1 | #ifndef MARS_MExtralgoDigitalFilter
|
---|
2 | #define MARS_MExtralgoDigitalFilter
|
---|
3 |
|
---|
4 | #ifndef ROOT_TMatrix
|
---|
5 | #include <TMatrix.h>
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | class TH1;
|
---|
9 | class TH2;
|
---|
10 | class TH1F;
|
---|
11 | class TH2F;
|
---|
12 | class TArrayF;
|
---|
13 |
|
---|
14 | class MExtralgoDigitalFilter
|
---|
15 | {
|
---|
16 | private:
|
---|
17 | // Input
|
---|
18 | const Float_t *fVal;
|
---|
19 | Int_t fNum;
|
---|
20 |
|
---|
21 | Float_t const *fWeightsAmp;
|
---|
22 | Float_t const *fWeightsTime;
|
---|
23 | Float_t const *fPulseShape;
|
---|
24 |
|
---|
25 | const TMatrix *fAinv;
|
---|
26 |
|
---|
27 | const Int_t fWeightsPerBin; // Number of weights per data bin
|
---|
28 | const Int_t fWindowSize;
|
---|
29 |
|
---|
30 | // Result
|
---|
31 | Float_t fTime;
|
---|
32 | Float_t fTimeDev;
|
---|
33 | Float_t fSignal;
|
---|
34 | Float_t fSignalDev;
|
---|
35 |
|
---|
36 | Float_t GetChisq(const Int_t maxp, const Int_t frac, const Float_t sum) const;
|
---|
37 |
|
---|
38 | inline Double_t ChiSq(const Double_t sum, const Int_t startv, const Int_t startw=0) const
|
---|
39 | {
|
---|
40 | //
|
---|
41 | // Slide with a window of size windowsize over the sample
|
---|
42 | // and multiply the entries with the corresponding weights
|
---|
43 | //
|
---|
44 | Double_t chisq = 0;
|
---|
45 |
|
---|
46 | // Shift the start of the weight to the center of sample 0
|
---|
47 | Float_t const *w = fPulseShape + startw;
|
---|
48 |
|
---|
49 | const Float_t *beg = fVal+startv;
|
---|
50 | for (Float_t const *pex=beg; pex<beg+fWindowSize; pex++)
|
---|
51 | {
|
---|
52 | const Double_t c = *w - *pex/sum;
|
---|
53 | chisq += c*c;
|
---|
54 | w += fWeightsPerBin;
|
---|
55 | }
|
---|
56 | return chisq;
|
---|
57 | }
|
---|
58 |
|
---|
59 | // Weights: Weights to evaluate
|
---|
60 | // Startv: Index of first bin of data
|
---|
61 | // startw: Offset on the weights
|
---|
62 | inline Double_t Eval(Float_t const *weights, const Int_t startv, const Int_t startw=0) const
|
---|
63 | {
|
---|
64 | //
|
---|
65 | // Slide with a window of size windowsize over the sample
|
---|
66 | // and multiply the entries with the corresponding weights
|
---|
67 | //
|
---|
68 | Double_t sum = 0;
|
---|
69 |
|
---|
70 | // Shift the start of the weight to the center of sample 0
|
---|
71 | Float_t const *w = weights + startw;
|
---|
72 |
|
---|
73 | const Float_t *beg = fVal+startv;
|
---|
74 | for (Float_t const *pex=beg; pex<beg+fWindowSize; pex++)
|
---|
75 | {
|
---|
76 | sum += *w * *pex;
|
---|
77 | w += fWeightsPerBin;
|
---|
78 | }
|
---|
79 | return sum;
|
---|
80 | }
|
---|
81 |
|
---|
82 | inline void AlignIntoLimits(Int_t &maxp, Int_t &frac) const
|
---|
83 | {
|
---|
84 | // Align maxp into available range (TO BE CHECKED)
|
---|
85 | if (maxp < 0)
|
---|
86 | {
|
---|
87 | maxp = 0;
|
---|
88 | frac = fWeightsPerBin/2-1; // Assume peak at the end of the last slice
|
---|
89 | }
|
---|
90 | if (maxp > fNum-fWindowSize)
|
---|
91 | {
|
---|
92 | maxp = fNum-fWindowSize;
|
---|
93 | frac = -fWeightsPerBin/2; // Assume peak at the beginning of the first slice
|
---|
94 | }
|
---|
95 | }
|
---|
96 |
|
---|
97 | Int_t AlignExtractionWindow(Int_t &maxp, Int_t &frac, const Double_t ampsum);
|
---|
98 | void AlignExtractionWindow(Int_t &maxp, Int_t &frac)
|
---|
99 | {
|
---|
100 | const Double_t amp = Eval(fWeightsAmp, maxp, frac);
|
---|
101 | if (amp!=0)
|
---|
102 | AlignExtractionWindow(maxp, frac, amp);
|
---|
103 | }
|
---|
104 |
|
---|
105 | public:
|
---|
106 | MExtralgoDigitalFilter(Int_t res, Int_t windowsize, Float_t *wa, Float_t *wt, Float_t *ps=0, TMatrix *ainv=0)
|
---|
107 | : fVal(0), fNum(0), fWeightsAmp(wa+res/2), fWeightsTime(wt+res/2),
|
---|
108 | fPulseShape(ps), fAinv(ainv), fWeightsPerBin(res), fWindowSize(windowsize),
|
---|
109 | fTime(0), fTimeDev(-1), fSignal(0), fSignalDev(-1)
|
---|
110 | {
|
---|
111 | }
|
---|
112 |
|
---|
113 | void SetData(Int_t n, Float_t const *val) { fNum=n; fVal=val; }
|
---|
114 |
|
---|
115 | Float_t GetTime() const { return fTime; }
|
---|
116 | Float_t GetSignal() const { return fSignal; }
|
---|
117 |
|
---|
118 | Float_t GetTimeDev() const { return fTimeDev; }
|
---|
119 | Float_t GetSignalDev() const { return fSignalDev; }
|
---|
120 |
|
---|
121 | void GetSignal(Float_t &sig, Float_t &dsig) const { sig=fSignal; dsig=fSignalDev; }
|
---|
122 | void GetTime(Float_t &sig, Float_t &dsig) const { sig=fTime; dsig=fTimeDev; }
|
---|
123 |
|
---|
124 | Float_t ExtractNoise() const;
|
---|
125 | void Extract(Int_t maxpos=-1);
|
---|
126 |
|
---|
127 | static Int_t CalculateWeights(TH1 &shape, const TH2 &autocorr, TArrayF &wa, TArrayF &wt, Int_t wpb=-1);
|
---|
128 | static Int_t CalculateWeights2(TH1 &shape, const TH2 &autocorr, TArrayF &wa, TArrayF &wt, Int_t wpb=-1);
|
---|
129 | };
|
---|
130 |
|
---|
131 |
|
---|
132 | #endif
|
---|