribution"  << endl; | 
|---|
| 1101 | return kFALSE; | 
|---|
| 1102 | } | 
|---|
| 1103 |  | 
|---|
| 1104 | // normalize prior distribution | 
|---|
| 1105 | fVEps0 *= 1./sum; | 
|---|
| 1106 | CopyCol(*hprior, fVEps); | 
|---|
| 1107 |  | 
|---|
| 1108 | //*fLog << "SetPriorPower : Prior distribution fVEps = " << endl; | 
|---|
| 1109 | //*fLog << "===========================================" << endl; | 
|---|
| 1110 | //fVEps.Print(); | 
|---|
| 1111 |  | 
|---|
| 1112 | return kTRUE; | 
|---|
| 1113 | } | 
|---|
| 1114 |  | 
|---|
| 1115 |  | 
|---|
| 1116 | // ----------------------------------------------------------------------- | 
|---|
| 1117 | // | 
|---|
| 1118 | // Set the initial weight | 
|---|
| 1119 | // | 
|---|
| 1120 | Bool_t MUnfold::SetInitialWeight(Double_t &weight) | 
|---|
| 1121 | { | 
|---|
| 1122 | if (weight == 0.0) | 
|---|
| 1123 | { | 
|---|
| 1124 | TMatrixD v1(fVa, TMatrixD::kTransposeMult, fVacovInv); | 
|---|
| 1125 | TMatrixD v2(v1, TMatrixD::kMult, fVa); | 
|---|
| 1126 | weight = 1./sqrt(v2(0,0)); | 
|---|
| 1127 | } | 
|---|
| 1128 |  | 
|---|
| 1129 | *fLog << "MUnfold::SetInitialWeight : Initial Weight = " | 
|---|
| 1130 | << weight << endl; | 
|---|
| 1131 |  | 
|---|
| 1132 | return kTRUE; | 
|---|
| 1133 | } | 
|---|
| 1134 |  | 
|---|
| 1135 | // ----------------------------------------------------------------------- | 
|---|
| 1136 | // | 
|---|
| 1137 | // Print the unfolded distribution | 
|---|
| 1138 | // | 
|---|
| 1139 | void MUnfold::PrintResults() | 
|---|
| 1140 | { | 
|---|
| 1141 | *fLog << bintitle << endl; | 
|---|
| 1142 | *fLog << "PrintResults : Unfolded distribution fResult " << endl; | 
|---|
| 1143 | *fLog << "=============================================" << endl; | 
|---|
| 1144 | //*fLog << "val, eparab, eplus, eminus, gcc = "  << endl; | 
|---|
| 1145 |  | 
|---|
| 1146 | for (UInt_t i=0; i<fNb; i++) | 
|---|
| 1147 | { | 
|---|
| 1148 | //    *fLog << fResult(i, 0) << " \t"; | 
|---|
| 1149 | //  *fLog << fResult(i, 1) << " \t"; | 
|---|
| 1150 | //  *fLog << fResult(i, 2) << " \t"; | 
|---|
| 1151 | //  *fLog << fResult(i, 3) << " \t"; | 
|---|
| 1152 | //  *fLog << fResult(i, 4) <<  endl; | 
|---|
| 1153 | } | 
|---|
| 1154 | *fLog << "Chisquared, NDF, chi2 probability, ixbest = " | 
|---|
| 1155 | << fChisq << ",  " | 
|---|
| 1156 | << fNdf << ",  " << fProb << ",  " << ixbest << endl; | 
|---|
| 1157 |  | 
|---|
| 1158 | } | 
|---|
| 1159 |  | 
|---|
| 1160 |  | 
|---|
| 1161 | // ----------------------------------------------------------------------- | 
|---|
| 1162 | // | 
|---|
| 1163 | // Schmelling  : unfolding by minimizing the function Z | 
|---|
| 1164 | //               by Gauss-Newton iteration | 
|---|
| 1165 | // | 
|---|
| 1166 | //               the weights are scanned between | 
|---|
| 1167 | //               1.e-5*fWinitial and 1.e5*fWinitial | 
|---|
| 1168 | // | 
|---|
| 1169 | Bool_t MUnfold::Schmelling(TH1D &hb0) | 
|---|
| 1170 | { | 
|---|
| 1171 |  | 
|---|
| 1172 | //====================================================================== | 
|---|
| 1173 | // copy ideal distribution | 
|---|
| 1174 | for (UInt_t i=1; i<=fNb; i++) | 
|---|
| 1175 | { | 
|---|
| 1176 | fhb0->SetBinContent(i, hb0.GetBinContent(i)); | 
|---|
| 1177 | fhb0->SetBinError  (i, hb0.GetBinError(i)); | 
|---|
| 1178 | } | 
|---|
| 1179 |  | 
|---|
| 1180 | //----------------------------------------------------------------------- | 
|---|
| 1181 | // Initialization | 
|---|
| 1182 | // ============== | 
|---|
| 1183 |  | 
|---|
| 1184 | Int_t numGiteration; | 
|---|
| 1185 | Int_t MaxGiteration = 1000; | 
|---|
| 1186 |  | 
|---|
| 1187 | TMatrixD alpha; | 
|---|
| 1188 | alpha.ResizeTo(fNa, 1); | 
|---|
| 1189 |  | 
|---|
| 1190 |  | 
|---|
| 1191 | //----------------------------------------------------------------------- | 
|---|
| 1192 | // Newton iteration | 
|---|
| 1193 | // ================ | 
|---|
| 1194 |  | 
|---|
| 1195 | Double_t dga2; | 
|---|
| 1196 | Double_t dga2old; | 
|---|
| 1197 | Double_t EpsG = 1.e-12; | 
|---|
| 1198 |  | 
|---|
| 1199 | TMatrixD wZdp_inv(fNa, fNa); | 
|---|
| 1200 | TMatrixD d(fNb, 1); | 
|---|
| 1201 | TMatrixD p(fNb, 1); | 
|---|
| 1202 |  | 
|---|
| 1203 | TMatrixD gamma (fNa, 1); | 
|---|
| 1204 | TMatrixD dgamma(fNa, 1); | 
|---|
| 1205 |  | 
|---|
| 1206 | Double_t fWinitial; | 
|---|
| 1207 | fWinitial = 0.0; | 
|---|
| 1208 | SetInitialWeight(fWinitial); | 
|---|
| 1209 | // for my example this fWinitial was not good; therefore : | 
|---|
| 1210 | fWinitial = 1.0; | 
|---|
| 1211 |  | 
|---|
| 1212 | Int_t ix; | 
|---|
| 1213 | Double_t xiter; | 
|---|
| 1214 |  | 
|---|
| 1215 | //--------   start  scanning weights   -------------------------- | 
|---|
| 1216 | // if full == kFALSE   only quantities necessary for the Gauss-Newton | 
|---|
| 1217 | //                     iteration are calculated in SchmellCore | 
|---|
| 1218 | // if full == kTRUE    in addition the unfolded distribution, | 
|---|
| 1219 | //                     its covariance matrix and quantities like | 
|---|
| 1220 | //                     Chisq, SpurAR, etc. are computed in SchmellCore | 
|---|
| 1221 | //Bool_t full; | 
|---|
| 1222 | //full = kFALSE; | 
|---|
| 1223 | Int_t full; | 
|---|
| 1224 |  | 
|---|
| 1225 | *fLog << "Schmelling : start loop over weights" << endl; | 
|---|
| 1226 |  | 
|---|
| 1227 | dga2 = 1.e20; | 
|---|
| 1228 | for (ix=0; ix<Nix; ix++) | 
|---|
| 1229 | { | 
|---|
| 1230 | xiter = pow(10.0,log10(xmin)+ix*dlogx) * fWinitial; | 
|---|
| 1231 |  | 
|---|
| 1232 | //----------   start Gauss-Newton iteration   ---------------------- | 
|---|
| 1233 | numGiteration = 0; | 
|---|
| 1234 |  | 
|---|
| 1235 | // if there was no convergence and the starting gamma was != 0 | 
|---|
| 1236 | // redo unfolding for the same weight starting with gamma = 0 | 
|---|
| 1237 | // | 
|---|
| 1238 | Int_t gamma0 = 0; | 
|---|
| 1239 | while (1) | 
|---|
| 1240 | { | 
|---|
| 1241 | if (dga2 > EpsG) | 
|---|
| 1242 | { | 
|---|
| 1243 | gamma0 = 1; | 
|---|
| 1244 | gamma.Zero(); | 
|---|
| 1245 | } | 
|---|
| 1246 |  | 
|---|
| 1247 | dga2 = 1.e20; | 
|---|
| 1248 |  | 
|---|
| 1249 | while (1) | 
|---|
| 1250 | { | 
|---|
| 1251 | dga2old = dga2; | 
|---|
| 1252 |  | 
|---|
| 1253 | full = 0; | 
|---|
| 1254 | SchmellCore(full, xiter, gamma, dgamma, dga2); | 
|---|
| 1255 |  | 
|---|
| 1256 | gamma += dgamma; | 
|---|
| 1257 |  | 
|---|
| 1258 | //*fLog << "Schmelling : ix, numGiteration, dga2, dga2old = " | 
|---|
| 1259 | //     << ix << ",  " << numGiteration << ",  " | 
|---|
| 1260 | //     << dga2 << ",  " << dga2old << endl; | 
|---|
| 1261 |  | 
|---|
| 1262 | numGiteration += 1; | 
|---|
| 1263 |  | 
|---|
| 1264 | // convergence | 
|---|
| 1265 | if (dga2 < EpsG) | 
|---|
| 1266 | break; | 
|---|
| 1267 |  | 
|---|
| 1268 | // no convergence | 
|---|
| 1269 | if (numGiteration > MaxGiteration) | 
|---|
| 1270 | break; | 
|---|
| 1271 |  | 
|---|
| 1272 | // gamma doesn't seem to change any more | 
|---|
| 1273 | if (fabs(dga2-dga2old) < EpsG/100.) | 
|---|
| 1274 | break; | 
|---|
| 1275 | } | 
|---|
| 1276 | //----------   end Gauss-Newton iteration   ------------------------ | 
|---|
| 1277 | if (dga2<EpsG || gamma0 != 0) break; | 
|---|
| 1278 | } | 
|---|
| 1279 |  | 
|---|
| 1280 | // if Gauss-Newton iteration has not converged | 
|---|
| 1281 | // go to next weight | 
|---|
| 1282 | if (dga2 > EpsG) | 
|---|
| 1283 | { | 
|---|
| 1284 | *fLog << "Schmelling : Gauss-Newton iteration has not converged;" | 
|---|
| 1285 | << "   numGiteration = " << numGiteration << endl; | 
|---|
| 1286 | *fLog << "             ix, dga2, dga2old = " << ix << ",  " | 
|---|
| 1287 | << dga2 << ",  " << dga2old << endl; | 
|---|
| 1288 | continue; | 
|---|
| 1289 | } | 
|---|
| 1290 |  | 
|---|
| 1291 | //*fLog << "Schmelling : Gauss-Newton iteration has converged;" << endl; | 
|---|
| 1292 | //*fLog << "==================================================" << endl; | 
|---|
| 1293 | //*fLog << "             numGiteration = " << numGiteration << endl; | 
|---|
| 1294 | //*fLog << "             ix, dga2 = " << ix << ",  " << dga2 << endl; | 
|---|
| 1295 |  | 
|---|
| 1296 | // calculated quantities which will be useful for determining | 
|---|
| 1297 | // the best weight (Chisq, SpurAR, ...) | 
|---|
| 1298 | //full = kTRUE; | 
|---|
| 1299 | full = 1; | 
|---|
| 1300 | SchmellCore(full, xiter, gamma, dgamma, dga2); | 
|---|
| 1301 |  | 
|---|
| 1302 | // calculate difference between ideal and unfolded distribution | 
|---|
| 1303 | Double_t D2bar = 0.0; | 
|---|
| 1304 | for (UInt_t i = 0; i<fNb; i++) | 
|---|
| 1305 | { | 
|---|
| 1306 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0); | 
|---|
| 1307 | D2bar += temp*temp; | 
|---|
| 1308 | } | 
|---|
| 1309 |  | 
|---|
| 1310 | SpAR(ix)  = SpurAR; | 
|---|
| 1311 | SpSig(ix) = SpurSigma; | 
|---|
| 1312 | chisq(ix) = Chisq; | 
|---|
| 1313 | SecDer(ix) = SecDeriv; | 
|---|
| 1314 | ZerDer(ix) = ZerDeriv; | 
|---|
| 1315 | Entrop(ix) = Entropy; | 
|---|
| 1316 | DAR2(ix)   = DiffAR2; | 
|---|
| 1317 | Dsqbar(ix) = D2bar; | 
|---|
| 1318 |  | 
|---|
| 1319 | } | 
|---|
| 1320 | //----------   end of scanning weights   ------------------------------- | 
|---|
| 1321 | *fLog << "Schmelling : end of loop over weights" << endl; | 
|---|
| 1322 | // plots ------------------------------ | 
|---|
| 1323 | for (ix=0; ix<Nix; ix++) | 
|---|
| 1324 | { | 
|---|
| 1325 | Double_t xbin = log10(xmin)+ix*dlogx; | 
|---|
| 1326 | xiter = pow(10.0,xbin) * fWinitial; | 
|---|
| 1327 |  | 
|---|
| 1328 | Int_t bin; | 
|---|
| 1329 | bin = hBchisq->FindBin( xbin ); | 
|---|
| 1330 | hBchisq->SetBinContent(bin,chisq(ix)); | 
|---|
| 1331 | hBSpAR->SetBinContent(bin,SpAR(ix)); | 
|---|
| 1332 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov); | 
|---|
| 1333 | hBSecDeriv->SetBinContent(bin,SecDer(ix)); | 
|---|
| 1334 | hBZerDeriv->SetBinContent(bin,ZerDer(ix)); | 
|---|
| 1335 | hBEntropy->SetBinContent(bin,Entrop(ix)); | 
|---|
| 1336 | hBDAR2->SetBinContent(bin,DAR2(ix)); | 
|---|
| 1337 | hBD2bar->SetBinContent(bin,Dsqbar(ix)); | 
|---|
| 1338 |  | 
|---|
| 1339 | if (ix > 0) | 
|---|
| 1340 | { | 
|---|
| 1341 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1); | 
|---|
| 1342 | hBDSpAR->SetBinContent(bin,DSpAR); | 
|---|
| 1343 |  | 
|---|
| 1344 | Double_t diff = SpSig(ix) - SpSig(ix-1); | 
|---|
| 1345 | Double_t DSpSig = diff; | 
|---|
| 1346 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov); | 
|---|
| 1347 |  | 
|---|
| 1348 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1); | 
|---|
| 1349 | hBDEntropy->SetBinContent(bin,DEntrop); | 
|---|
| 1350 |  | 
|---|
| 1351 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1); | 
|---|
| 1352 | hBDSecDeriv->SetBinContent(bin,DSecDer); | 
|---|
| 1353 |  | 
|---|
| 1354 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1); | 
|---|
| 1355 | hBDZerDeriv->SetBinContent(bin,DZerDer); | 
|---|
| 1356 | } | 
|---|
| 1357 | } | 
|---|
| 1358 |  | 
|---|
| 1359 | // Select best weight | 
|---|
| 1360 | SelectBestWeight(); | 
|---|
| 1361 |  | 
|---|
| 1362 | if (ixbest < 0.0) | 
|---|
| 1363 | { | 
|---|
| 1364 | *fLog << "Schmelling : no solution found; " << endl; | 
|---|
| 1365 | return kFALSE; | 
|---|
| 1366 | } | 
|---|
| 1367 |  | 
|---|
| 1368 | // do the unfolding using the best weight | 
|---|
| 1369 | //full = kTRUE; | 
|---|
| 1370 |  | 
|---|
| 1371 |  | 
|---|
| 1372 | xiter = pow(10.0,log10(xmin)+ixbest*dlogx) * fWinitial; | 
|---|
| 1373 |  | 
|---|
| 1374 | //----------   start Gauss-Newton iteration   ---------------------- | 
|---|
| 1375 | numGiteration = 0; | 
|---|
| 1376 | gamma.Zero(); | 
|---|
| 1377 | dga2 = 1.e20; | 
|---|
| 1378 |  | 
|---|
| 1379 | while (1) | 
|---|
| 1380 | { | 
|---|
| 1381 | full = 1; | 
|---|
| 1382 | SchmellCore(full, xiter, gamma, dgamma, dga2); | 
|---|
| 1383 | gamma += dgamma; | 
|---|
| 1384 |  | 
|---|
| 1385 | //*fLog << "Schmelling : sum(dgamma^2) = " << dga2 << endl; | 
|---|
| 1386 |  | 
|---|
| 1387 | numGiteration += 1; | 
|---|
| 1388 |  | 
|---|
| 1389 | if (numGiteration > MaxGiteration) | 
|---|
| 1390 | break; | 
|---|
| 1391 |  | 
|---|
| 1392 | if (dga2 < EpsG) | 
|---|
| 1393 | break; | 
|---|
| 1394 | } | 
|---|
| 1395 | //----------   end Gauss-Newton iteration   ------------------------ | 
|---|
| 1396 |  | 
|---|
| 1397 |  | 
|---|
| 1398 | //----------------------------------------------------------------------- | 
|---|
| 1399 | // termination stage | 
|---|
| 1400 | // ================= | 
|---|
| 1401 |  | 
|---|
| 1402 | *fLog << "Schmelling : best solution found; " << endl; | 
|---|
| 1403 | *fLog << "==================================" << endl; | 
|---|
| 1404 | *fLog << "             xiter, ixbest, numGiteration, Chisq = " | 
|---|
| 1405 | << xiter << ",  " << ixbest << ",  " | 
|---|
| 1406 | << numGiteration << ",  " << Chisq << endl; | 
|---|
| 1407 |  | 
|---|
| 1408 | //------------------------------------ | 
|---|
| 1409 | //.............................................. | 
|---|
| 1410 | // put unfolded distribution into fResult | 
|---|
| 1411 | //     fResult(i,0)   value in bin i | 
|---|
| 1412 | //     fResult(i,1)   error of value in bin i | 
|---|
| 1413 |  | 
|---|
| 1414 | fNdf = SpurAR; | 
|---|
| 1415 | fChisq = Chisq; | 
|---|
| 1416 |  | 
|---|
| 1417 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1418 | { | 
|---|
| 1419 | fChi2(i,0) = Chi2(i,0); | 
|---|
| 1420 | } | 
|---|
| 1421 |  | 
|---|
| 1422 | UInt_t iNdf   = (UInt_t) (fNdf+0.5); | 
|---|
| 1423 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0; | 
|---|
| 1424 |  | 
|---|
| 1425 | fResult.ResizeTo(fNb, 5); | 
|---|
| 1426 | for (UInt_t i=0; i<fNb; i++) | 
|---|
| 1427 | { | 
|---|
| 1428 | fResult(i, 0) = fVb(i,0); | 
|---|
| 1429 | fResult(i, 1) = sqrt(fVbcov(i,i)); | 
|---|
| 1430 | fResult(i, 2) = 0.0; | 
|---|
| 1431 | fResult(i, 3) = 0.0; | 
|---|
| 1432 | fResult(i, 4) = 1.0; | 
|---|
| 1433 | } | 
|---|
| 1434 |  | 
|---|
| 1435 | //-------------------------------------------------------- | 
|---|
| 1436 |  | 
|---|
| 1437 | *fLog << "Schmelling : gamma = " << endl; | 
|---|
| 1438 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1439 | *fLog << gamma(i,0) << " \t"; | 
|---|
| 1440 | *fLog << endl; | 
|---|
| 1441 |  | 
|---|
| 1442 | return kTRUE; | 
|---|
| 1443 | } | 
|---|
| 1444 |  | 
|---|
| 1445 |  | 
|---|
| 1446 |  | 
|---|
| 1447 |  | 
|---|
| 1448 | // ----------------------------------------------------------------------- | 
|---|
| 1449 | // | 
|---|
| 1450 | // SchmellCore     main part of Schmellings calculations | 
|---|
| 1451 | // | 
|---|
| 1452 | void MUnfold::SchmellCore(Int_t full, Double_t &xiter, TMatrixD &gamma, | 
|---|
| 1453 | TMatrixD &dgamma, Double_t &dga2) | 
|---|
| 1454 | { | 
|---|
| 1455 | Double_t norm; | 
|---|
| 1456 | TMatrixD wZdp_inv(fNa, fNa); | 
|---|
| 1457 | TMatrixD d(fNb, 1); | 
|---|
| 1458 | TMatrixD p(fNb, 1); | 
|---|
| 1459 |  | 
|---|
| 1460 | //-------------------------------------------------------- | 
|---|
| 1461 | //--      determine the probability vector p | 
|---|
| 1462 |  | 
|---|
| 1463 |  | 
|---|
| 1464 | TMatrixD v3(gamma, TMatrixD::kTransposeMult, fMigrat); | 
|---|
| 1465 | TMatrixD v4(TMatrixD::kTransposed, v3); | 
|---|
| 1466 | d = v4; | 
|---|
| 1467 | Double_t dmax  = -1.e10; | 
|---|
| 1468 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1469 | if (d(j,0)>dmax) | 
|---|
| 1470 | dmax = d(j,0); | 
|---|
| 1471 |  | 
|---|
| 1472 | Double_t psum = 0.0; | 
|---|
| 1473 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1474 | { | 
|---|
| 1475 | d(j,0) -= dmax; | 
|---|
| 1476 | p(j,0)  = fVEps0(j)*exp(xiter*d(j,0)); | 
|---|
| 1477 | psum += p(j,0); | 
|---|
| 1478 | } | 
|---|
| 1479 |  | 
|---|
| 1480 | p *= 1.0/psum; | 
|---|
| 1481 |  | 
|---|
| 1482 | //--      get the vector alpha | 
|---|
| 1483 |  | 
|---|
| 1484 | TMatrixD alpha(fMigrat, TMatrixD::kMult, p); | 
|---|
| 1485 |  | 
|---|
| 1486 | //--      determine the current normalization | 
|---|
| 1487 |  | 
|---|
| 1488 | TMatrixD v2   (alpha, TMatrixD::kTransposeMult, fVacovInv); | 
|---|
| 1489 | TMatrixD normb(v2,    TMatrixD::kMult, alpha); | 
|---|
| 1490 |  | 
|---|
| 1491 | TMatrixD normc(v2,    TMatrixD::kMult, fVa); | 
|---|
| 1492 |  | 
|---|
| 1493 | norm  = normc(0,0)/normb(0,0); | 
|---|
| 1494 |  | 
|---|
| 1495 | //-------------------------------------------------------- | 
|---|
| 1496 | //--      determine the scaled slope vector s and Hessian H | 
|---|
| 1497 |  | 
|---|
| 1498 | TMatrixD Zp(fNa,1); | 
|---|
| 1499 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1500 | { | 
|---|
| 1501 | Zp(i,0) = norm*alpha(i,0) - fVa(i,0); | 
|---|
| 1502 | for (UInt_t k=0; k<fNa; k++) | 
|---|
| 1503 | Zp(i,0) += gamma(k,0)*fVacov(k,i); | 
|---|
| 1504 | } | 
|---|
| 1505 |  | 
|---|
| 1506 |  | 
|---|
| 1507 | TMatrixD Q  (fNa, fNa); | 
|---|
| 1508 | TMatrixD wZdp(fNa, fNa); | 
|---|
| 1509 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1510 | { | 
|---|
| 1511 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 1512 | { | 
|---|
| 1513 | Q(i,j) = - alpha(i,0)*alpha(j,0); | 
|---|
| 1514 | for (UInt_t k=0; k<fNb; k++) | 
|---|
| 1515 | Q(i,j) += fMigrat(i,k)*fMigrat(j,k)*p(k,0); | 
|---|
| 1516 | wZdp(i,j) = xiter*norm*Q(i,j) + fVacov(i,j); | 
|---|
| 1517 | } | 
|---|
| 1518 | } | 
|---|
| 1519 |  | 
|---|
| 1520 | //--      invert H and calculate the next Newton step | 
|---|
| 1521 |  | 
|---|
| 1522 | Double_t determ = 1.0; | 
|---|
| 1523 | wZdp_inv = wZdp; | 
|---|
| 1524 | wZdp_inv.Invert(&determ); | 
|---|
| 1525 |  | 
|---|
| 1526 | if(determ == 0.0) | 
|---|
| 1527 | { | 
|---|
| 1528 | *fLog << "SchmellCore: matrix inversion for H failed" << endl; | 
|---|
| 1529 | return; | 
|---|
| 1530 | } | 
|---|
| 1531 |  | 
|---|
| 1532 |  | 
|---|
| 1533 | dga2 = 0.0; | 
|---|
| 1534 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1535 | { | 
|---|
| 1536 | dgamma(i,0) = 0.0; | 
|---|
| 1537 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 1538 | dgamma(i,0) -= wZdp_inv(i,j)*Zp(j,0); | 
|---|
| 1539 | dga2 += dgamma(i,0)*dgamma(i,0); | 
|---|
| 1540 | } | 
|---|
| 1541 |  | 
|---|
| 1542 | if (full == 0) | 
|---|
| 1543 | return; | 
|---|
| 1544 |  | 
|---|
| 1545 | //-------------------------------------------------------- | 
|---|
| 1546 | //--      determine chi2 and dNdf (#measurements ignored) | 
|---|
| 1547 | Double_t dNdf = 0; | 
|---|
| 1548 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1549 | { | 
|---|
| 1550 | Chi2(i,0) = 0; | 
|---|
| 1551 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 1552 | { | 
|---|
| 1553 | Chi2(i,0) += fVacov(i,j) * gamma(i,0) * gamma(j,0); | 
|---|
| 1554 | dNdf       += fVacov(i,j) * wZdp_inv(j,i); | 
|---|
| 1555 | } | 
|---|
| 1556 | } | 
|---|
| 1557 | Chisq = GetMatrixSumCol(Chi2, 0); | 
|---|
| 1558 | SpurAR = fNa - dNdf; | 
|---|
| 1559 |  | 
|---|
| 1560 | //----------------------------------------------------- | 
|---|
| 1561 | // calculate the norm |AR - AR+|**2 | 
|---|
| 1562 |  | 
|---|
| 1563 | TMatrixD AR(fNa, fNa); | 
|---|
| 1564 | DiffAR2 = 0.0; | 
|---|
| 1565 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1566 | { | 
|---|
| 1567 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 1568 | { | 
|---|
| 1569 | AR(i,j) = 0.0; | 
|---|
| 1570 | for (UInt_t k=0; k<fNa; k++) | 
|---|
| 1571 | AR(i,j) +=  fVacov(i,k) * wZdp_inv(k,j); | 
|---|
| 1572 | DiffAR2 += AR(i,j) * AR(i,j); | 
|---|
| 1573 | } | 
|---|
| 1574 | } | 
|---|
| 1575 |  | 
|---|
| 1576 | //-------------------------------------------------------- | 
|---|
| 1577 | //--      fill distribution b(*) | 
|---|
| 1578 | fVb = p; | 
|---|
| 1579 | fVb *= norm; | 
|---|
| 1580 |  | 
|---|
| 1581 | //--      determine the covariance matrix of b (very expensive) | 
|---|
| 1582 |  | 
|---|
| 1583 | TMatrixD T(fNb,fNa); | 
|---|
| 1584 | for (UInt_t i=0; i<fNb; i++) | 
|---|
| 1585 | { | 
|---|
| 1586 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 1587 | { | 
|---|
| 1588 | T(i,j) = 0.0; | 
|---|
| 1589 | for (UInt_t k=0; k<fNa; k++) | 
|---|
| 1590 | T(i,j) += xiter*wZdp_inv(k,j)*(fMigrat(k,i)-alpha(k,0))*p(i,0); | 
|---|
| 1591 | } | 
|---|
| 1592 | } | 
|---|
| 1593 |  | 
|---|
| 1594 | SpurSigma = CalcSpurSigma(T, norm); | 
|---|
| 1595 |  | 
|---|
| 1596 | //-------------------------------------------------------- | 
|---|
| 1597 |  | 
|---|
| 1598 | //----------------------------------------------------- | 
|---|
| 1599 | // calculate the second derivative squared | 
|---|
| 1600 |  | 
|---|
| 1601 | SecDeriv = 0; | 
|---|
| 1602 | for (UInt_t j=1; j<(fNb-1); j++) | 
|---|
| 1603 | { | 
|---|
| 1604 | Double_t temp = | 
|---|
| 1605 | + 2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0)) | 
|---|
| 1606 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0)); | 
|---|
| 1607 | SecDeriv += temp*temp; | 
|---|
| 1608 | } | 
|---|
| 1609 |  | 
|---|
| 1610 | ZerDeriv = 0; | 
|---|
| 1611 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1612 | ZerDeriv += fVb(j,0) * fVb(j,0); | 
|---|
| 1613 |  | 
|---|
| 1614 | //----------------------------------------------------- | 
|---|
| 1615 | // calculate the entropy | 
|---|
| 1616 | Entropy = 0; | 
|---|
| 1617 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1618 | if (p(j,0) > 0.0) | 
|---|
| 1619 | Entropy += p(j,0) * log( p(j,0) ); | 
|---|
| 1620 |  | 
|---|
| 1621 | //-------------------------------------------------------- | 
|---|
| 1622 | } | 
|---|
| 1623 |  | 
|---|
| 1624 |  | 
|---|
| 1625 | // ----------------------------------------------------------------------- | 
|---|
| 1626 | // | 
|---|
| 1627 | // Smooth migration matrix | 
|---|
| 1628 | //              by fitting a function to the migration matrix | 
|---|
| 1629 | // | 
|---|
| 1630 | Bool_t MUnfold::SmoothMigrationMatrix(TH2D &hmigorig) | 
|---|
| 1631 | { | 
|---|
| 1632 | // copy histograms into matrices; the matrices will be used in fcnSmooth | 
|---|
| 1633 | // ------------------------ | 
|---|
| 1634 |  | 
|---|
| 1635 |  | 
|---|
| 1636 | //*fLog << "MUnfold::SmoothMigrationMatrix : fNa, fNb = " << fNa << ",  " << fNb << endl; | 
|---|
| 1637 |  | 
|---|
| 1638 | //*fLog << "MUnfold::SmoothMigrationMatrix:   fMigOrig = "  << endl; | 
|---|
| 1639 | //*fLog << "========================================"  << endl; | 
|---|
| 1640 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1641 | { | 
|---|
| 1642 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1643 | { | 
|---|
| 1644 | fMigOrig(i, j)     = hmigorig.GetBinContent(i+1, j+1); | 
|---|
| 1645 | //*fLog << fMigOrig(i, j) << " \t"; | 
|---|
| 1646 | } | 
|---|
| 1647 | //*fLog << endl; | 
|---|
| 1648 | } | 
|---|
| 1649 |  | 
|---|
| 1650 |  | 
|---|
| 1651 | // ------------------------ | 
|---|
| 1652 |  | 
|---|
| 1653 |  | 
|---|
| 1654 | //*fLog << "MUnfold::SmoothMigrationMatrix :   fMigOrigerr2 = " << endl; | 
|---|
| 1655 | //*fLog << "=============================================" << endl; | 
|---|
| 1656 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1657 | { | 
|---|
| 1658 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1659 | { | 
|---|
| 1660 | fMigOrigerr2(i, j) =   hmigorig.GetBinError(i+1, j+1) | 
|---|
| 1661 | * hmigorig.GetBinError(i+1, j+1); | 
|---|
| 1662 |  | 
|---|
| 1663 | //*fLog << fMigOrigerr2(i, j) << " \t"; | 
|---|
| 1664 | } | 
|---|
| 1665 | //*fLog << endl; | 
|---|
| 1666 | } | 
|---|
| 1667 |  | 
|---|
| 1668 |  | 
|---|
| 1669 | // ------------------------ | 
|---|
| 1670 | // the number of free parameters (npar) is equal to 6: | 
|---|
| 1671 | //     a0mean, a1mean, a2mean | 
|---|
| 1672 | //     <log10(Eest)>    = a0 + a1*log10(Etrue) + a2*SQR(log10(Etrue)) | 
|---|
| 1673 | //                                                     + log10(Etrue) | 
|---|
| 1674 | //     b0RMS,  b1RMS, b2RMS | 
|---|
| 1675 | //     RMS(log10(Eest)) = b0 + b1*log10(Etrue) + b2*SQR(log10(Etrue)) | 
|---|
| 1676 | // | 
|---|
| 1677 | UInt_t npar = 6; | 
|---|
| 1678 |  | 
|---|
| 1679 | if (npar > 20) | 
|---|
| 1680 | { | 
|---|
| 1681 | *fLog << "MUnfold::SmoothMigrationMatrix : too many parameters,  npar = " | 
|---|
| 1682 | << npar << endl; | 
|---|
| 1683 | return kFALSE; | 
|---|
| 1684 | } | 
|---|
| 1685 |  | 
|---|
| 1686 |  | 
|---|
| 1687 | //.............................................. | 
|---|
| 1688 | // Find reasonable starting values for a0, a1 and b0, b1 | 
|---|
| 1689 |  | 
|---|
| 1690 | Double_t xbar   = 0.0; | 
|---|
| 1691 | Double_t xxbar  = 0.0; | 
|---|
| 1692 |  | 
|---|
| 1693 | Double_t ybarm  = 0.0; | 
|---|
| 1694 | Double_t xybarm = 0.0; | 
|---|
| 1695 |  | 
|---|
| 1696 | Double_t ybarR  = 0.0; | 
|---|
| 1697 | Double_t xybarR = 0.0; | 
|---|
| 1698 |  | 
|---|
| 1699 | Double_t Sum = 0.0; | 
|---|
| 1700 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1701 | { | 
|---|
| 1702 | Double_t x = (double)j + 0.5; | 
|---|
| 1703 |  | 
|---|
| 1704 | Double_t meany = 0.0; | 
|---|
| 1705 | Double_t RMSy  = 0.0; | 
|---|
| 1706 | Double_t sum   = 0.0; | 
|---|
| 1707 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1708 | { | 
|---|
| 1709 | Double_t y = (double)i + 0.5; | 
|---|
| 1710 | meany +=   y * fMigOrig(i, j); | 
|---|
| 1711 | RMSy  += y*y * fMigOrig(i, j); | 
|---|
| 1712 | sum   +=       fMigOrig(i, j); | 
|---|
| 1713 | } | 
|---|
| 1714 | if (sum > 0.0) | 
|---|
| 1715 | { | 
|---|
| 1716 | meany  = meany / sum; | 
|---|
| 1717 | RMSy   =  RMSy / sum  - meany*meany; | 
|---|
| 1718 | RMSy = sqrt(RMSy); | 
|---|
| 1719 |  | 
|---|
| 1720 | Sum += sum; | 
|---|
| 1721 | xbar  +=   x * sum; | 
|---|
| 1722 | xxbar += x*x * sum; | 
|---|
| 1723 |  | 
|---|
| 1724 | ybarm  +=   meany * sum; | 
|---|
| 1725 | xybarm += x*meany * sum; | 
|---|
| 1726 |  | 
|---|
| 1727 | ybarR  +=   RMSy  * sum; | 
|---|
| 1728 | xybarR += x*RMSy  * sum; | 
|---|
| 1729 | } | 
|---|
| 1730 | } | 
|---|
| 1731 |  | 
|---|
| 1732 | if (Sum > 0.0) | 
|---|
| 1733 | { | 
|---|
| 1734 | xbar   /= Sum; | 
|---|
| 1735 | xxbar  /= Sum; | 
|---|
| 1736 |  | 
|---|
| 1737 | ybarm  /= Sum; | 
|---|
| 1738 | xybarm /= Sum; | 
|---|
| 1739 |  | 
|---|
| 1740 | ybarR  /= Sum; | 
|---|
| 1741 | xybarR /= Sum; | 
|---|
| 1742 | } | 
|---|
| 1743 |  | 
|---|
| 1744 | Double_t a1start = (xybarm - xbar*ybarm) / (xxbar - xbar*xbar); | 
|---|
| 1745 | Double_t a0start = ybarm - a1start*xbar; | 
|---|
| 1746 | a1start = a1start - 1.0; | 
|---|
| 1747 |  | 
|---|
| 1748 | Double_t b1start = (xybarR - xbar*ybarR) / (xxbar - xbar*xbar); | 
|---|
| 1749 | Double_t b0start = ybarR - b1start*xbar; | 
|---|
| 1750 |  | 
|---|
| 1751 | *fLog << "MUnfold::SmoothMigrationMatrix : " << endl; | 
|---|
| 1752 | *fLog << "============================" << endl; | 
|---|
| 1753 | *fLog << "a0start, a1start = " << a0start << ",  " << a1start << endl; | 
|---|
| 1754 | *fLog << "b0start, b1start = " << b0start << ",  " << b1start << endl; | 
|---|
| 1755 |  | 
|---|
| 1756 | //.............................................. | 
|---|
| 1757 | // Set starting values and step sizes for parameters | 
|---|
| 1758 |  | 
|---|
| 1759 | char name[20][100]; | 
|---|
| 1760 | Double_t vinit[20]; | 
|---|
| 1761 | Double_t  step[20]; | 
|---|
| 1762 | Double_t limlo[20]; | 
|---|
| 1763 | Double_t limup[20]; | 
|---|
| 1764 | Int_t    fix[20]; | 
|---|
| 1765 |  | 
|---|
| 1766 | sprintf(&name[0][0], "a0mean"); | 
|---|
| 1767 | vinit[0] = a0start; | 
|---|
| 1768 | //vinit[0] = 1.0; | 
|---|
| 1769 | step[0]  = 0.1; | 
|---|
| 1770 | limlo[0] = 0.0; | 
|---|
| 1771 | limup[0] = 0.0; | 
|---|
| 1772 | fix[0]   = 0; | 
|---|
| 1773 |  | 
|---|
| 1774 | sprintf(&name[1][0], "a1mean"); | 
|---|
| 1775 | vinit[1] = a1start; | 
|---|
| 1776 | //vinit[1] = 0.0; | 
|---|
| 1777 | step[1]  = 0.1; | 
|---|
| 1778 | limlo[1] = 0.0; | 
|---|
| 1779 | limup[1] = 0.0; | 
|---|
| 1780 | fix[1]   = 0; | 
|---|
| 1781 |  | 
|---|
| 1782 | sprintf(&name[2][0], "a2mean"); | 
|---|
| 1783 | vinit[2] = 0.0; | 
|---|
| 1784 | step[2]  = 0.1; | 
|---|
| 1785 | limlo[2] = 0.0; | 
|---|
| 1786 | limup[2] = 0.0; | 
|---|
| 1787 | fix[2]   = 0; | 
|---|
| 1788 |  | 
|---|
| 1789 | sprintf(&name[3][0], "b0RMS"); | 
|---|
| 1790 | vinit[3] = b0start; | 
|---|
| 1791 | //vinit[3] = 0.8; | 
|---|
| 1792 | step[3]  = 0.1; | 
|---|
| 1793 | limlo[3] = 1.e-20; | 
|---|
| 1794 | limup[3] = 10.0; | 
|---|
| 1795 | fix[3]   = 0; | 
|---|
| 1796 |  | 
|---|
| 1797 | sprintf(&name[4][0], "b1RMS"); | 
|---|
| 1798 | vinit[4] = b1start; | 
|---|
| 1799 | //vinit[4] = 0.0; | 
|---|
| 1800 | step[4]  = 0.1; | 
|---|
| 1801 | limlo[4] = 0.0; | 
|---|
| 1802 | limup[4] = 0.0; | 
|---|
| 1803 | fix[4]   = 0; | 
|---|
| 1804 |  | 
|---|
| 1805 | sprintf(&name[5][0], "b2RMS"); | 
|---|
| 1806 | vinit[5] = 0.0; | 
|---|
| 1807 | step[5]  = 0.1; | 
|---|
| 1808 | limlo[5] = 0.0; | 
|---|
| 1809 | limup[5] = 0.0; | 
|---|
| 1810 | fix[5]   = 0; | 
|---|
| 1811 |  | 
|---|
| 1812 |  | 
|---|
| 1813 | if ( CallMinuit(fcnSmooth, npar, name, vinit, | 
|---|
| 1814 | step, limlo, limup, fix) ) | 
|---|
| 1815 | { | 
|---|
| 1816 |  | 
|---|
| 1817 | // ------------------------ | 
|---|
| 1818 | // fMigrat is the migration matrix to be used in the unfolding; | 
|---|
| 1819 | // fMigrat, as set by the constructor, is overwritten | 
|---|
| 1820 | //          by the smoothed migration matrix | 
|---|
| 1821 |  | 
|---|
| 1822 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1823 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1824 | fMigrat(i, j) = fMigSmoo(i, j); | 
|---|
| 1825 |  | 
|---|
| 1826 | // ------------------------ | 
|---|
| 1827 |  | 
|---|
| 1828 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1829 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1830 | fMigraterr2(i, j) = fMigSmooerr2(i, j); | 
|---|
| 1831 |  | 
|---|
| 1832 |  | 
|---|
| 1833 | // normalize | 
|---|
| 1834 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1835 | { | 
|---|
| 1836 | Double_t sum = 0.0; | 
|---|
| 1837 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1838 | sum += fMigrat(i, j); | 
|---|
| 1839 |  | 
|---|
| 1840 | //*fLog << "SmoothMigrationMatrix : normalization fMigrat; j, sum + " | 
|---|
| 1841 | //     << j << ",  " << sum << endl; | 
|---|
| 1842 |  | 
|---|
| 1843 | if (sum == 0.0) | 
|---|
| 1844 | continue; | 
|---|
| 1845 |  | 
|---|
| 1846 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1847 | { | 
|---|
| 1848 | fMigrat(i, j)     /= sum; | 
|---|
| 1849 | fMigraterr2(i, j) /= (sum*sum); | 
|---|
| 1850 | } | 
|---|
| 1851 | } | 
|---|
| 1852 |  | 
|---|
| 1853 | *fLog << "MUnfold::SmoothMigrationMatrix :   fMigrat = "  << endl; | 
|---|
| 1854 | *fLog << "========================================"  << endl; | 
|---|
| 1855 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1856 | { | 
|---|
| 1857 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1858 | *fLog << fMigrat(i, j) << " \t"; | 
|---|
| 1859 | *fLog << endl; | 
|---|
| 1860 | } | 
|---|
| 1861 |  | 
|---|
| 1862 | /* | 
|---|
| 1863 | *fLog << "MUnfold::SmoothMigrationMatrix :   fMigraterr2 = "  << endl; | 
|---|
| 1864 | *fLog << "============================================"  << endl; | 
|---|
| 1865 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 1866 | { | 
|---|
| 1867 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 1868 | *fLog << fMigraterr2(i, j) << " \t"; | 
|---|
| 1869 | *fLog << endl; | 
|---|
| 1870 | } | 
|---|
| 1871 | */ | 
|---|
| 1872 |  | 
|---|
| 1873 | // ------------------------ | 
|---|
| 1874 |  | 
|---|
| 1875 | return kTRUE; | 
|---|
| 1876 | } | 
|---|
| 1877 |  | 
|---|
| 1878 | return kFALSE; | 
|---|
| 1879 | } | 
|---|
| 1880 |  | 
|---|
| 1881 | // ----------------------------------------------------------------------- | 
|---|
| 1882 | // | 
|---|
| 1883 | // Prepare the call to MINUIT for the minimization of the function | 
|---|
| 1884 | //         f = chi2*w/2 + reg, where reg is the regularization term | 
|---|
| 1885 | //         reg is the sum the squared 2nd derivatives | 
|---|
| 1886 | //                        of the unfolded distribution | 
|---|
| 1887 | // | 
|---|
| 1888 | // the corresponding fcn routine is 'fcnTikhonov2' | 
|---|
| 1889 | // | 
|---|
| 1890 | Bool_t MUnfold::Tikhonov2(TH1D &hb0) | 
|---|
| 1891 | { | 
|---|
| 1892 | // the number of free parameters (npar) is equal to | 
|---|
| 1893 | // the number of bins (fNb) of the unfolded distribution minus 1, | 
|---|
| 1894 | // because of the constraint that the total number of events | 
|---|
| 1895 | // is fixed | 
|---|
| 1896 | UInt_t npar = fNb-1; | 
|---|
| 1897 |  | 
|---|
| 1898 | if (npar > 20) | 
|---|
| 1899 | { | 
|---|
| 1900 | *fLog << "MUnfold::Tikhonov2 : too many parameters,  npar = " | 
|---|
| 1901 | << npar << ",  fNb = " << fNb << endl; | 
|---|
| 1902 | return kFALSE; | 
|---|
| 1903 | } | 
|---|
| 1904 |  | 
|---|
| 1905 | // copy ideal distribution | 
|---|
| 1906 |  | 
|---|
| 1907 | for (UInt_t i=1; i<=fNb; i++) | 
|---|
| 1908 | { | 
|---|
| 1909 | fhb0->SetBinContent(i, hb0.GetBinContent(i)); | 
|---|
| 1910 | fhb0->SetBinError  (i, hb0.GetBinError(i)); | 
|---|
| 1911 | } | 
|---|
| 1912 |  | 
|---|
| 1913 |  | 
|---|
| 1914 | //---   start w loop ----------------------------------- | 
|---|
| 1915 |  | 
|---|
| 1916 | *fLog << "Tikhonov2 : start loop over weights" << endl; | 
|---|
| 1917 |  | 
|---|
| 1918 | Int_t ix; | 
|---|
| 1919 | Double_t xiter; | 
|---|
| 1920 |  | 
|---|
| 1921 | for (ix=0; ix<Nix; ix++) | 
|---|
| 1922 | { | 
|---|
| 1923 | fW = pow(10.0,log10(xmin)+ix*dlogx); | 
|---|
| 1924 |  | 
|---|
| 1925 | //.............................................. | 
|---|
| 1926 | // Set starting values and step sizes for parameters | 
|---|
| 1927 |  | 
|---|
| 1928 | char name[20][100]; | 
|---|
| 1929 | Double_t vinit[20]; | 
|---|
| 1930 | Double_t  step[20]; | 
|---|
| 1931 | Double_t limlo[20]; | 
|---|
| 1932 | Double_t limup[20]; | 
|---|
| 1933 | Int_t    fix[20]; | 
|---|
| 1934 |  | 
|---|
| 1935 | for (UInt_t i=0; i<npar; i++) | 
|---|
| 1936 | { | 
|---|
| 1937 | sprintf(&name[i][0], "p%d", i+1); | 
|---|
| 1938 | vinit[i] = fVEps0(i); | 
|---|
| 1939 | step[i]  = fVEps0(i)/10; | 
|---|
| 1940 |  | 
|---|
| 1941 | // lower and upper limits  (limlo=limup=0: no limits) | 
|---|
| 1942 | //limlo[i] = 1.e-20; | 
|---|
| 1943 | limlo[i] = -1.0; | 
|---|
| 1944 | limup[i] = 1.0; | 
|---|
| 1945 | fix[i]   = 0; | 
|---|
| 1946 | } | 
|---|
| 1947 |  | 
|---|
| 1948 | // calculate solution for the weight fW | 
|---|
| 1949 | // flag non-convergence by chisq(ix) = 0.0 | 
|---|
| 1950 | chisq(ix) = 0.0; | 
|---|
| 1951 | if ( CallMinuit(fcnTikhonov2, npar, name, vinit, | 
|---|
| 1952 | step, limlo, limup, fix) ) | 
|---|
| 1953 | { | 
|---|
| 1954 | // calculate difference between ideal and unfolded distribution | 
|---|
| 1955 | Double_t D2bar = 0.0; | 
|---|
| 1956 | for (UInt_t i = 0; i<fNb; i++) | 
|---|
| 1957 | { | 
|---|
| 1958 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0); | 
|---|
| 1959 | D2bar += temp*temp; | 
|---|
| 1960 | } | 
|---|
| 1961 |  | 
|---|
| 1962 | SpAR(ix)   = SpurAR; | 
|---|
| 1963 | SpSig(ix)  = SpurSigma; | 
|---|
| 1964 | chisq(ix)  = Chisq; | 
|---|
| 1965 | SecDer(ix) = SecDeriv; | 
|---|
| 1966 | ZerDer(ix) = ZerDeriv; | 
|---|
| 1967 | Entrop(ix) = Entropy; | 
|---|
| 1968 | DAR2(ix)   = DiffAR2; | 
|---|
| 1969 | Dsqbar(ix) = D2bar; | 
|---|
| 1970 | } | 
|---|
| 1971 | } | 
|---|
| 1972 | *fLog << "Tikhonov2 : end of loop over weights" << endl; | 
|---|
| 1973 |  | 
|---|
| 1974 | // plots ------------------------------ | 
|---|
| 1975 | for (ix=0; ix<Nix; ix++) | 
|---|
| 1976 | { | 
|---|
| 1977 | // test whether minimization has converged | 
|---|
| 1978 | if (chisq(ix) != 0.0) | 
|---|
| 1979 | { | 
|---|
| 1980 | xiter = pow(10.0,log10(xmin)+ix*dlogx); | 
|---|
| 1981 |  | 
|---|
| 1982 | Int_t bin; | 
|---|
| 1983 | bin = hBchisq->FindBin( log10(xiter) ); | 
|---|
| 1984 | hBchisq->SetBinContent(bin,chisq(ix)); | 
|---|
| 1985 |  | 
|---|
| 1986 | //hBSpAR->SetBinContent(bin,SpAR(ix)); | 
|---|
| 1987 | hBSpAR->SetBinContent(bin,0.0); | 
|---|
| 1988 |  | 
|---|
| 1989 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov); | 
|---|
| 1990 | hBSecDeriv->SetBinContent(bin,SecDer(ix)); | 
|---|
| 1991 | hBZerDeriv->SetBinContent(bin,ZerDer(ix)); | 
|---|
| 1992 | hBEntropy->SetBinContent(bin,Entrop(ix)); | 
|---|
| 1993 |  | 
|---|
| 1994 | //hBDAR2->SetBinContent(bin,DAR2(ix)); | 
|---|
| 1995 | hBDAR2->SetBinContent(bin,0.0); | 
|---|
| 1996 |  | 
|---|
| 1997 | hBD2bar->SetBinContent(bin,Dsqbar(ix)); | 
|---|
| 1998 |  | 
|---|
| 1999 | if (ix > 0) | 
|---|
| 2000 | { | 
|---|
| 2001 | //Double_t DSpAR = SpAR(ix) - SpAR(ix-1); | 
|---|
| 2002 | //hBDSpAR->SetBinContent(bin,DSpAR); | 
|---|
| 2003 |  | 
|---|
| 2004 | Double_t diff = SpSig(ix) - SpSig(ix-1); | 
|---|
| 2005 | Double_t DSpSig = diff; | 
|---|
| 2006 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov); | 
|---|
| 2007 |  | 
|---|
| 2008 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1); | 
|---|
| 2009 | hBDEntropy->SetBinContent(bin,DEntrop); | 
|---|
| 2010 |  | 
|---|
| 2011 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1); | 
|---|
| 2012 | hBDSecDeriv->SetBinContent(bin,DSecDer); | 
|---|
| 2013 |  | 
|---|
| 2014 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1); | 
|---|
| 2015 | hBDZerDeriv->SetBinContent(bin,DZerDer); | 
|---|
| 2016 | } | 
|---|
| 2017 | } | 
|---|
| 2018 | } | 
|---|
| 2019 |  | 
|---|
| 2020 |  | 
|---|
| 2021 | //---   end w loop ----------------------------------- | 
|---|
| 2022 |  | 
|---|
| 2023 | // Select best weight | 
|---|
| 2024 | SelectBestWeight(); | 
|---|
| 2025 |  | 
|---|
| 2026 | *fLog << " Tikhonov2 : after SelectBestWeight" << endl; | 
|---|
| 2027 |  | 
|---|
| 2028 | if (ixbest < 0.0) | 
|---|
| 2029 | { | 
|---|
| 2030 | *fLog << "Tikhonov2 : no result found; " << endl; | 
|---|
| 2031 | return kFALSE; | 
|---|
| 2032 | } | 
|---|
| 2033 |  | 
|---|
| 2034 | *fLog << "Tikhonov2 : best result found; " << endl; | 
|---|
| 2035 | *fLog << "===============================" << endl; | 
|---|
| 2036 | *fLog << "           ixbest = " << ixbest << endl; | 
|---|
| 2037 |  | 
|---|
| 2038 |  | 
|---|
| 2039 | // do a final unfolding using the best weight | 
|---|
| 2040 |  | 
|---|
| 2041 | fW = pow(10.0,log10(xmin)+ixbest*dlogx); | 
|---|
| 2042 |  | 
|---|
| 2043 | //.............................................. | 
|---|
| 2044 | // Set starting values and step sizes for parameters | 
|---|
| 2045 |  | 
|---|
| 2046 | char name[20][100]; | 
|---|
| 2047 | Double_t vinit[20]; | 
|---|
| 2048 | Double_t  step[20]; | 
|---|
| 2049 | Double_t limlo[20]; | 
|---|
| 2050 | Double_t limup[20]; | 
|---|
| 2051 | Int_t    fix[20]; | 
|---|
| 2052 |  | 
|---|
| 2053 | for (UInt_t i=0; i<npar; i++) | 
|---|
| 2054 | { | 
|---|
| 2055 | sprintf(&name[i][0], "p%d", i+1); | 
|---|
| 2056 | vinit[i] = fVEps0(i); | 
|---|
| 2057 | step[i]  = fVEps0(i)/10; | 
|---|
| 2058 |  | 
|---|
| 2059 | // lower and upper limits  (limlo=limup=0: no limits) | 
|---|
| 2060 | //limlo[i] = 1.e-20; | 
|---|
| 2061 | limlo[i] = -1.0; | 
|---|
| 2062 | limup[i] = 1.0; | 
|---|
| 2063 | fix[i]   = 0; | 
|---|
| 2064 | } | 
|---|
| 2065 |  | 
|---|
| 2066 | // calculate solution for the best weight | 
|---|
| 2067 | CallMinuit(fcnTikhonov2, npar, name, vinit, | 
|---|
| 2068 | step, limlo, limup, fix); | 
|---|
| 2069 |  | 
|---|
| 2070 |  | 
|---|
| 2071 | *fLog << "Tikhonov : Values for best weight " << endl; | 
|---|
| 2072 | *fLog << "==================================" << endl; | 
|---|
| 2073 | *fLog << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl; | 
|---|
| 2074 | *fLog << "      " << fW << ",  " << ixbest << ",  " | 
|---|
| 2075 | << Chisq << ",  " << SpurAR << ",  " | 
|---|
| 2076 | << SpurSigma << ",  " << SecDeriv << ",  " << ZerDeriv << ",  " | 
|---|
| 2077 | << Entropy << ",  " << DiffAR2 << ",  " | 
|---|
| 2078 | << Dsqbar(ixbest) << endl; | 
|---|
| 2079 |  | 
|---|
| 2080 | return kTRUE; | 
|---|
| 2081 |  | 
|---|
| 2082 | } | 
|---|
| 2083 |  | 
|---|
| 2084 |  | 
|---|
| 2085 | // ----------------------------------------------------------------------- | 
|---|
| 2086 | // | 
|---|
| 2087 | // Bertero : | 
|---|
| 2088 | // | 
|---|
| 2089 | // the unfolded distribution is calculated iteratively; | 
|---|
| 2090 | // the number of iterations after which the iteration is stopped | 
|---|
| 2091 | //            corresponds to the 'weight' in other methods | 
|---|
| 2092 | // a small number of iterations corresponds to strong regularization | 
|---|
| 2093 | // a high number to no regularization | 
|---|
| 2094 | // | 
|---|
| 2095 | // see : M.Bertero, INFN/TC-88/2 (1988) | 
|---|
| 2096 | //       V.B.Anykeyev et al., NIM A303 (1991) 350 | 
|---|
| 2097 | // | 
|---|
| 2098 | Bool_t MUnfold::Bertero(TH1D &hb0) | 
|---|
| 2099 | { | 
|---|
| 2100 | // copy ideal distribution | 
|---|
| 2101 |  | 
|---|
| 2102 | for (UInt_t i=1; i<=fNb; i++) | 
|---|
| 2103 | { | 
|---|
| 2104 | fhb0->SetBinContent(i, hb0.GetBinContent(i)); | 
|---|
| 2105 | fhb0->SetBinError  (i, hb0.GetBinError(i)); | 
|---|
| 2106 | } | 
|---|
| 2107 |  | 
|---|
| 2108 |  | 
|---|
| 2109 | TMatrixD bold(fNb, 1); | 
|---|
| 2110 | bold.Zero(); | 
|---|
| 2111 |  | 
|---|
| 2112 | //---------------------------------------------------------- | 
|---|
| 2113 |  | 
|---|
| 2114 | Double_t db2 = 1.e20; | 
|---|
| 2115 |  | 
|---|
| 2116 |  | 
|---|
| 2117 | TMatrixD aminusaest(fNa, 1); | 
|---|
| 2118 |  | 
|---|
| 2119 | //-------   scan number of iterations   ----------------- | 
|---|
| 2120 |  | 
|---|
| 2121 | *fLog << "Bertero : start loop over number of iterations" << endl; | 
|---|
| 2122 |  | 
|---|
| 2123 | Int_t ix; | 
|---|
| 2124 |  | 
|---|
| 2125 | for (ix=0; ix<Nix; ix++) | 
|---|
| 2126 | { | 
|---|
| 2127 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx); | 
|---|
| 2128 |  | 
|---|
| 2129 | // calculate solution for the iteration number xiter | 
|---|
| 2130 | BertCore(xiter); | 
|---|
| 2131 |  | 
|---|
| 2132 | // calculate difference between ideal and unfolded distribution | 
|---|
| 2133 | Double_t D2bar = 0.0; | 
|---|
| 2134 | for (UInt_t i = 0; i<fNb; i++) | 
|---|
| 2135 | { | 
|---|
| 2136 | Double_t temp = fVb(i,0)-hb0.GetBinContent(i+1,0); | 
|---|
| 2137 | D2bar += temp*temp; | 
|---|
| 2138 | } | 
|---|
| 2139 |  | 
|---|
| 2140 | SpAR(ix)   = SpurAR; | 
|---|
| 2141 | SpSig(ix)  = SpurSigma; | 
|---|
| 2142 | chisq(ix)  = Chisq; | 
|---|
| 2143 | SecDer(ix) = SecDeriv; | 
|---|
| 2144 | ZerDer(ix) = ZerDeriv; | 
|---|
| 2145 | Entrop(ix) = Entropy; | 
|---|
| 2146 | DAR2(ix)   = DiffAR2; | 
|---|
| 2147 | Dsqbar(ix) = D2bar; | 
|---|
| 2148 |  | 
|---|
| 2149 | db2 = 0.0; | 
|---|
| 2150 | for (UInt_t i = 0; i<fNb; i++) | 
|---|
| 2151 | { | 
|---|
| 2152 | Double_t temp = fVb(i,0)-bold(i,0); | 
|---|
| 2153 | db2 += temp*temp; | 
|---|
| 2154 | } | 
|---|
| 2155 | bold = fVb; | 
|---|
| 2156 |  | 
|---|
| 2157 | //if (db2 < Epsdb2) break; | 
|---|
| 2158 |  | 
|---|
| 2159 | } | 
|---|
| 2160 |  | 
|---|
| 2161 | *fLog << "Bertero : end of loop over number of iterations" << endl; | 
|---|
| 2162 |  | 
|---|
| 2163 | // plots ------------------------------ | 
|---|
| 2164 | for (ix=0; ix<Nix; ix++) | 
|---|
| 2165 | { | 
|---|
| 2166 | Double_t xiter = pow(10.0,log10(xmin)+ix*dlogx); | 
|---|
| 2167 |  | 
|---|
| 2168 | Int_t bin; | 
|---|
| 2169 | bin = hBchisq->FindBin( log10(xiter) ); | 
|---|
| 2170 | hBchisq->SetBinContent(bin,chisq(ix)); | 
|---|
| 2171 | hBSpAR->SetBinContent(bin,SpAR(ix)); | 
|---|
| 2172 | hBSpSig->SetBinContent(bin,SpSig(ix)/fSpurVacov); | 
|---|
| 2173 | hBSecDeriv->SetBinContent(bin,SecDer(ix)); | 
|---|
| 2174 | hBZerDeriv->SetBinContent(bin,ZerDer(ix)); | 
|---|
| 2175 | hBEntropy->SetBinContent(bin,Entrop(ix)); | 
|---|
| 2176 | hBDAR2->SetBinContent(bin,DAR2(ix)); | 
|---|
| 2177 | hBD2bar->SetBinContent(bin,Dsqbar(ix)); | 
|---|
| 2178 |  | 
|---|
| 2179 | if (ix > 0) | 
|---|
| 2180 | { | 
|---|
| 2181 | Double_t DSpAR = SpAR(ix) - SpAR(ix-1); | 
|---|
| 2182 | hBDSpAR->SetBinContent(bin,DSpAR); | 
|---|
| 2183 |  | 
|---|
| 2184 | Double_t diff = SpSig(ix) - SpSig(ix-1); | 
|---|
| 2185 | Double_t DSpSig = diff; | 
|---|
| 2186 | hBDSpSig->SetBinContent(bin, DSpSig/fSpurVacov); | 
|---|
| 2187 |  | 
|---|
| 2188 | Double_t DEntrop = Entrop(ix) - Entrop(ix-1); | 
|---|
| 2189 | hBDEntropy->SetBinContent(bin,DEntrop); | 
|---|
| 2190 |  | 
|---|
| 2191 | Double_t DSecDer = SecDer(ix) - SecDer(ix-1); | 
|---|
| 2192 | hBDSecDeriv->SetBinContent(bin,DSecDer); | 
|---|
| 2193 |  | 
|---|
| 2194 | Double_t DZerDer = ZerDer(ix) - ZerDer(ix-1); | 
|---|
| 2195 | hBDZerDeriv->SetBinContent(bin,DZerDer); | 
|---|
| 2196 | } | 
|---|
| 2197 | } | 
|---|
| 2198 | //-------   end of scan of number of iterations   ----------------- | 
|---|
| 2199 |  | 
|---|
| 2200 | // Select best weight | 
|---|
| 2201 | SelectBestWeight(); | 
|---|
| 2202 |  | 
|---|
| 2203 |  | 
|---|
| 2204 | if (ixbest < 0.0) | 
|---|
| 2205 | { | 
|---|
| 2206 | *fLog << "Bertero : weight iteration has NOT converged; " << endl; | 
|---|
| 2207 | return kFALSE; | 
|---|
| 2208 | } | 
|---|
| 2209 |  | 
|---|
| 2210 | *fLog << "Bertero : weight iteration has converged; " << endl; | 
|---|
| 2211 | *fLog << "            ixbest = " << ixbest << endl; | 
|---|
| 2212 |  | 
|---|
| 2213 |  | 
|---|
| 2214 | // do a final unfolding using the best weight | 
|---|
| 2215 |  | 
|---|
| 2216 | // calculate solution for the iteration number xiter | 
|---|
| 2217 | Double_t xiter = pow(10.0,log10(xmin)+ixbest*dlogx); | 
|---|
| 2218 | BertCore(xiter); | 
|---|
| 2219 |  | 
|---|
| 2220 | *fLog << "Bertero : Values for best weight " << endl; | 
|---|
| 2221 | *fLog << "=================================" << endl; | 
|---|
| 2222 | *fLog << "fW, ixbest, Chisq, SpurAR, SpurSigma, SecDeriv, ZerDeriv, Entrop, DiffAR2, D2bar = " << endl; | 
|---|
| 2223 | *fLog << "      " << fW << ",  " << ixbest << ",  " | 
|---|
| 2224 | << Chisq << ",  " << SpurAR << ",  " | 
|---|
| 2225 | << SpurSigma << ",  " << SecDeriv << ",  " << ZerDeriv << ",  " | 
|---|
| 2226 | << Entropy << ",  " << DiffAR2 << ",  " | 
|---|
| 2227 | << Dsqbar(ixbest) << endl; | 
|---|
| 2228 |  | 
|---|
| 2229 | //---------------- | 
|---|
| 2230 |  | 
|---|
| 2231 | fNdf   = SpurAR; | 
|---|
| 2232 | fChisq = Chisq; | 
|---|
| 2233 |  | 
|---|
| 2234 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 2235 | { | 
|---|
| 2236 | fChi2(i,0) = Chi2(i,0); | 
|---|
| 2237 | } | 
|---|
| 2238 |  | 
|---|
| 2239 | UInt_t iNdf   = (UInt_t) (fNdf+0.5); | 
|---|
| 2240 | fProb = iNdf>0 ? TMath::Prob(fChisq, iNdf) : 0; | 
|---|
| 2241 |  | 
|---|
| 2242 |  | 
|---|
| 2243 | fResult.ResizeTo(fNb, 5); | 
|---|
| 2244 | for (UInt_t i=0; i<fNb; i++) | 
|---|
| 2245 | { | 
|---|
| 2246 | fResult(i, 0) = fVb(i,0); | 
|---|
| 2247 | fResult(i, 1) = sqrt(fVbcov(i,i)); | 
|---|
| 2248 | fResult(i, 2) = 0.0; | 
|---|
| 2249 | fResult(i, 3) = 0.0; | 
|---|
| 2250 | fResult(i, 4) = 1.0; | 
|---|
| 2251 | } | 
|---|
| 2252 |  | 
|---|
| 2253 | return kTRUE; | 
|---|
| 2254 | } | 
|---|
| 2255 |  | 
|---|
| 2256 | // ----------------------------------------------------------------------- | 
|---|
| 2257 | // | 
|---|
| 2258 | // main part of Bertero's calculations | 
|---|
| 2259 | // | 
|---|
| 2260 | Bool_t MUnfold::BertCore(Double_t &xiter) | 
|---|
| 2261 | { | 
|---|
| 2262 | // ignore eigen values which are smaller than EpsLambda | 
|---|
| 2263 | TMatrixD G_inv(fNa, fNa); | 
|---|
| 2264 | TMatrixD Gtil_inv(fNa, fNa); | 
|---|
| 2265 | TMatrixD atil(fNb, fNa); | 
|---|
| 2266 | TMatrixD aminusaest(fNa, 1); | 
|---|
| 2267 |  | 
|---|
| 2268 | G_inv.Zero(); | 
|---|
| 2269 | Gtil_inv.Zero(); | 
|---|
| 2270 | SpurAR = 0.0; | 
|---|
| 2271 |  | 
|---|
| 2272 | // -----   loop over eigen values   ------------------ | 
|---|
| 2273 | // calculate the approximate inverse of the matrix G | 
|---|
| 2274 | //*fLog << "flaml = " << endl; | 
|---|
| 2275 |  | 
|---|
| 2276 | UInt_t flagstart = 2; | 
|---|
| 2277 | Double_t flaml=0; | 
|---|
| 2278 |  | 
|---|
| 2279 | for (UInt_t l=0; l<fNa; l++) | 
|---|
| 2280 | { | 
|---|
| 2281 | if (EigenValue(l) < EpsLambda) | 
|---|
| 2282 | continue; | 
|---|
| 2283 |  | 
|---|
| 2284 | switch (flagstart) | 
|---|
| 2285 | { | 
|---|
| 2286 | case 1 : | 
|---|
| 2287 | // This is the expression for f(lambda) if the initial C^(0) | 
|---|
| 2288 | // is chosen to be zero | 
|---|
| 2289 | flaml = 1.0 - pow(1.0-tau*EigenValue(l),xiter); | 
|---|
| 2290 | break; | 
|---|
| 2291 |  | 
|---|
| 2292 | case 2 : | 
|---|
| 2293 | // This is the expression for f(lambda) if the initial C^(0) | 
|---|
| 2294 | // is chosen to be equal to the measured distribution | 
|---|
| 2295 | flaml =           1.0 - pow(1.0-tau*EigenValue(l),xiter) | 
|---|
| 2296 | + EigenValue(l) * pow(1.0-tau*EigenValue(l),xiter); | 
|---|
| 2297 | break; | 
|---|
| 2298 | } | 
|---|
| 2299 |  | 
|---|
| 2300 | //  *fLog << flaml << ",  "; | 
|---|
| 2301 |  | 
|---|
| 2302 | for (UInt_t m=0; m<fNa; m++) | 
|---|
| 2303 | { | 
|---|
| 2304 | for (UInt_t n=0; n<fNa; n++) | 
|---|
| 2305 | { | 
|---|
| 2306 | G_inv(m,n)    += 1.0  /EigenValue(l) * Eigen(m,l)*Eigen(n,l); | 
|---|
| 2307 | Gtil_inv(m,n) += flaml/EigenValue(l) * Eigen(m,l)*Eigen(n,l); | 
|---|
| 2308 | } | 
|---|
| 2309 | } | 
|---|
| 2310 | SpurAR += flaml; | 
|---|
| 2311 | } | 
|---|
| 2312 | //*fLog << endl; | 
|---|
| 2313 |  | 
|---|
| 2314 |  | 
|---|
| 2315 | //*fLog << "Gtil_inv =" << endl; | 
|---|
| 2316 | //for (Int_t m=0; m<fNa; m++) | 
|---|
| 2317 | //{ | 
|---|
| 2318 | //  for (Int_t n=0; n<fNa; n++) | 
|---|
| 2319 | //  { | 
|---|
| 2320 | //    *fLog << Gtil_inv(m,n) << ",  "; | 
|---|
| 2321 | //  } | 
|---|
| 2322 | //  *fLog << endl; | 
|---|
| 2323 | //} | 
|---|
| 2324 |  | 
|---|
| 2325 | //----------------------------------------------------- | 
|---|
| 2326 | // calculate the unfolded distribution b | 
|---|
| 2327 | TMatrixD v2(fMigrat, TMatrixD::kTransposeMult, Gtil_inv); | 
|---|
| 2328 | atil = v2; | 
|---|
| 2329 | TMatrixD v4(atil, TMatrixD::kMult, fVa); | 
|---|
| 2330 | fVb = v4; | 
|---|
| 2331 |  | 
|---|
| 2332 | //----------------------------------------------------- | 
|---|
| 2333 | // calculate AR and AR+ | 
|---|
| 2334 | TMatrixD AR(v2, TMatrixD::kMult, fMigrat); | 
|---|
| 2335 |  | 
|---|
| 2336 | TMatrixD v3(fMigrat, TMatrixD::kTransposeMult, G_inv); | 
|---|
| 2337 | TMatrixD ARplus(v3, TMatrixD::kMult, fMigrat); | 
|---|
| 2338 |  | 
|---|
| 2339 |  | 
|---|
| 2340 | //----------------------------------------------------- | 
|---|
| 2341 | // calculate the norm |AR - AR+|**2 | 
|---|
| 2342 |  | 
|---|
| 2343 | DiffAR2 = 0.0; | 
|---|
| 2344 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 2345 | { | 
|---|
| 2346 | for (UInt_t k=0; k<fNb; k++) | 
|---|
| 2347 | { | 
|---|
| 2348 | Double_t tempo = AR(j,k) - ARplus(j,k); | 
|---|
| 2349 | DiffAR2       += tempo*tempo; | 
|---|
| 2350 | } | 
|---|
| 2351 | } | 
|---|
| 2352 |  | 
|---|
| 2353 | //----------------------------------------------------- | 
|---|
| 2354 | // calculate the second derivative squared | 
|---|
| 2355 |  | 
|---|
| 2356 | SecDeriv = 0; | 
|---|
| 2357 | for (UInt_t j=1; j<(fNb-1); j++) | 
|---|
| 2358 | { | 
|---|
| 2359 | // temp = ( 2.0*fVb(j,0)-fVb(j-1,0)-fVb(j+1,0) ) / ( 2.0*fVb(j,0) ); | 
|---|
| 2360 | Double_t temp =    2.0*(fVb(j+1,0)-fVb(j,0)) / (fVb(j+1,0)+fVb(j,0)) | 
|---|
| 2361 | - 2.0*(fVb(j,0)-fVb(j-1,0)) / (fVb(j,0)+fVb(j-1,0)); | 
|---|
| 2362 | SecDeriv += temp*temp; | 
|---|
| 2363 | } | 
|---|
| 2364 |  | 
|---|
| 2365 | ZerDeriv = 0; | 
|---|
| 2366 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 2367 | ZerDeriv += fVb(j,0) * fVb(j,0); | 
|---|
| 2368 |  | 
|---|
| 2369 | //----------------------------------------------------- | 
|---|
| 2370 | // calculate the entropy | 
|---|
| 2371 |  | 
|---|
| 2372 | Double_t sumb = 0.0; | 
|---|
| 2373 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 2374 | sumb += fVb(j,0); | 
|---|
| 2375 |  | 
|---|
| 2376 | TMatrixD p(fNb,1); | 
|---|
| 2377 | p = fVb; | 
|---|
| 2378 | if (sumb > 0.0) | 
|---|
| 2379 | p *= 1.0/sumb; | 
|---|
| 2380 |  | 
|---|
| 2381 | Entropy = 0; | 
|---|
| 2382 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 2383 | if (p(j,0) > 0.0) | 
|---|
| 2384 | Entropy += p(j,0) * log( p(j,0) ); | 
|---|
| 2385 |  | 
|---|
| 2386 | //----------------------------------------------------- | 
|---|
| 2387 |  | 
|---|
| 2388 | TMatrixD Gb(fMigrat, TMatrixD::kMult, fVb); | 
|---|
| 2389 | aminusaest = fVa; | 
|---|
| 2390 | aminusaest -= Gb; | 
|---|
| 2391 |  | 
|---|
| 2392 | TMatrixD v1(1,fNa); | 
|---|
| 2393 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 2394 | { | 
|---|
| 2395 | v1(0,i) = 0.0; | 
|---|
| 2396 | for (UInt_t j=0; j<fNa; j++) | 
|---|
| 2397 | v1(0,i) += aminusaest(j,0) * fVacovInv(j,i) ; | 
|---|
| 2398 | } | 
|---|
| 2399 |  | 
|---|
| 2400 | //----------------------------------------------------- | 
|---|
| 2401 | // calculate error matrix fVbcov of unfolded distribution | 
|---|
| 2402 | SpurSigma = CalcSpurSigma(atil); | 
|---|
| 2403 |  | 
|---|
| 2404 | //----------------------------------------------------- | 
|---|
| 2405 | // calculate the chi squared | 
|---|
| 2406 | for (UInt_t i = 0; i<fNa; i++) | 
|---|
| 2407 | Chi2(i,0) = v1(0,i) * aminusaest(i,0); | 
|---|
| 2408 |  | 
|---|
| 2409 | Chisq = GetMatrixSumCol(Chi2,0); | 
|---|
| 2410 | return kTRUE; | 
|---|
| 2411 | } | 
|---|
| 2412 |  | 
|---|
| 2413 |  | 
|---|
| 2414 | // ----------------------------------------------------------------------- | 
|---|
| 2415 | // | 
|---|
| 2416 | // Calculate the matrix G = M * M(transposed) | 
|---|
| 2417 | //           and its eigen values and eigen vectors | 
|---|
| 2418 | // | 
|---|
| 2419 | Bool_t MUnfold::CalculateG() | 
|---|
| 2420 | { | 
|---|
| 2421 | // Calculate matrix G = M*M(transposed)     (M = migration matrix) | 
|---|
| 2422 | //           the matrix Eigen of the eigen vectors of G | 
|---|
| 2423 | //           the vector EigenValues of the eigen values of G | 
|---|
| 2424 | //           the parameter tau = 1/lambda_max | 
|---|
| 2425 | // | 
|---|
| 2426 | TMatrixD v5(TMatrixD::kTransposed, fMigrat); | 
|---|
| 2427 | //TMatrixD G(fMigrat, TMatrixD::kMult, v5); | 
|---|
| 2428 | G.Mult(fMigrat, v5); | 
|---|
| 2429 |  | 
|---|
| 2430 | Eigen = G.EigenVectors(EigenValue); | 
|---|
| 2431 |  | 
|---|
| 2432 | RankG = 0.0; | 
|---|
| 2433 | for (UInt_t l=0; l<fNa; l++) | 
|---|
| 2434 | { | 
|---|
| 2435 | if (EigenValue(l) < EpsLambda) continue; | 
|---|
| 2436 | RankG += 1.0; | 
|---|
| 2437 | } | 
|---|
| 2438 |  | 
|---|
| 2439 | tau = 1.0 / EigenValue(0); | 
|---|
| 2440 |  | 
|---|
| 2441 | //  *fLog << "eigen values : " << endl; | 
|---|
| 2442 | //  for (Int_t i=0; i<fNa; i++) | 
|---|
| 2443 | //  { | 
|---|
| 2444 | //    *fLog << EigenValue(i) << ",  "; | 
|---|
| 2445 | //  } | 
|---|
| 2446 | //  *fLog << endl; | 
|---|
| 2447 |  | 
|---|
| 2448 | //*fLog << "eigen vectors : " << endl; | 
|---|
| 2449 | //for (Int_t i=0; i<fNa; i++) | 
|---|
| 2450 | //{ | 
|---|
| 2451 | //  *fLog << "               vector " << i << endl; | 
|---|
| 2452 | //  for (Int_t j=0; j<fNa; j++) | 
|---|
| 2453 | //  { | 
|---|
| 2454 | //    *fLog << Eigen(j,i) << ",  "; | 
|---|
| 2455 | //  } | 
|---|
| 2456 | //  *fLog << endl; | 
|---|
| 2457 | //} | 
|---|
| 2458 | //*fLog << endl; | 
|---|
| 2459 |  | 
|---|
| 2460 | //*fLog << "G =" << endl; | 
|---|
| 2461 | //for (Int_t m=0; m<fNa; m++) | 
|---|
| 2462 | //{ | 
|---|
| 2463 | //  for (Int_t n=0; n<fNa; n++) | 
|---|
| 2464 | //  { | 
|---|
| 2465 | //    *fLog << G(m,n) << ",  "; | 
|---|
| 2466 | //  } | 
|---|
| 2467 | //  *fLog << endl; | 
|---|
| 2468 | //} | 
|---|
| 2469 |  | 
|---|
| 2470 | return kTRUE; | 
|---|
| 2471 | } | 
|---|
| 2472 |  | 
|---|
| 2473 | // ----------------------------------------------------------------------- | 
|---|
| 2474 | // | 
|---|
| 2475 | // Select the best weight | 
|---|
| 2476 | // | 
|---|
| 2477 | Bool_t MUnfold::SelectBestWeight() | 
|---|
| 2478 | { | 
|---|
| 2479 | //------------------------------- | 
|---|
| 2480 | // select 'best' weight according to some criterion | 
|---|
| 2481 |  | 
|---|
| 2482 | Int_t ix; | 
|---|
| 2483 |  | 
|---|
| 2484 | Double_t DiffSpSigmax = -1.e10; | 
|---|
| 2485 | Int_t    ixDiffSpSigmax = -1; | 
|---|
| 2486 |  | 
|---|
| 2487 | Double_t DiffSigpointsmin = 1.e10; | 
|---|
| 2488 | Int_t    ixDiffSigpointsmin = -1; | 
|---|
| 2489 |  | 
|---|
| 2490 | Double_t DiffRankGmin = 1.e10; | 
|---|
| 2491 | Int_t    ixDiffRankGmin = -1; | 
|---|
| 2492 |  | 
|---|
| 2493 | Double_t D2barmin = 1.e10; | 
|---|
| 2494 | Int_t    ixD2barmin = -1; | 
|---|
| 2495 |  | 
|---|
| 2496 | Double_t DiffSpSig1min = 1.e10; | 
|---|
| 2497 | Int_t    ixDiffSpSig1min = -1; | 
|---|
| 2498 |  | 
|---|
| 2499 |  | 
|---|
| 2500 | Int_t ixmax = -1; | 
|---|
| 2501 |  | 
|---|
| 2502 | // first loop over all weights : | 
|---|
| 2503 | //       find smallest chi2 | 
|---|
| 2504 | Double_t chisqmin = 1.e20; | 
|---|
| 2505 | for (ix=0; ix<Nix; ix++) | 
|---|
| 2506 | { | 
|---|
| 2507 | // consider only weights for which | 
|---|
| 2508 | //  - unfolding was successful | 
|---|
| 2509 | if (chisq(ix) != 0.0) | 
|---|
| 2510 | { | 
|---|
| 2511 | if (chisq(ix) < chisqmin) | 
|---|
| 2512 | chisqmin = chisq(ix); | 
|---|
| 2513 | } | 
|---|
| 2514 | } | 
|---|
| 2515 | Double_t chisq0 = chisqmin > fVapoints ? chisqmin : fVapoints/2.0; | 
|---|
| 2516 |  | 
|---|
| 2517 | // second loop over all weights : | 
|---|
| 2518 | //        consider only weights for which chisq(ix) < chisq0 | 
|---|
| 2519 | ixbest = -1; | 
|---|
| 2520 | for (ix=0; ix<Nix; ix++) | 
|---|
| 2521 | { | 
|---|
| 2522 | if (chisq(ix) != 0.0 && chisq(ix) < 2.0*chisq0) | 
|---|
| 2523 | { | 
|---|
| 2524 | // ixmax = highest weight with successful unfolding | 
|---|
| 2525 | //         (Least squares solution) | 
|---|
| 2526 | ixmax = ix; | 
|---|
| 2527 |  | 
|---|
| 2528 | SpurSigma = SpSig(ix); | 
|---|
| 2529 | SpurAR    = SpAR(ix); | 
|---|
| 2530 | Chisq    = chisq(ix); | 
|---|
| 2531 | D2bar     = Dsqbar(ix); | 
|---|
| 2532 |  | 
|---|
| 2533 | //---------------------------------- | 
|---|
| 2534 | // search weight where SpurSigma changes most | 
|---|
| 2535 | //                               (as a function of the weight) | 
|---|
| 2536 | if (ix > 0  &&  chisq(ix-1) != 0.0) | 
|---|
| 2537 | { | 
|---|
| 2538 | Double_t diff = SpSig(ix) - SpSig(ix-1); | 
|---|
| 2539 | if (diff > DiffSpSigmax) | 
|---|
| 2540 | { | 
|---|
| 2541 | DiffSpSigmax   = diff; | 
|---|
| 2542 | ixDiffSpSigmax = ix; | 
|---|
| 2543 | } | 
|---|
| 2544 | } | 
|---|
| 2545 |  | 
|---|
| 2546 | //---------------------------------- | 
|---|
| 2547 | // search weight where Chisq is close | 
|---|
| 2548 | //        to the number of significant measurements | 
|---|
| 2549 | Double_t DiffSigpoints = fabs(Chisq-fVapoints); | 
|---|
| 2550 |  | 
|---|
| 2551 | if (DiffSigpoints < DiffSigpointsmin) | 
|---|
| 2552 | { | 
|---|
| 2553 | DiffSigpointsmin   = DiffSigpoints; | 
|---|
| 2554 | ixDiffSigpointsmin = ix; | 
|---|
| 2555 | } | 
|---|
| 2556 |  | 
|---|
| 2557 | //---------------------------------- | 
|---|
| 2558 | // search weight where Chisq is close | 
|---|
| 2559 | //        to the rank of matrix G | 
|---|
| 2560 | Double_t DiffRankG = fabs(Chisq-RankG); | 
|---|
| 2561 |  | 
|---|
| 2562 | if (DiffRankG < DiffRankGmin) | 
|---|
| 2563 | { | 
|---|
| 2564 | DiffRankGmin   = DiffRankG; | 
|---|
| 2565 | ixDiffRankGmin = ix; | 
|---|
| 2566 | } | 
|---|
| 2567 |  | 
|---|
| 2568 | //---------------------------------- | 
|---|
| 2569 | // search weight where SpurSigma is close to 1.0 | 
|---|
| 2570 | Double_t DiffSpSig1 = fabs(SpurSigma/fSpurVacov-1.0); | 
|---|
| 2571 |  | 
|---|
| 2572 | if (DiffSpSig1 < DiffSpSig1min) | 
|---|
| 2573 | { | 
|---|
| 2574 | DiffSpSig1min   = DiffSpSig1; | 
|---|
| 2575 | ixDiffSpSig1min = ix; | 
|---|
| 2576 | } | 
|---|
| 2577 |  | 
|---|
| 2578 | //---------------------------------- | 
|---|
| 2579 | // search weight where D2bar is minimal | 
|---|
| 2580 |  | 
|---|
| 2581 | if (D2bar < D2barmin) | 
|---|
| 2582 | { | 
|---|
| 2583 | D2barmin   = D2bar; | 
|---|
| 2584 | ixD2barmin = ix; | 
|---|
| 2585 | } | 
|---|
| 2586 |  | 
|---|
| 2587 | //---------------------------------- | 
|---|
| 2588 | } | 
|---|
| 2589 | } | 
|---|
| 2590 |  | 
|---|
| 2591 |  | 
|---|
| 2592 | // choose solution where increase of SpurSigma is biggest | 
|---|
| 2593 | //if ( DiffSpSigmax > 0.0) | 
|---|
| 2594 | //  ixbest = ixDiffSpSigmax; | 
|---|
| 2595 | //else | 
|---|
| 2596 | //  ixbest = ixDiffSigpointsmin; | 
|---|
| 2597 |  | 
|---|
| 2598 | // choose Least Squares Solution | 
|---|
| 2599 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ | 
|---|
| 2600 | // ixbest = ixmax; | 
|---|
| 2601 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ | 
|---|
| 2602 |  | 
|---|
| 2603 | // choose weight where chi2 is close to the number of significant | 
|---|
| 2604 | // measurements | 
|---|
| 2605 | // ixbest = ixDiffSigpointsmin; | 
|---|
| 2606 |  | 
|---|
| 2607 | // choose weight where chi2 is close to the rank of matrix G | 
|---|
| 2608 | // ixbest = ixDiffRankGmin; | 
|---|
| 2609 |  | 
|---|
| 2610 | // choose weight where chi2 is close to the rank of matrix G | 
|---|
| 2611 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ | 
|---|
| 2612 | ixbest = ixDiffSpSig1min; | 
|---|
| 2613 | //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ | 
|---|
| 2614 |  | 
|---|
| 2615 | *fLog << "SelectBestWeight : ixDiffSpSigmax, DiffSpSigmax = " | 
|---|
| 2616 | << ixDiffSpSigmax << ",  " << DiffSpSigmax << endl; | 
|---|
| 2617 | *fLog << "================== ixDiffSigpointsmin, DiffSigpointsmin = " | 
|---|
| 2618 | << ixDiffSigpointsmin << ",  " << DiffSigpointsmin << endl; | 
|---|
| 2619 |  | 
|---|
| 2620 | *fLog << "                   ixDiffRankGmin, DiffRankGmin = " | 
|---|
| 2621 | << ixDiffRankGmin << ",  " << DiffRankGmin << endl; | 
|---|
| 2622 |  | 
|---|
| 2623 | *fLog << "                   ixDiffSpSig1min, DiffSpSig1min = " | 
|---|
| 2624 | << ixDiffSpSig1min << ",  " << DiffSpSig1min << endl; | 
|---|
| 2625 |  | 
|---|
| 2626 | *fLog << "                   ixD2barmin, D2barmin = " | 
|---|
| 2627 | << ixD2barmin << ",  " << D2barmin << endl; | 
|---|
| 2628 | *fLog << "                   ixmax  = " << ixmax  << endl; | 
|---|
| 2629 | *fLog << "                   ixbest = " << ixbest << endl; | 
|---|
| 2630 |  | 
|---|
| 2631 |  | 
|---|
| 2632 | return kTRUE; | 
|---|
| 2633 | } | 
|---|
| 2634 |  | 
|---|
| 2635 | // ----------------------------------------------------------------------- | 
|---|
| 2636 | // | 
|---|
| 2637 | // Draw the plots | 
|---|
| 2638 | // | 
|---|
| 2639 | Bool_t MUnfold::DrawPlots() | 
|---|
| 2640 | { | 
|---|
| 2641 |  | 
|---|
| 2642 | // in the plots, mark the weight which has been selected | 
|---|
| 2643 | Double_t xbin = log10(xmin)+ixbest*dlogx; | 
|---|
| 2644 |  | 
|---|
| 2645 | TMarker *m = new TMarker(); | 
|---|
| 2646 | m->SetMarkerSize(1); | 
|---|
| 2647 | m->SetMarkerStyle(20); | 
|---|
| 2648 |  | 
|---|
| 2649 | //------------------------------------- | 
|---|
| 2650 | // draw the iteration plots | 
|---|
| 2651 | TString ctitle = bintitle; | 
|---|
| 2652 | ctitle += "Plots versus weight"; | 
|---|
| 2653 | TCanvas *c = new TCanvas("iter", ctitle, 900, 600); | 
|---|
| 2654 | c->Divide(3,2); | 
|---|
| 2655 |  | 
|---|
| 2656 | c->cd(1); | 
|---|
| 2657 | hBchisq->Draw(); | 
|---|
| 2658 | gPad->SetLogy(); | 
|---|
| 2659 | hBchisq->SetXTitle("log10(iteration number)"); | 
|---|
| 2660 | hBchisq->SetYTitle("chisq"); | 
|---|
| 2661 | m->DrawMarker(xbin, log10(chisq(ixbest))); | 
|---|
| 2662 |  | 
|---|
| 2663 | c->cd(2); | 
|---|
| 2664 | hBD2bar->Draw(); | 
|---|
| 2665 | gPad->SetLogy(); | 
|---|
| 2666 | hBD2bar->SetXTitle("log10(iteration number)"); | 
|---|
| 2667 | hBD2bar->SetYTitle("(b_unfolded-b_ideal)**2"); | 
|---|
| 2668 | m->DrawMarker(xbin, log10(Dsqbar(ixbest))); | 
|---|
| 2669 |  | 
|---|
| 2670 | /* | 
|---|
| 2671 | c->cd(3); | 
|---|
| 2672 | hBDAR2->Draw(); | 
|---|
| 2673 | gPad->SetLogy(); | 
|---|
| 2674 | strgx = "log10(iteration number)"; | 
|---|
| 2675 | strgy = "norm(AR-AR+)"; | 
|---|
| 2676 | hBDAR2->SetXTitle(strgx); | 
|---|
| 2677 | hBDAR2->SetYTitle(strgy); | 
|---|
| 2678 | m->DrawMarker(xbin, log10(DAR2(ixbest))); | 
|---|
| 2679 | */ | 
|---|
| 2680 |  | 
|---|
| 2681 | c->cd(3); | 
|---|
| 2682 | hBSecDeriv->Draw(); | 
|---|
| 2683 | hBSecDeriv->SetXTitle("log10(iteration number)"); | 
|---|
| 2684 | hBSecDeriv->SetYTitle("Second Derivative squared"); | 
|---|
| 2685 | m->DrawMarker(xbin, SecDer(ixbest)); | 
|---|
| 2686 |  | 
|---|
| 2687 | /* | 
|---|
| 2688 | c->cd(8); | 
|---|
| 2689 | hBDSecDeriv->Draw(); | 
|---|
| 2690 | strgx = "log10(iteration number)"; | 
|---|
| 2691 | strgy = "Delta(Second Derivative squared)"; | 
|---|
| 2692 | hBDSecDeriv->SetXTitle(strgx); | 
|---|
| 2693 | hBDSecDeriv->SetYTitle(strgy); | 
|---|
| 2694 | */ | 
|---|
| 2695 |  | 
|---|
| 2696 | /* | 
|---|
| 2697 | c->cd(4); | 
|---|
| 2698 | hBZerDeriv->Draw(); | 
|---|
| 2699 | strgx = "log10(iteration number)"; | 
|---|
| 2700 | strgy = "Zero Derivative squared"; | 
|---|
| 2701 | hBZerDeriv->SetXTitle(strgx); | 
|---|
| 2702 | hBZerDeriv->SetYTitle(strgy); | 
|---|
| 2703 | m->DrawMarker(xbin, ZerDer(ixbest)); | 
|---|
| 2704 | */ | 
|---|
| 2705 |  | 
|---|
| 2706 | /* | 
|---|
| 2707 | c->cd(5); | 
|---|
| 2708 | hBDZerDeriv->Draw(); | 
|---|
| 2709 | strgx = "log10(iteration number)"; | 
|---|
| 2710 | strgy = "Delta(Zero Derivative squared)"; | 
|---|
| 2711 | hBDZerDeriv->SetXTitle(strgx); | 
|---|
| 2712 | hBDZerDeriv->SetYTitle(strgy); | 
|---|
| 2713 | */ | 
|---|
| 2714 |  | 
|---|
| 2715 | c->cd(4); | 
|---|
| 2716 | hBSpAR->Draw(); | 
|---|
| 2717 | hBSpAR->SetXTitle("log10(iteration number)"); | 
|---|
| 2718 | hBSpAR->SetYTitle("SpurAR"); | 
|---|
| 2719 | m->DrawMarker(xbin, SpAR(ixbest)); | 
|---|
| 2720 |  | 
|---|
| 2721 |  | 
|---|
| 2722 | /* | 
|---|
| 2723 | c->cd(11); | 
|---|
| 2724 | hBDSpAR->Draw(); | 
|---|
| 2725 | strgx = "log10(iteration number)"; | 
|---|
| 2726 | strgy = "Delta(SpurAR)"; | 
|---|
| 2727 | hBDSpAR->SetXTitle(strgx); | 
|---|
| 2728 | hBDSpAR->SetYTitle(strgy); | 
|---|
| 2729 | */ | 
|---|
| 2730 |  | 
|---|
| 2731 | c->cd(5); | 
|---|
| 2732 | hBSpSig->Draw(); | 
|---|
| 2733 | hBSpSig->SetXTitle("log10(iteration number)"); | 
|---|
| 2734 | hBSpSig->SetYTitle("SpurSig/SpurC"); | 
|---|
| 2735 | m->DrawMarker(xbin, SpSig(ixbest)/fSpurVacov); | 
|---|
| 2736 |  | 
|---|
| 2737 | /* | 
|---|
| 2738 | c->cd(14); | 
|---|
| 2739 | hBDSpSig->Draw(); | 
|---|
| 2740 | strgx = "log10(iteration number)"; | 
|---|
| 2741 | strgy = "Delta(SpurSig/SpurC)"; | 
|---|
| 2742 | hBDSpSig->SetXTitle(strgx); | 
|---|
| 2743 | hBDSpSig->SetYTitle(strgy); | 
|---|
| 2744 | */ | 
|---|
| 2745 |  | 
|---|
| 2746 | c->cd(6); | 
|---|
| 2747 | hBEntropy->Draw(); | 
|---|
| 2748 | hBEntropy->SetXTitle("log10(iteration number)"); | 
|---|
| 2749 | hBEntropy->SetYTitle("Entropy"); | 
|---|
| 2750 | m->DrawMarker(xbin, Entrop(ixbest)); | 
|---|
| 2751 |  | 
|---|
| 2752 | /* | 
|---|
| 2753 | c->cd(17); | 
|---|
| 2754 | hBDEntropy->Draw(); | 
|---|
| 2755 | strgx = "log10(iteration number)"; | 
|---|
| 2756 | strgy = "Delta(Entropy)"; | 
|---|
| 2757 | hBDEntropy->SetXTitle(strgx); | 
|---|
| 2758 | hBDEntropy->SetYTitle(strgy); | 
|---|
| 2759 | */ | 
|---|
| 2760 |  | 
|---|
| 2761 | //------------------------------------- | 
|---|
| 2762 |  | 
|---|
| 2763 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 2764 | { | 
|---|
| 2765 | fha->SetBinContent(i+1, fVa(i, 0)         ); | 
|---|
| 2766 | fha->SetBinError  (i+1, sqrt(fVacov(i, i))); | 
|---|
| 2767 |  | 
|---|
| 2768 | for (UInt_t j=0; j<fNb; j++) | 
|---|
| 2769 | { | 
|---|
| 2770 | fhmig->SetBinContent(i+1, j+1, fMigOrig(i, j)           ); | 
|---|
| 2771 | fhmig->SetBinError  (i+1, j+1, sqrt(fMigOrigerr2(i, j)) ); | 
|---|
| 2772 |  | 
|---|
| 2773 | shmig->SetBinContent(i+1, j+1, fMigrat(i, j)           ); | 
|---|
| 2774 | shmig->SetBinError  (i+1, j+1, sqrt(fMigraterr2(i, j)) ); | 
|---|
| 2775 | shmigChi2->SetBinContent(i+1, j+1, fMigChi2(i, j)   ); | 
|---|
| 2776 | } | 
|---|
| 2777 | } | 
|---|
| 2778 |  | 
|---|
| 2779 | //PrintTH2Content(*shmig); | 
|---|
| 2780 | //PrintTH2Content(*shmigChi2); | 
|---|
| 2781 |  | 
|---|
| 2782 | //------------------------------------- | 
|---|
| 2783 | CopyCol(*hprior, fVEps); | 
|---|
| 2784 | CopyCol(*hb,     fVb); | 
|---|
| 2785 | for (UInt_t i=0; i<fNb; i++) | 
|---|
| 2786 | hb->SetBinError(i+1, sqrt(fVbcov(i, i))); | 
|---|
| 2787 |  | 
|---|
| 2788 | PrintTH1Content(*hb); | 
|---|
| 2789 | PrintTH1Error(*hb); | 
|---|
| 2790 |  | 
|---|
| 2791 | //.............................................. | 
|---|
| 2792 | for (UInt_t i=0; i<fNa; i++) | 
|---|
| 2793 | hEigen->SetBinContent(i+1, EigenValue(i)); | 
|---|
| 2794 |  | 
|---|
| 2795 | //.............................................. | 
|---|
| 2796 | // draw the plots | 
|---|
| 2797 | TString cctitle = bintitle; | 
|---|
| 2798 | cctitle +=  "Unfolding input"; | 
|---|
| 2799 | TCanvas *cc = new TCanvas("input", cctitle, 900, 600); | 
|---|
| 2800 | cc->Divide(3, 2); | 
|---|
| 2801 |  | 
|---|
| 2802 | // distribution to be unfolded | 
|---|
| 2803 | cc->cd(1); | 
|---|
| 2804 | fha->Draw(); | 
|---|
| 2805 | gPad->SetLogy(); | 
|---|
| 2806 | fha->SetXTitle("log10(E_{est}/GeV)"); | 
|---|
| 2807 | fha->SetYTitle("Counts"); | 
|---|
| 2808 |  | 
|---|
| 2809 | // superimpose unfolded distribution | 
|---|
| 2810 | hb->Draw("*HSAME"); | 
|---|
| 2811 | hb->SetMarkerColor(75); | 
|---|
| 2812 | hb->SetLineColor(75); | 
|---|
| 2813 |  | 
|---|
| 2814 | // prior distribution | 
|---|
| 2815 | cc->cd(2); | 
|---|
| 2816 | hprior->Draw(); | 
|---|
| 2817 | gPad->SetLogy(); | 
|---|
| 2818 | hprior->SetXTitle("log10(E_{true}/GeV)"); | 
|---|
| 2819 | hprior->SetYTitle("Counts"); | 
|---|
| 2820 |  | 
|---|
| 2821 | // migration matrix | 
|---|
| 2822 | cc->cd(3); | 
|---|
| 2823 | fhmig->Draw("box"); | 
|---|
| 2824 | fhmig->SetXTitle("log10(E_{est}/GeV)"); | 
|---|
| 2825 | fhmig->SetYTitle("log10(E_{true}/GeV)"); | 
|---|
| 2826 |  | 
|---|
| 2827 | // smoothed migration matrix | 
|---|
| 2828 | cc->cd(4); | 
|---|
| 2829 | shmig->Draw("box"); | 
|---|
| 2830 | shmig->SetXTitle("log10(E_{est}/GeV)"); | 
|---|
| 2831 | shmig->SetYTitle("log10(E_{true}/GeV)"); | 
|---|
| 2832 |  | 
|---|
| 2833 | // chi2 contributions for smoothing | 
|---|
| 2834 | cc->cd(5); | 
|---|
| 2835 | shmigChi2->Draw("box"); | 
|---|
| 2836 | shmigChi2->SetXTitle("log10(E_{est}/GeV)"); | 
|---|
| 2837 | shmigChi2->SetYTitle("log10(E_{true}/GeV)"); | 
|---|
| 2838 |  | 
|---|
| 2839 | // Eigenvalues of matrix M*M(transposed) | 
|---|
| 2840 | cc->cd(6); | 
|---|
| 2841 | hEigen->Draw(); | 
|---|
| 2842 | hEigen->SetXTitle("l"); | 
|---|
| 2843 | hEigen->SetYTitle("Eigen values Lambda_l of M*M(transposed)"); | 
|---|
| 2844 |  | 
|---|
| 2845 |  | 
|---|
| 2846 | //.............................................. | 
|---|
| 2847 | // draw the results | 
|---|
| 2848 | TString crtitle = bintitle; | 
|---|
| 2849 | crtitle +=  "Unfolding results"; | 
|---|
| 2850 | TCanvas *cr = new TCanvas("results", crtitle, 600, 600); | 
|---|
| 2851 | cr->Divide(2, 2); | 
|---|
| 2852 |  | 
|---|
| 2853 | // unfolded distribution | 
|---|
| 2854 | cr->cd(1); | 
|---|
| 2855 | hb->Draw(); | 
|---|
| 2856 | gPad->SetLogy(); | 
|---|
| 2857 | hb->SetXTitle("log10(E-true/GeV)"); | 
|---|
| 2858 | hb->SetYTitle("Counts"); | 
|---|
| 2859 |  | 
|---|
| 2860 |  | 
|---|
| 2861 | // covariance matrix of unfolded distribution | 
|---|
| 2862 | cr->cd(2); | 
|---|
| 2863 | TH1 *hbcov=DrawMatrixClone(fVbcov, "lego"); | 
|---|
| 2864 | hbcov->SetBins(fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1), | 
|---|
| 2865 | fNb, hb->GetBinLowEdge(1), hb->GetBinLowEdge(fNb+1)); | 
|---|
| 2866 |  | 
|---|
| 2867 | hbcov->SetName("hbcov"); | 
|---|
| 2868 | hbcov->SetTitle("Error matrix of distribution hb"); | 
|---|
| 2869 | hbcov->SetXTitle("log10(E_{true}/GeV)"); | 
|---|
| 2870 | hbcov->SetYTitle("log10(E_{true}/GeV)"); | 
|---|
| 2871 |  | 
|---|
| 2872 |  | 
|---|
| 2873 | // chi2 contributions | 
|---|
| 2874 | cr->cd(3); | 
|---|
| 2875 | TH1 *hchi2=DrawMatrixColClone(fChi2); | 
|---|
| 2876 | hchi2->SetBins(fNa, fha->GetBinLowEdge(1), fha->GetBinLowEdge(fNa+1)); | 
|---|
| 2877 |  | 
|---|
| 2878 | hchi2->SetName("Chi2"); | 
|---|
| 2879 | hchi2->SetTitle("chi2 contributions"); | 
|---|
| 2880 | hchi2->SetXTitle("log10(E_{est}/GeV)"); | 
|---|
| 2881 | hchi2->SetYTitle("Chisquared"); | 
|---|
| 2882 |  | 
|---|
| 2883 |  | 
|---|
| 2884 | // ideal distribution | 
|---|
| 2885 |  | 
|---|
| 2886 | cr->cd(4); | 
|---|
| 2887 | fhb0->Draw(); | 
|---|
| 2888 | gPad->SetLogy(); | 
|---|
| 2889 | fhb0->SetXTitle("log10(E_{true}/GeV)"); | 
|---|
| 2890 | fhb0->SetYTitle("Counts"); | 
|---|
| 2891 |  | 
|---|
| 2892 |  | 
|---|
| 2893 | // superimpose unfolded distribution | 
|---|
| 2894 | hb->Draw("*Hsame"); | 
|---|
| 2895 |  | 
|---|
| 2896 |  | 
|---|
| 2897 | return kTRUE; | 
|---|
| 2898 | } | 
|---|
| 2899 |  | 
|---|
| 2900 |  | 
|---|
| 2901 | // ----------------------------------------------------------------------- | 
|---|
| 2902 | // | 
|---|
| 2903 | // Interface to MINUIT | 
|---|
| 2904 | // | 
|---|
| 2905 | // | 
|---|
| 2906 | Bool_t MUnfold::CallMinuit( | 
|---|
| 2907 | void (*fcnx)(Int_t &, Double_t *, Double_t &, Double_t *, Int_t), | 
|---|
| 2908 | UInt_t npar, char name[20][100], | 
|---|
| 2909 | Double_t vinit[20], Double_t step[20], | 
|---|
| 2910 | Double_t limlo[20], Double_t limup[20], Int_t fix[20]) | 
|---|
| 2911 | { | 
|---|
| 2912 | // | 
|---|
| 2913 | // Be carefull: This is not thread safe | 
|---|
| 2914 | // | 
|---|
| 2915 | UInt_t maxpar = 100; | 
|---|
| 2916 |  | 
|---|
| 2917 | if (npar > maxpar) | 
|---|
| 2918 | { | 
|---|
| 2919 | *fLog << "MUnfold::CallMinuit : too many parameters,  npar = " << fNb | 
|---|
| 2920 | << ",   maxpar = " << maxpar << endl; | 
|---|
| 2921 | return kFALSE; | 
|---|
| 2922 | } | 
|---|
| 2923 |  | 
|---|
| 2924 | //.............................................. | 
|---|
| 2925 | // Set the maximum number of parameters | 
|---|
| 2926 | TMinuit minuit(maxpar); | 
|---|
| 2927 |  | 
|---|
| 2928 |  | 
|---|
| 2929 | //.............................................. | 
|---|
| 2930 | // Set the print level | 
|---|
| 2931 | // -1   no output except SHOW comands | 
|---|
| 2932 | //  0   minimum output | 
|---|
| 2933 | //  1   normal output (default) | 
|---|
| 2934 | //  2   additional ouput giving intermediate results | 
|---|
| 2935 | //  3   maximum output, showing progress of minimizations | 
|---|
| 2936 | // | 
|---|
| 2937 | Int_t printLevel = -1; | 
|---|
| 2938 | minuit.SetPrintLevel(printLevel); | 
|---|
| 2939 |  | 
|---|
| 2940 | //.............................................. | 
|---|
| 2941 | // Printout for warnings | 
|---|
| 2942 | //    SET WAR      print warnings | 
|---|
| 2943 | //    SET NOW      suppress warnings | 
|---|
| 2944 | Int_t errWarn; | 
|---|
| 2945 | Double_t tmpwar = 0; | 
|---|
| 2946 | minuit.mnexcm("SET NOW", &tmpwar, 0, errWarn); | 
|---|
| 2947 |  | 
|---|
| 2948 | //.............................................. | 
|---|
| 2949 | // Set the address of the minimization function | 
|---|
| 2950 | minuit.SetFCN(fcnx); | 
|---|
| 2951 |  | 
|---|
| 2952 | //.............................................. | 
|---|
| 2953 | // Set starting values and step sizes for parameters | 
|---|
| 2954 | for (UInt_t i=0; i<npar; i++) | 
|---|
| 2955 | { | 
|---|
| 2956 | if (minuit.DefineParameter(i, &name[i][0], vinit[i], step[i], | 
|---|
| 2957 | limlo[i], limup[i])) | 
|---|
| 2958 | { | 
|---|
| 2959 | *fLog << "MUnfold::CallMinuit: Error in defining parameter " | 
|---|
| 2960 | << name << endl; | 
|---|
| 2961 | return kFALSE; | 
|---|
| 2962 | } | 
|---|
| 2963 | } | 
|---|
| 2964 |  | 
|---|
| 2965 | //.............................................. | 
|---|
| 2966 | //Int_t NumPars = minuit.GetNumPars(); | 
|---|
| 2967 | //*fLog << "MUnfold::CallMinuit :  number of free parameters = " | 
|---|
| 2968 | //     << NumPars << endl; | 
|---|
| 2969 |  | 
|---|
| 2970 | //.............................................. | 
|---|
| 2971 | // Minimization | 
|---|
| 2972 | minuit.SetObjectFit(this); | 
|---|
| 2973 |  | 
|---|
| 2974 | //.............................................. | 
|---|
| 2975 | // Error definition : | 
|---|
| 2976 | // | 
|---|
| 2977 | //    for2 chisquare function : | 
|---|
| 2978 | //      up = 1.0   means calculate 1-standard deviation error | 
|---|
| 2979 | //         = 4.0   means calculate 2-standard deviation error | 
|---|
| 2980 | // | 
|---|
| 2981 | //    for log(likelihood) function : | 
|---|
| 2982 | //      up = 0.5   means calculate 1-standard deviation error | 
|---|
| 2983 | //         = 2.0   means calculate 2-standard deviation error | 
|---|
| 2984 | Double_t up = 1.0; | 
|---|
| 2985 | minuit.SetErrorDef(up); | 
|---|
| 2986 |  | 
|---|
| 2987 |  | 
|---|
| 2988 |  | 
|---|
| 2989 | // Int_t errMigrad; | 
|---|
| 2990 | // Double_t tmp = 0; | 
|---|
| 2991 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad); | 
|---|
| 2992 |  | 
|---|
| 2993 |  | 
|---|
| 2994 | //.............................................. | 
|---|
| 2995 | // fix a parameter | 
|---|
| 2996 | for (UInt_t i=0; i<npar; i++) | 
|---|
| 2997 | { | 
|---|
| 2998 | if (fix[i] > 0) | 
|---|
| 2999 | { | 
|---|
| 3000 | Int_t parNo = i; | 
|---|
| 3001 | minuit.FixParameter(parNo); | 
|---|
| 3002 | } | 
|---|
| 3003 | } | 
|---|
| 3004 |  | 
|---|
| 3005 | //.............................................. | 
|---|
| 3006 | // Set maximum number of iterations (default = 500) | 
|---|
| 3007 | Int_t maxiter = 100000; | 
|---|
| 3008 | minuit.SetMaxIterations(maxiter); | 
|---|
| 3009 |  | 
|---|
| 3010 | //.............................................. | 
|---|
| 3011 | // minimization by the method of Migrad | 
|---|
| 3012 | // Int_t errMigrad; | 
|---|
| 3013 | // Double_t tmp = 0; | 
|---|
| 3014 | // minuit.mnexcm("MIGRAD", &tmp, 0, errMigrad); | 
|---|
| 3015 |  | 
|---|
| 3016 | //.............................................. | 
|---|
| 3017 | // same minimization as by Migrad | 
|---|
| 3018 | // but switches to the SIMPLEX method if MIGRAD fails to converge | 
|---|
| 3019 | Int_t errMinimize; | 
|---|
| 3020 | Double_t tmp = 0; | 
|---|
| 3021 | minuit.mnexcm("MINIMIZE", &tmp, 0, errMinimize); | 
|---|
| 3022 |  | 
|---|
| 3023 | //.............................................. | 
|---|
| 3024 | // check quality of minimization | 
|---|
| 3025 | // istat = 0   covariance matrix not calculated | 
|---|
| 3026 | //         1   diagonal approximation only (not accurate) | 
|---|
| 3027 | //         2   full matrix, but forced positive-definite | 
|---|
| 3028 | //         3   full accurate covariance matrix | 
|---|
| 3029 | //             (indication of normal convergence) | 
|---|
| 3030 | Double_t fmin, fedm, errdef; | 
|---|
| 3031 | Int_t    npari, nparx, istat; | 
|---|
| 3032 | minuit.mnstat(fmin, fedm, errdef, npari, nparx, istat); | 
|---|
| 3033 |  | 
|---|
| 3034 | if (errMinimize || istat < 3) | 
|---|
| 3035 | { | 
|---|
| 3036 | *fLog << "MUnfold::CallMinuit : Minimization failed" << endl; | 
|---|
| 3037 | *fLog << "       fmin = " << fmin   << ",   fedm = "  << fedm | 
|---|
| 3038 | << ",   errdef = "  << errdef << ",   istat = " << istat | 
|---|
| 3039 | << endl; | 
|---|
| 3040 | return kFALSE; | 
|---|
| 3041 | } | 
|---|
| 3042 |  | 
|---|
| 3043 | //.............................................. | 
|---|
| 3044 | // Minos error analysis | 
|---|
| 3045 | // minuit.mnmnos(); | 
|---|
| 3046 |  | 
|---|
| 3047 | //.............................................. | 
|---|
| 3048 | // Print current status of minimization | 
|---|
| 3049 | // if nkode = 0    only function value | 
|---|
| 3050 | //            1    parameter values, errors, limits | 
|---|
| 3051 | //            2    values, errors, step sizes, internal values | 
|---|
| 3052 | //            3    values, errors, step sizes, 1st derivatives | 
|---|
| 3053 | //            4    values, paraboloc errors, MINOS errors | 
|---|
| 3054 |  | 
|---|
| 3055 | //Int_t nkode = 4; | 
|---|
| 3056 | //minuit.mnprin(nkode, fmin); | 
|---|
| 3057 |  | 
|---|
| 3058 | //.............................................. | 
|---|
| 3059 | // call fcn with IFLAG = 3 (final calculation : calculate p(chi2)) | 
|---|
| 3060 | // iflag = 1   initial calculations only | 
|---|
| 3061 | //         2   calculate 1st derivatives and function | 
|---|
| 3062 | //         3   calculate function only | 
|---|
| 3063 | //         4   calculate function + final calculations | 
|---|
| 3064 | const char *command = "CALL"; | 
|---|
| 3065 | Double_t iflag = 3; | 
|---|
| 3066 | Int_t errfcn3; | 
|---|
| 3067 | minuit.mnexcm(command, &iflag, 1, errfcn3); | 
|---|
| 3068 |  | 
|---|
| 3069 | return kTRUE; | 
|---|
| 3070 | } | 
|---|
| 3071 |  | 
|---|
| 3072 |  | 
|---|
| 3073 |  | 
|---|
| 3074 |  | 
|---|
| 3075 |  | 
|---|
| 3076 |  | 
|---|
| 3077 |  | 
|---|
| 3078 |  | 
|---|
| 3079 |  | 
|---|