1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 02/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2008
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MHCalibrationChargeBlindPix
|
---|
28 | //
|
---|
29 | // Histogram class for the charge calibration of the Blind Pixel.
|
---|
30 | // Stores and fits the charges and stores the averaged assumed pedestal and
|
---|
31 | // single-phe FADC slice entries. Charges are taken from MExtractedSignalBlindPix.
|
---|
32 | // Performs the Single Photo-electron fit to extract the Poisson mean and its errors.
|
---|
33 | //
|
---|
34 | // Different fits can be chosen with the function SetFitFunc().
|
---|
35 | //
|
---|
36 | // The fit result is accepted under the condition that:
|
---|
37 | // 1) the Probability is greater than fProbLimit (default 0.001 == 99.7%)
|
---|
38 | // 2) at least fNumSinglePheLimit events are found in the single Photo-electron peak
|
---|
39 | //
|
---|
40 | // The single FADC slice entries are averaged and stored in fASinglePheFADCSlices, if
|
---|
41 | // their sum exceeds fSinglePheCut, otherwise in fAPedestalFADCSlices.
|
---|
42 | //
|
---|
43 | // Used numbers are the following:
|
---|
44 | //
|
---|
45 | // Electronic conversion factor:
|
---|
46 | // Assume, we have N_e electrons at the anode,
|
---|
47 | // thus a charge of N_e*e (e = electron charge) Coulomb.
|
---|
48 | //
|
---|
49 | // This charge is AC coupled and runs into a R_pre = 50 Ohm resistency.
|
---|
50 | // The corresponding current is amplified by a gain factor G_pre = 400
|
---|
51 | // (the precision of this value still has to be checked !!!) and again AC coupled to
|
---|
52 | // the output.
|
---|
53 | // The corresponding signal goes through the whole transmission and
|
---|
54 | // amplification chain and is digitized in the FADCs.
|
---|
55 | // The conversion Signal Area to FADC counts (Conv_trans) has been measured
|
---|
56 | // by David and Oscar to be approx. 3.9 pVs^-1
|
---|
57 | //
|
---|
58 | // Thus: Conversion FADC counts to Number of Electrons at Anode:
|
---|
59 | // FADC counts = (1/Conv_tran) * G_pre * R_pre * e * N_e = 8 * 10^-4 N_e.
|
---|
60 | //
|
---|
61 | // Also: FADC counts = 8*10^-4 * GAIN * N_phe
|
---|
62 | //
|
---|
63 | // In the blind pixel, there is an additional pre-amplifier with an amplification of
|
---|
64 | // about 10. Therefore, we have for the blind pixel:
|
---|
65 | //
|
---|
66 | //
|
---|
67 | // FADC counts (Blind Pixel) = 8*10^-3 * GAIN * N_phe
|
---|
68 | //
|
---|
69 | //////////////////////////////////////////////////////////////////////////////
|
---|
70 | #include "MHCalibrationChargeBlindPix.h"
|
---|
71 |
|
---|
72 | #include <TStyle.h>
|
---|
73 | #include <TCanvas.h>
|
---|
74 | #include <TPaveText.h>
|
---|
75 | #include <TPaveStats.h>
|
---|
76 | #include <TGraph.h>
|
---|
77 |
|
---|
78 | #include <TVector.h>
|
---|
79 | #include <TF1.h>
|
---|
80 | #include <TH1.h>
|
---|
81 | #include <TH2D.h>
|
---|
82 | #include <TRandom.h>
|
---|
83 |
|
---|
84 | #include "MLog.h"
|
---|
85 | #include "MLogManip.h"
|
---|
86 |
|
---|
87 | #include "MParList.h"
|
---|
88 |
|
---|
89 | #include "MRawEvtPixelIter.h"
|
---|
90 |
|
---|
91 | ClassImp(MHCalibrationChargeBlindPix);
|
---|
92 |
|
---|
93 | using namespace std;
|
---|
94 |
|
---|
95 | const Double_t MHCalibrationChargeBlindPix::gkElectronicAmp = 0.008;
|
---|
96 | const Double_t MHCalibrationChargeBlindPix::gkElectronicAmpErr = 0.002;
|
---|
97 | const Float_t MHCalibrationChargeBlindPix::gkSignalInitializer = -9999.;
|
---|
98 | const Float_t MHCalibrationChargeBlindPix::fgNumSinglePheLimit = 50.;
|
---|
99 | // --------------------------------------------------------------------------
|
---|
100 | //
|
---|
101 | // Default Constructor.
|
---|
102 | //
|
---|
103 | // Sets:
|
---|
104 | // - the default number for fNumSinglePheLimit (fgNumSinglePheLimit)
|
---|
105 | // - the default number of bins after stripping (30)
|
---|
106 | //
|
---|
107 | // Initializes:
|
---|
108 | // - all pointers to NULL
|
---|
109 | // - fASinglePheFADCSlices(0);
|
---|
110 | // - fAPedestalFADCSlices(0);
|
---|
111 | //
|
---|
112 | // Calls:
|
---|
113 | // - Clear()
|
---|
114 | //
|
---|
115 | MHCalibrationChargeBlindPix::MHCalibrationChargeBlindPix(const char *name, const char *title)
|
---|
116 | : fSinglePheFit(NULL),
|
---|
117 | fFitLegend(NULL),
|
---|
118 | fHSinglePheFADCSlices(NULL), fHPedestalFADCSlices(NULL)
|
---|
119 | {
|
---|
120 |
|
---|
121 | fName = name ? name : "MHCalibrationChargeBlindPix";
|
---|
122 | fTitle = title ? title : "Statistics of the FADC sums of Blind Pixel calibration events";
|
---|
123 |
|
---|
124 | //fASinglePheFADCSlices.ResizeTo(1);
|
---|
125 | //fAPedestalFADCSlices.ResizeTo(1);
|
---|
126 |
|
---|
127 | SetNumSinglePheLimit();
|
---|
128 | SetProbLimit(0.001);
|
---|
129 | SetBinsAfterStripping(0);
|
---|
130 |
|
---|
131 | Clear();
|
---|
132 | }
|
---|
133 |
|
---|
134 | // --------------------------------------------------------------------------
|
---|
135 | //
|
---|
136 | // Default Destructor.
|
---|
137 | //
|
---|
138 | // Deletes (if Pointer is not NULL):
|
---|
139 | //
|
---|
140 | // - fFitLegend
|
---|
141 | // - fHSinglePheFADCSlices
|
---|
142 | // - fHPedestalFADCSlices
|
---|
143 | // - fSinglePheFit
|
---|
144 | //
|
---|
145 | MHCalibrationChargeBlindPix::~MHCalibrationChargeBlindPix()
|
---|
146 | {
|
---|
147 |
|
---|
148 | //
|
---|
149 | // The next two lines are important for the case that
|
---|
150 | // the class has been stored to a file and is read again.
|
---|
151 | // In this case, the next two lines prevent a segm. violation
|
---|
152 | // in the destructor
|
---|
153 | //
|
---|
154 | gROOT->GetListOfFunctions()->Remove(fSinglePheFit);
|
---|
155 |
|
---|
156 | if (fSinglePheFit)
|
---|
157 | delete fSinglePheFit;
|
---|
158 |
|
---|
159 | if (fFitLegend)
|
---|
160 | delete fFitLegend;
|
---|
161 |
|
---|
162 | if (fHSinglePheFADCSlices)
|
---|
163 | delete fHSinglePheFADCSlices;
|
---|
164 |
|
---|
165 | if (fHPedestalFADCSlices)
|
---|
166 | delete fHPedestalFADCSlices;
|
---|
167 |
|
---|
168 | }
|
---|
169 |
|
---|
170 | // --------------------------------------------------------------------------
|
---|
171 | //
|
---|
172 | // Sets:
|
---|
173 | // - all variables to 0., except the fit result variables to gkSignalInitializer
|
---|
174 | // - all flags to kFALSE
|
---|
175 | // - all pointers to NULL
|
---|
176 | // - the default fit function (kEPoisson5)
|
---|
177 | //
|
---|
178 | // Deletes:
|
---|
179 | // - all pointers unequal NULL
|
---|
180 | //
|
---|
181 | // Calls:
|
---|
182 | // - MHCalibrationChargePix::Clear()
|
---|
183 | //
|
---|
184 | void MHCalibrationChargeBlindPix::Clear(Option_t *o)
|
---|
185 | {
|
---|
186 |
|
---|
187 | fLambda = gkSignalInitializer;
|
---|
188 | fMu0 = gkSignalInitializer;
|
---|
189 | fMu1 = gkSignalInitializer;
|
---|
190 | fSigma0 = gkSignalInitializer;
|
---|
191 | fSigma1 = gkSignalInitializer;
|
---|
192 | fLambdaErr = gkSignalInitializer;
|
---|
193 | fMu0Err = gkSignalInitializer;
|
---|
194 | fMu1Err = gkSignalInitializer;
|
---|
195 | fSigma0Err = gkSignalInitializer;
|
---|
196 | fSigma1Err = gkSignalInitializer;
|
---|
197 |
|
---|
198 | fLambdaCheck = gkSignalInitializer;
|
---|
199 | fLambdaCheckErr = gkSignalInitializer;
|
---|
200 |
|
---|
201 | fFitFunc = kEPoisson5;
|
---|
202 |
|
---|
203 | fNumSinglePhes = 0;
|
---|
204 | fNumPedestals = 0;
|
---|
205 |
|
---|
206 | fChisquare = 0.;
|
---|
207 | fNDF = 0 ;
|
---|
208 | fProb = 0.;
|
---|
209 |
|
---|
210 | SetSinglePheFitOK ( kFALSE );
|
---|
211 | SetPedestalFitOK ( kFALSE );
|
---|
212 |
|
---|
213 | if (fFitLegend)
|
---|
214 | {
|
---|
215 | delete fFitLegend;
|
---|
216 | fFitLegend = NULL;
|
---|
217 | }
|
---|
218 |
|
---|
219 | if (fSinglePheFit)
|
---|
220 | {
|
---|
221 | delete fSinglePheFit;
|
---|
222 | fSinglePheFit = NULL;
|
---|
223 | }
|
---|
224 |
|
---|
225 | if (fHSinglePheFADCSlices)
|
---|
226 | {
|
---|
227 | delete fHSinglePheFADCSlices;
|
---|
228 | fHSinglePheFADCSlices = NULL;
|
---|
229 | }
|
---|
230 |
|
---|
231 | if (fHPedestalFADCSlices)
|
---|
232 | {
|
---|
233 | delete fHPedestalFADCSlices;
|
---|
234 | fHPedestalFADCSlices = NULL;
|
---|
235 | }
|
---|
236 |
|
---|
237 | MHCalibrationPix::Clear();
|
---|
238 | return;
|
---|
239 | }
|
---|
240 |
|
---|
241 | /*
|
---|
242 | // --------------------------------------------------------------------------
|
---|
243 | //
|
---|
244 | // Our own clone function is necessary since root 3.01/06 or Mars 0.4
|
---|
245 | // I don't know the reason.
|
---|
246 | //
|
---|
247 | // Creates new MHCalibrationCam
|
---|
248 | //
|
---|
249 | TObject *MHCalibrationChargeBlindPix::Clone(const char *) const
|
---|
250 | {
|
---|
251 |
|
---|
252 | MHCalibrationChargeBlindPix *pix = new MHCalibrationChargeBlindPix();
|
---|
253 | this->Copy(*pix);
|
---|
254 |
|
---|
255 | this->fHGausHist.Copy(pix->fHGausHist);
|
---|
256 | this->fSinglePheFit->Copy(*(pix->fSinglePheFit));
|
---|
257 | this->fHSinglePheFADCSlices->Copy(*(pix->fHSinglePheFADCSlices));
|
---|
258 | this->fHPedestalFADCSlices->Copy(*(pix->fHPedestalFADCSlices));
|
---|
259 |
|
---|
260 |
|
---|
261 | return pix;
|
---|
262 | }
|
---|
263 | */
|
---|
264 |
|
---|
265 | // --------------------------------------------------------------------------
|
---|
266 | //
|
---|
267 | // Set bit kSinglePheFitOK from outside
|
---|
268 | //
|
---|
269 | void MHCalibrationChargeBlindPix::SetSinglePheFitOK (const Bool_t b )
|
---|
270 | {
|
---|
271 | b ? SETBIT(fFlags,kSinglePheFitOK) : CLRBIT(fFlags,kSinglePheFitOK);
|
---|
272 | }
|
---|
273 |
|
---|
274 | // --------------------------------------------------------------------------
|
---|
275 | //
|
---|
276 | // Set bit kPedestalFitOK from outside
|
---|
277 | //
|
---|
278 | void MHCalibrationChargeBlindPix::SetPedestalFitOK(const Bool_t b)
|
---|
279 | {
|
---|
280 | b ? SETBIT(fFlags,kPedestalFitOK) : CLRBIT(fFlags,kPedestalFitOK);
|
---|
281 | }
|
---|
282 |
|
---|
283 | // --------------------------------------------------------------------------
|
---|
284 | //
|
---|
285 | // Ask for status of bit kSinglePheFitOK
|
---|
286 | //
|
---|
287 | const Bool_t MHCalibrationChargeBlindPix::IsSinglePheFitOK() const
|
---|
288 | {
|
---|
289 | return TESTBIT(fFlags,kSinglePheFitOK);
|
---|
290 | }
|
---|
291 |
|
---|
292 | // --------------------------------------------------------------------------
|
---|
293 | //
|
---|
294 | // Ask for status of bit kPedestalFitOK
|
---|
295 | //
|
---|
296 | const Bool_t MHCalibrationChargeBlindPix::IsPedestalFitOK() const
|
---|
297 | {
|
---|
298 | return TESTBIT(fFlags,kPedestalFitOK);
|
---|
299 | }
|
---|
300 |
|
---|
301 | /*
|
---|
302 | // --------------------------------------------------------------------------
|
---|
303 | //
|
---|
304 | // Normalizes fASinglePheFADCSlices and fAPedestalFADCSlices
|
---|
305 | //
|
---|
306 | void MHCalibrationChargeBlindPix::FinalizeSinglePheSpectrum()
|
---|
307 | {
|
---|
308 |
|
---|
309 | if (fNumSinglePhes > 1)
|
---|
310 | for (Int_t i=0;i<fASinglePheFADCSlices.GetNrows();i++)
|
---|
311 | fASinglePheFADCSlices[i] = fASinglePheFADCSlices[i]/fNumSinglePhes;
|
---|
312 | if (fNumPedestals > 1)
|
---|
313 | for (Int_t i=0;i<fAPedestalFADCSlices.GetNrows();i++)
|
---|
314 | fAPedestalFADCSlices[i] = fAPedestalFADCSlices[i]/fNumPedestals;
|
---|
315 | }
|
---|
316 |
|
---|
317 | // --------------------------------------------------------------------------
|
---|
318 | //
|
---|
319 | // Checks again for the size and fills fASinglePheFADCSlices with the FADC slice entries
|
---|
320 | //
|
---|
321 | void MHCalibrationChargeBlindPix::FillSinglePheFADCSlices(const MRawEvtPixelIter &iter)
|
---|
322 | {
|
---|
323 |
|
---|
324 | const Int_t n = iter.GetNumHiGainSamples() + iter.GetNumLoGainSamples();
|
---|
325 |
|
---|
326 | if (fASinglePheFADCSlices.GetNrows() < n)
|
---|
327 | fASinglePheFADCSlices.ResizeTo(n);
|
---|
328 |
|
---|
329 | Int_t i=0;
|
---|
330 |
|
---|
331 | Byte_t *start = iter.GetHiGainSamples();
|
---|
332 | Byte_t *end = start + iter.GetNumHiGainSamples();
|
---|
333 |
|
---|
334 | for (Byte_t *ptr = start; ptr < end; ptr++, i++)
|
---|
335 | fASinglePheFADCSlices(i) = fASinglePheFADCSlices(i) + (Float_t)*ptr;
|
---|
336 |
|
---|
337 | start = iter.GetLoGainSamples();
|
---|
338 | end = start + iter.GetNumLoGainSamples();
|
---|
339 |
|
---|
340 | for (Byte_t *ptr = start; ptr < end; ptr++, i++)
|
---|
341 | fASinglePheFADCSlices(i) = fASinglePheFADCSlices(i) + (Float_t)*ptr;
|
---|
342 |
|
---|
343 | fNumSinglePhes++;
|
---|
344 | }
|
---|
345 |
|
---|
346 | // --------------------------------------------------------------------------
|
---|
347 | //
|
---|
348 | // Checks again for the size and fills fAPedestalFADCSlices with the FADC slice entries
|
---|
349 | //
|
---|
350 | void MHCalibrationChargeBlindPix::FillPedestalFADCSlices(const MRawEvtPixelIter &iter)
|
---|
351 | {
|
---|
352 |
|
---|
353 | const Int_t n = iter.GetNumHiGainSamples() + iter.GetNumLoGainSamples();
|
---|
354 |
|
---|
355 | if (fAPedestalFADCSlices.GetNrows() < n)
|
---|
356 | fAPedestalFADCSlices.ResizeTo(n);
|
---|
357 |
|
---|
358 | Int_t i = 0;
|
---|
359 | Byte_t *start = iter.GetHiGainSamples();
|
---|
360 | Byte_t *end = start + iter.GetNumHiGainSamples();
|
---|
361 |
|
---|
362 | for (Byte_t *ptr = start; ptr < end; ptr++, i++)
|
---|
363 | fAPedestalFADCSlices(i) = fAPedestalFADCSlices(i)+ (Float_t)*ptr;
|
---|
364 |
|
---|
365 | start = iter.GetLoGainSamples();
|
---|
366 | end = start + iter.GetNumLoGainSamples();
|
---|
367 |
|
---|
368 | for (Byte_t *ptr = start; ptr < end; ptr++, i++)
|
---|
369 | fAPedestalFADCSlices(i) = fAPedestalFADCSlices(i)+ (Float_t)*ptr;
|
---|
370 |
|
---|
371 | fNumPedestals++;
|
---|
372 | }
|
---|
373 | */
|
---|
374 |
|
---|
375 | // --------------------------------------------------------------------------
|
---|
376 | //
|
---|
377 | // Task to simulate single phe spectrum with the given parameters
|
---|
378 | //
|
---|
379 | Bool_t MHCalibrationChargeBlindPix::SimulateSinglePhe(Double_t lambda, Double_t mu0, Double_t mu1, Double_t sigma0, Double_t sigma1)
|
---|
380 | {
|
---|
381 |
|
---|
382 | gRandom->SetSeed();
|
---|
383 |
|
---|
384 | if (fHGausHist.GetIntegral() != 0)
|
---|
385 | {
|
---|
386 | *fLog << err << "Histogram " << fHGausHist.GetTitle() << " is already filled. " << endl;
|
---|
387 | *fLog << err << "Create new class MHCalibrationBlindPixel for simulation! " << endl;
|
---|
388 | return kFALSE;
|
---|
389 | }
|
---|
390 |
|
---|
391 | if (!InitFit())
|
---|
392 | return kFALSE;
|
---|
393 |
|
---|
394 | for (Int_t i=0;i<10000; i++)
|
---|
395 | fHGausHist.Fill(fSinglePheFit->GetRandom());
|
---|
396 |
|
---|
397 | return kTRUE;
|
---|
398 | }
|
---|
399 |
|
---|
400 | // --------------------------------------------------------------------------
|
---|
401 | //
|
---|
402 | // - Get the ranges from the stripped histogram
|
---|
403 | // - choose reasonable start values for the fit
|
---|
404 | // - initialize the fit function depending on fFitFunc
|
---|
405 | // - initialize parameter names and limits depending on fFitFunc
|
---|
406 | //
|
---|
407 | Bool_t MHCalibrationChargeBlindPix::InitFit()
|
---|
408 | {
|
---|
409 |
|
---|
410 | //
|
---|
411 | // Get the fitting ranges
|
---|
412 | //
|
---|
413 | Axis_t rmin = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetFirst());
|
---|
414 | Axis_t rmax = fHGausHist.GetBinCenter(fHGausHist.GetXaxis()->GetLast());
|
---|
415 |
|
---|
416 | if (rmin < 0.)
|
---|
417 | rmin = 0.;
|
---|
418 |
|
---|
419 | //
|
---|
420 | // First guesses for the fit (should be as close to reality as possible,
|
---|
421 | // otherwise the fit goes gaga because of high number of dimensions ...
|
---|
422 | //
|
---|
423 | const Stat_t entries = fHGausHist.Integral("width");
|
---|
424 | const Double_t lambda_guess = 0.5;
|
---|
425 | //const Double_t maximum_bin = fHGausHist.GetBinCenter(fHGausHist.GetMaximumBin());
|
---|
426 | const Double_t norm = entries/TMath::Sqrt(TMath::TwoPi());
|
---|
427 |
|
---|
428 | //
|
---|
429 | // Initialize the fit function
|
---|
430 | //
|
---|
431 | switch (fFitFunc)
|
---|
432 | {
|
---|
433 | case kEPoisson4:
|
---|
434 | fSinglePheFit = new TF1("SinglePheFit",&PoissonKto4,rmin,rmax,6);
|
---|
435 | rmin += 6.5;
|
---|
436 | break;
|
---|
437 | case kEPoisson5:
|
---|
438 | fSinglePheFit = new TF1("SinglePheFit",&PoissonKto5,rmin,rmax,6);
|
---|
439 | rmin = 0.;
|
---|
440 | break;
|
---|
441 | case kEPoisson6:
|
---|
442 | fSinglePheFit = new TF1("SinglePheFit",&PoissonKto6,rmin,rmax,6);
|
---|
443 | break;
|
---|
444 | case kEPolya:
|
---|
445 | fSinglePheFit = new TF1("SinglePheFit",&Polya,rmin,rmax,8);
|
---|
446 | break;
|
---|
447 | case kEMichele:
|
---|
448 | fSinglePheFit = new TF1("SinglePheFit",&FitFuncMichele,rmin,rmax,9);
|
---|
449 | break;
|
---|
450 | default:
|
---|
451 | *fLog << warn << "WARNING: Could not find Fit Function for Blind Pixel " << endl;
|
---|
452 | return kFALSE;
|
---|
453 | break;
|
---|
454 | }
|
---|
455 |
|
---|
456 | if (!fSinglePheFit)
|
---|
457 | {
|
---|
458 | *fLog << warn << dbginf << "WARNING: Could not create fit function for Single Phe fit" << endl;
|
---|
459 | return kFALSE;
|
---|
460 | }
|
---|
461 |
|
---|
462 | //
|
---|
463 | // For the fits, we have to take special care since ROOT
|
---|
464 | // has stored the function pointer in a global list which
|
---|
465 | // lead to removing the object twice. We have to take out
|
---|
466 | // the following functions of the global list of functions
|
---|
467 | // as well:
|
---|
468 | //
|
---|
469 | gROOT->GetListOfFunctions()->Remove(fSinglePheFit);
|
---|
470 |
|
---|
471 | const Double_t mu_0_guess = 13.5;
|
---|
472 | const Double_t si_0_guess = 2.5;
|
---|
473 | const Double_t mu_1_guess = 30.;
|
---|
474 | const Double_t si_1_guess = si_0_guess + si_0_guess;
|
---|
475 | // Michele
|
---|
476 | const Double_t lambda_1cat_guess = 1.00;
|
---|
477 | const Double_t lambda_1dyn_guess = lambda_1cat_guess/10.;
|
---|
478 | const Double_t mu_1cat_guess = 50.;
|
---|
479 | const Double_t mu_1dyn_guess = 17.;
|
---|
480 | const Double_t si_1cat_guess = si_0_guess + si_0_guess;
|
---|
481 | const Double_t si_1dyn_guess = si_0_guess + si_0_guess/2.;
|
---|
482 | // Polya
|
---|
483 | const Double_t excessPoisson_guess = 0.5;
|
---|
484 | const Double_t delta1_guess = 8.;
|
---|
485 | const Double_t delta2_guess = 5.;
|
---|
486 | const Double_t electronicAmp_guess = gkElectronicAmp;
|
---|
487 | const Double_t electronicAmp_limit = gkElectronicAmpErr;
|
---|
488 |
|
---|
489 | //
|
---|
490 | // Initialize boundaries and start parameters
|
---|
491 | //
|
---|
492 | switch (fFitFunc)
|
---|
493 | {
|
---|
494 |
|
---|
495 | case kEPoisson4:
|
---|
496 | fSinglePheFit->SetParNames( "#lambda", "#mu_{0}", "#mu_{1}", "#sigma_{0}", "#sigma_{1}","Area");
|
---|
497 | fSinglePheFit->SetParameters(lambda_guess,mu_0_guess,mu_1_guess,si_0_guess,si_1_guess,norm);
|
---|
498 | fSinglePheFit->SetParLimits(0,0.,2.);
|
---|
499 | fSinglePheFit->SetParLimits(1,10.,17.);
|
---|
500 | fSinglePheFit->SetParLimits(2,17.,50.);
|
---|
501 | fSinglePheFit->SetParLimits(3,1.,5.);
|
---|
502 | fSinglePheFit->SetParLimits(4,5.,30.);
|
---|
503 | fSinglePheFit->SetParLimits(5,norm-(0.5*norm),norm+(0.7*norm));
|
---|
504 | break;
|
---|
505 | case kEPoisson5:
|
---|
506 | case kEPoisson6:
|
---|
507 | fSinglePheFit->SetParNames("#lambda","#mu_{0}","#mu_{1}","#sigma_{0}","#sigma_{1}","Area");
|
---|
508 | fSinglePheFit->SetParameters(lambda_guess,mu_0_guess,800.,si_0_guess,500.,norm);
|
---|
509 | fSinglePheFit->SetParLimits(0,0.,2.);
|
---|
510 | fSinglePheFit->SetParLimits(1,0.,100.);
|
---|
511 | fSinglePheFit->SetParLimits(2,300.,1500.);
|
---|
512 | fSinglePheFit->SetParLimits(3,30.,250.);
|
---|
513 | fSinglePheFit->SetParLimits(4,100.,1000.);
|
---|
514 | fSinglePheFit->SetParLimits(5,norm/1.5,norm*1.5);
|
---|
515 | break;
|
---|
516 |
|
---|
517 | case kEPolya:
|
---|
518 | fSinglePheFit->SetParameters(lambda_guess, excessPoisson_guess,
|
---|
519 | delta1_guess,delta2_guess,
|
---|
520 | electronicAmp_guess,
|
---|
521 | 10.,
|
---|
522 | norm,
|
---|
523 | 0.);
|
---|
524 | fSinglePheFit->SetParNames("#lambda","b_{tot}",
|
---|
525 | "#delta_{1}","#delta_{2}",
|
---|
526 | "amp_{e}","#sigma_{0}",
|
---|
527 | "Area", "#mu_{0}");
|
---|
528 | fSinglePheFit->SetParLimits(0,0.,1.);
|
---|
529 | fSinglePheFit->SetParLimits(1,0.,1.);
|
---|
530 | fSinglePheFit->SetParLimits(2,6.,12.);
|
---|
531 | fSinglePheFit->SetParLimits(3,3.,8.);
|
---|
532 | fSinglePheFit->SetParLimits(4,electronicAmp_guess-electronicAmp_limit,
|
---|
533 | electronicAmp_guess+electronicAmp_limit);
|
---|
534 | fSinglePheFit->SetParLimits(5,0.,40.);
|
---|
535 | fSinglePheFit->SetParLimits(6,norm-0.1,norm+0.1);
|
---|
536 | fSinglePheFit->SetParLimits(7,-10.,10.);
|
---|
537 | break;
|
---|
538 | case kEMichele:
|
---|
539 | fSinglePheFit->SetParNames("#lambda_{cat}","#lambda_{dyn}",
|
---|
540 | "#mu_{0}","#mu_{1cat}","#mu_{1dyn}",
|
---|
541 | "#sigma_{0}","#sigma_{1cat}","#sigma_{1dyn}",
|
---|
542 | "Area");
|
---|
543 | fSinglePheFit->SetParameters(lambda_1cat_guess, lambda_1dyn_guess,
|
---|
544 | mu_0_guess, mu_1cat_guess,mu_1dyn_guess,
|
---|
545 | si_0_guess, si_1cat_guess,si_1dyn_guess,
|
---|
546 | norm);
|
---|
547 | fSinglePheFit->SetParLimits(0,0.01,2.0);
|
---|
548 | fSinglePheFit->SetParLimits(1,0.,0.5);
|
---|
549 | fSinglePheFit->SetParLimits(2,10.,16.);
|
---|
550 | fSinglePheFit->SetParLimits(3,25.,50.);
|
---|
551 | fSinglePheFit->SetParLimits(4,16.,18.5);
|
---|
552 | fSinglePheFit->SetParLimits(5,1.,5.);
|
---|
553 | fSinglePheFit->SetParLimits(6,10.,50.);
|
---|
554 | fSinglePheFit->SetParLimits(7,5.,10.);
|
---|
555 | fSinglePheFit->SetParLimits(8,norm/2.,norm*2.5);
|
---|
556 | break;
|
---|
557 |
|
---|
558 | default:
|
---|
559 | *fLog << warn << "WARNING: Could not find Fit Function for Blind Pixel " << endl;
|
---|
560 | return kFALSE;
|
---|
561 | break;
|
---|
562 | }
|
---|
563 |
|
---|
564 | fSinglePheFit->SetRange(rmin,rmax);
|
---|
565 |
|
---|
566 | return kTRUE;
|
---|
567 | }
|
---|
568 |
|
---|
569 | // --------------------------------------------------------------------------
|
---|
570 | //
|
---|
571 | // - Retrieve the parameters depending on fFitFunc
|
---|
572 | // - Retrieve probability, Chisquare and NDF
|
---|
573 | //
|
---|
574 | void MHCalibrationChargeBlindPix::ExitFit()
|
---|
575 | {
|
---|
576 |
|
---|
577 |
|
---|
578 | //
|
---|
579 | // Finalize
|
---|
580 | //
|
---|
581 | switch (fFitFunc)
|
---|
582 | {
|
---|
583 |
|
---|
584 | case kEPoisson4:
|
---|
585 | case kEPoisson5:
|
---|
586 | case kEPoisson6:
|
---|
587 | case kEPoisson7:
|
---|
588 | fLambda = fSinglePheFit->GetParameter(0);
|
---|
589 | fMu0 = fSinglePheFit->GetParameter(1);
|
---|
590 | fMu1 = fSinglePheFit->GetParameter(2);
|
---|
591 | fSigma0 = fSinglePheFit->GetParameter(3);
|
---|
592 | fSigma1 = fSinglePheFit->GetParameter(4);
|
---|
593 |
|
---|
594 | fLambdaErr = fSinglePheFit->GetParError(0);
|
---|
595 | fMu0Err = fSinglePheFit->GetParError(1);
|
---|
596 | fMu1Err = fSinglePheFit->GetParError(2);
|
---|
597 | fSigma0Err = fSinglePheFit->GetParError(3);
|
---|
598 | fSigma1Err = fSinglePheFit->GetParError(4);
|
---|
599 | break;
|
---|
600 | case kEPolya:
|
---|
601 | fLambda = fSinglePheFit->GetParameter(0);
|
---|
602 | fMu0 = fSinglePheFit->GetParameter(7);
|
---|
603 | fMu1 = 0.;
|
---|
604 | fSigma0 = fSinglePheFit->GetParameter(5);
|
---|
605 | fSigma1 = 0.;
|
---|
606 |
|
---|
607 | fLambdaErr = fSinglePheFit->GetParError(0);
|
---|
608 | fMu0Err = fSinglePheFit->GetParError(7);
|
---|
609 | fMu1Err = 0.;
|
---|
610 | fSigma0Err = fSinglePheFit->GetParError(5);
|
---|
611 | fSigma1Err = 0.;
|
---|
612 | case kEMichele:
|
---|
613 | fLambda = fSinglePheFit->GetParameter(0);
|
---|
614 | fMu0 = fSinglePheFit->GetParameter(2);
|
---|
615 | fMu1 = fSinglePheFit->GetParameter(3);
|
---|
616 | fSigma0 = fSinglePheFit->GetParameter(5);
|
---|
617 | fSigma1 = fSinglePheFit->GetParameter(6);
|
---|
618 |
|
---|
619 | fLambdaErr = fSinglePheFit->GetParError(0);
|
---|
620 | fMu0Err = fSinglePheFit->GetParError(2);
|
---|
621 | fMu1Err = fSinglePheFit->GetParError(3);
|
---|
622 | fSigma0Err = fSinglePheFit->GetParError(5);
|
---|
623 | fSigma1Err = fSinglePheFit->GetParError(6);
|
---|
624 | break;
|
---|
625 | default:
|
---|
626 | break;
|
---|
627 | }
|
---|
628 |
|
---|
629 | fProb = fSinglePheFit->GetProb();
|
---|
630 | fChisquare = fSinglePheFit->GetChisquare();
|
---|
631 | fNDF = fSinglePheFit->GetNDF();
|
---|
632 |
|
---|
633 | *fLog << all << "Results of the Blind Pixel Fit: " << endl;
|
---|
634 | *fLog << all << "Chisquare: " << fChisquare << endl;
|
---|
635 | *fLog << all << "DoF: " << fNDF << endl;
|
---|
636 | *fLog << all << "Probability: " << fProb << endl;
|
---|
637 |
|
---|
638 | }
|
---|
639 |
|
---|
640 | // --------------------------------------------------------------------------
|
---|
641 | //
|
---|
642 | // - Executes InitFit()
|
---|
643 | // - Fits the fHGausHist with fSinglePheFit
|
---|
644 | // - Executes ExitFit()
|
---|
645 | //
|
---|
646 | // The fit result is accepted under condition:
|
---|
647 | // 1) The results are not nan's
|
---|
648 | // 2) The NDF is not smaller than fNDFLimit (5)
|
---|
649 | // 3) The Probability is greater than fProbLimit (default 0.001 == 99.9%)
|
---|
650 | // 4) at least fNumSinglePheLimit events are in the single Photo-electron peak
|
---|
651 | //
|
---|
652 | Bool_t MHCalibrationChargeBlindPix::FitSinglePhe(Option_t *opt)
|
---|
653 | {
|
---|
654 |
|
---|
655 | if (!InitFit())
|
---|
656 | return kFALSE;
|
---|
657 |
|
---|
658 | fHGausHist.Fit(fSinglePheFit,opt);
|
---|
659 |
|
---|
660 | ExitFit();
|
---|
661 |
|
---|
662 | //
|
---|
663 | // The fit result is accepted under condition:
|
---|
664 | // 1) The results are not nan's
|
---|
665 | // 2) The NDF is not smaller than fNDFLimit (5)
|
---|
666 | // 3) The Probability is greater than fProbLimit (default 0.001 == 99.9%)
|
---|
667 | // 4) at least fNumSinglePheLimit events are in the single Photo-electron peak
|
---|
668 | //
|
---|
669 | // !Finitite means either infinite or not-a-number
|
---|
670 | if ( !TMath::Finite(fLambda)
|
---|
671 | || !TMath::Finite(fLambdaErr)
|
---|
672 | || !TMath::Finite(fProb)
|
---|
673 | || !TMath::Finite(fMu0)
|
---|
674 | || !TMath::Finite(fMu0Err)
|
---|
675 | || !TMath::Finite(fMu1)
|
---|
676 | || !TMath::Finite(fMu1Err)
|
---|
677 | || !TMath::Finite(fSigma0)
|
---|
678 | || !TMath::Finite(fSigma0Err)
|
---|
679 | || !TMath::Finite(fSigma1)
|
---|
680 | || !TMath::Finite(fSigma1Err)
|
---|
681 | || fNDF < GetNDFLimit()
|
---|
682 | || fProb < GetProbLimit() )
|
---|
683 | return kFALSE;
|
---|
684 |
|
---|
685 | const Stat_t entries = fHGausHist.Integral("width");
|
---|
686 | const Float_t numSinglePhe = TMath::Exp(-1.0*fLambda)*fLambda*entries;
|
---|
687 |
|
---|
688 | if (numSinglePhe < fNumSinglePheLimit)
|
---|
689 | {
|
---|
690 | *fLog << warn << "WARNING - Statistics is too low: Only " << numSinglePhe
|
---|
691 | << " in the Single Photo-Electron peak " << endl;
|
---|
692 | return kFALSE;
|
---|
693 | }
|
---|
694 | else
|
---|
695 | *fLog << all << numSinglePhe << " in Single Photo-Electron peak " << endl;
|
---|
696 |
|
---|
697 | SetSinglePheFitOK();
|
---|
698 | return kTRUE;
|
---|
699 | }
|
---|
700 |
|
---|
701 | // --------------------------------------------------------------------------
|
---|
702 | //
|
---|
703 | // - Retrieves limits for the fit
|
---|
704 | // - Fits the fHGausHist with Gauss
|
---|
705 | // - Retrieves the results to fLambdaCheck and fLambdaCheckErr
|
---|
706 | // - Sets a flag IsPedestalFitOK()
|
---|
707 | //
|
---|
708 | void MHCalibrationChargeBlindPix::FitPedestal (Option_t *opt)
|
---|
709 | {
|
---|
710 |
|
---|
711 | // Perform the cross-check fitting only the pedestal:
|
---|
712 | const Axis_t rmin = 0.;
|
---|
713 | // const Axis_t rmax = fHGausHist.GetBinCenter(fHGausHist.GetMaximumBin());
|
---|
714 | const Axis_t rmax = fSinglePheCut;
|
---|
715 |
|
---|
716 | FitGaus(opt, rmin, rmax);
|
---|
717 |
|
---|
718 | const Stat_t entries = fHGausHist.Integral("width");
|
---|
719 | const Double_t pedarea = fFGausFit->Integral(0.,fSinglePheCut);
|
---|
720 |
|
---|
721 | fLambdaCheck = TMath::Log(entries/pedarea);
|
---|
722 | // estimate the error by the error of the obtained area from the Gauss-function:
|
---|
723 | fLambdaCheckErr = fFGausFit->GetParError(0)/fFGausFit->GetParameter(0);
|
---|
724 |
|
---|
725 | SetPedestalFitOK(IsGausFitOK());
|
---|
726 | return;
|
---|
727 | }
|
---|
728 |
|
---|
729 |
|
---|
730 | // -------------------------------------------------------------------------
|
---|
731 | //
|
---|
732 | // Draw a legend with the fit results
|
---|
733 | //
|
---|
734 | void MHCalibrationChargeBlindPix::DrawLegend(Option_t *opt)
|
---|
735 | {
|
---|
736 |
|
---|
737 | TString option(opt);
|
---|
738 |
|
---|
739 | if (!fFitLegend)
|
---|
740 | {
|
---|
741 | fFitLegend = new TPaveText(0.05,0.05,0.95,0.95);
|
---|
742 | fFitLegend->SetLabel(Form("%s%s", "Results of the single PhE Fit (",
|
---|
743 | (fFitFunc == kEPoisson4) ? "Poisson(k=4))" :
|
---|
744 | (fFitFunc == kEPoisson5) ? "Poisson(k=5))" :
|
---|
745 | (fFitFunc == kEPoisson6) ? "Poisson(k=6))" :
|
---|
746 | (fFitFunc == kEPolya ) ? "Polya(k=4))" :
|
---|
747 | (fFitFunc == kEMichele ) ? "Michele)"
|
---|
748 | : " none )" ));
|
---|
749 | fFitLegend->SetTextSize(0.05);
|
---|
750 | }
|
---|
751 | else
|
---|
752 | fFitLegend->Clear();
|
---|
753 |
|
---|
754 | const TString line1 =
|
---|
755 | Form("Mean: #lambda = %2.2f #pm %2.2f",fLambda,fLambdaErr);
|
---|
756 | TText *t1 = fFitLegend->AddText(line1.Data());
|
---|
757 | t1->SetBit(kCanDelete);
|
---|
758 |
|
---|
759 | const TString line6 =
|
---|
760 | Form("Mean #lambda_{check} = %2.2f #pm %2.2f",fLambdaCheck,fLambdaCheckErr);
|
---|
761 | TText *t2 = fFitLegend->AddText(line6.Data());
|
---|
762 | t2->SetBit(kCanDelete);
|
---|
763 |
|
---|
764 | if (option.Contains("datacheck"))
|
---|
765 | {
|
---|
766 | if (fLambda + 3.*fLambdaErr < fLambdaCheck - 3.*fLambdaCheckErr
|
---|
767 | ||
|
---|
768 | fLambda - 3.*fLambdaErr > fLambdaCheck + 3.*fLambdaCheckErr )
|
---|
769 | {
|
---|
770 | TText *t = fFitLegend->AddText("#lambda and #lambda_{check} more than 3#sigma apart!");
|
---|
771 | t->SetBit(kCanDelete);
|
---|
772 | }
|
---|
773 | }
|
---|
774 | else
|
---|
775 | {
|
---|
776 |
|
---|
777 | const TString line2 =
|
---|
778 | Form("Pedestal: #mu_{0} = %2.2f #pm %2.2f",fMu0,fMu0Err);
|
---|
779 | TText *t3 = fFitLegend->AddText(line2.Data());
|
---|
780 | t3->SetBit(kCanDelete);
|
---|
781 |
|
---|
782 | const TString line3 =
|
---|
783 | Form("Width Pedestal: #sigma_{0} = %2.2f #pm %2.2f",fSigma0,fSigma0Err);
|
---|
784 | TText *t4 = fFitLegend->AddText(line3.Data());
|
---|
785 | t4->SetBit(kCanDelete);
|
---|
786 |
|
---|
787 | const TString line4 =
|
---|
788 | Form("1^{st} Phe-peak: #mu_{1} = %2.2f #pm %2.2f",fMu1,fMu1Err);
|
---|
789 | TText *t5 = fFitLegend->AddText(line4.Data());
|
---|
790 | t5->SetBit(kCanDelete);
|
---|
791 |
|
---|
792 | const TString line5 =
|
---|
793 | Form("Width 1^{st} Phe-peak: #sigma_{1} = %2.2f #pm %2.2f",fSigma1,fSigma1Err);
|
---|
794 | TText *t6 = fFitLegend->AddText(line5.Data());
|
---|
795 | t6->SetBit(kCanDelete);
|
---|
796 | }
|
---|
797 |
|
---|
798 | const TString line7 =
|
---|
799 | Form("#chi^{2} / N_{dof}: %4.2f / %3i",fChisquare,fNDF);
|
---|
800 | TText *t7 = fFitLegend->AddText(line7.Data());
|
---|
801 | t7->SetBit(kCanDelete);
|
---|
802 |
|
---|
803 | const TString line8 =
|
---|
804 | Form("Probability: %6.4f ",fProb);
|
---|
805 | TText *t8 = fFitLegend->AddText(line8.Data());
|
---|
806 | t8->SetBit(kCanDelete);
|
---|
807 |
|
---|
808 | if (IsSinglePheFitOK())
|
---|
809 | {
|
---|
810 | TText *t = fFitLegend->AddText("Result of the Fit: OK");
|
---|
811 | t->SetBit(kCanDelete);
|
---|
812 | }
|
---|
813 | else
|
---|
814 | {
|
---|
815 | TText *t = fFitLegend->AddText("Result of the Fit: NOT OK");
|
---|
816 | t->SetBit(kCanDelete);
|
---|
817 | }
|
---|
818 |
|
---|
819 | fFitLegend->SetFillColor(IsSinglePheFitOK() ? 80 : 2);
|
---|
820 | fFitLegend->Draw();
|
---|
821 |
|
---|
822 | return;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | // -------------------------------------------------------------------------
|
---|
827 | //
|
---|
828 | // Draw the histogram
|
---|
829 | //
|
---|
830 | // The following options can be chosen:
|
---|
831 | //
|
---|
832 | // "": displays the fHGausHist, the fits, the legend and fASinglePheFADCSlices and fAPedestalFADCSlices
|
---|
833 | // "all": executes additionally MHGausEvents::Draw(), with option "fourierevents"
|
---|
834 | // "datacheck" display the fHGausHist, the fits and the legend
|
---|
835 | //
|
---|
836 | void MHCalibrationChargeBlindPix::Draw(Option_t *opt)
|
---|
837 | {
|
---|
838 |
|
---|
839 | TString option(opt);
|
---|
840 | option.ToLower();
|
---|
841 |
|
---|
842 | Int_t win = 1;
|
---|
843 |
|
---|
844 | TVirtualPad *oldpad = gPad ? gPad : MH::MakeDefCanvas(this,900, 600);
|
---|
845 | TVirtualPad *pad = NULL;
|
---|
846 |
|
---|
847 | if (option.Contains("all"))
|
---|
848 | {
|
---|
849 | option.ReplaceAll("all","");
|
---|
850 | oldpad->Divide(2,1);
|
---|
851 | win = 2;
|
---|
852 | oldpad->cd(1);
|
---|
853 | TVirtualPad *newpad = gPad;
|
---|
854 | pad = newpad;
|
---|
855 | pad->Divide(2,2);
|
---|
856 | pad->cd(1);
|
---|
857 | }
|
---|
858 | else if (option.Contains("datacheck"))
|
---|
859 | {
|
---|
860 | pad = oldpad;
|
---|
861 | pad->Divide(1,2);
|
---|
862 | pad->cd(1);
|
---|
863 | fHGausHist.SetStats(0);
|
---|
864 | }
|
---|
865 | else
|
---|
866 | {
|
---|
867 | pad = oldpad;
|
---|
868 | pad->Divide(2,2);
|
---|
869 | pad->cd(1);
|
---|
870 | }
|
---|
871 |
|
---|
872 | if (!IsEmpty() && !IsOnlyOverflow() && !IsOnlyUnderflow())
|
---|
873 | gPad->SetLogy();
|
---|
874 |
|
---|
875 | gPad->SetTicks();
|
---|
876 |
|
---|
877 | fHGausHist.Draw();
|
---|
878 | if (fFGausFit )
|
---|
879 | {
|
---|
880 | fFGausFit->SetLineColor(kBlue);
|
---|
881 | fFGausFit->Draw("same");
|
---|
882 | if (!option.Contains("datacheck"))
|
---|
883 | {
|
---|
884 | TLine *line = new TLine(fSinglePheCut, 0., fSinglePheCut, 10.);
|
---|
885 | line->SetBit(kCanDelete);
|
---|
886 | line->SetLineColor(kBlue);
|
---|
887 | line->SetLineWidth(3);
|
---|
888 | line->DrawLine(fSinglePheCut, 0., fSinglePheCut, 2.);
|
---|
889 | }
|
---|
890 | }
|
---|
891 |
|
---|
892 | if (fSinglePheFit)
|
---|
893 | {
|
---|
894 | fSinglePheFit->SetFillStyle(0);
|
---|
895 | fSinglePheFit->SetLineWidth(3);
|
---|
896 | fSinglePheFit->SetLineColor(IsSinglePheFitOK() ? kGreen : kRed);
|
---|
897 | fSinglePheFit->Draw("same");
|
---|
898 | }
|
---|
899 |
|
---|
900 | pad->cd(2);
|
---|
901 | DrawLegend(option.Data());
|
---|
902 |
|
---|
903 | if (option.Contains("datacheck"))
|
---|
904 | return;
|
---|
905 | /*
|
---|
906 | pad->cd(3);
|
---|
907 | if (fASinglePheFADCSlices.GetNrows()!=1)
|
---|
908 | {
|
---|
909 | if (fHSinglePheFADCSlices)
|
---|
910 | delete fHSinglePheFADCSlices;
|
---|
911 |
|
---|
912 | fHSinglePheFADCSlices = new TH1F(fASinglePheFADCSlices);
|
---|
913 | fHSinglePheFADCSlices->SetName("SinglePheFADCSlices");
|
---|
914 | fHSinglePheFADCSlices->SetTitle(Form("%s%4.1f","Assumed Single Phe FADC Slices, Sum > ",fSinglePheCut));
|
---|
915 | fHSinglePheFADCSlices->SetXTitle("FADC slice number");
|
---|
916 | fHSinglePheFADCSlices->SetYTitle("FADC counts");
|
---|
917 | const Int_t nbins = fHSinglePheFADCSlices->GetNbinsX();
|
---|
918 | TH2D *nulls = new TH2D("Nulls",fHSinglePheFADCSlices->GetTitle(),nbins,0.,
|
---|
919 | fHSinglePheFADCSlices->GetXaxis()->GetBinCenter(nbins),
|
---|
920 | 100,0.,50.);
|
---|
921 | nulls->SetDirectory(NULL);
|
---|
922 | nulls->SetBit(kCanDelete);
|
---|
923 | nulls->GetXaxis()->SetTitle(fHSinglePheFADCSlices->GetXaxis()->GetTitle());
|
---|
924 | nulls->GetYaxis()->SetTitle(fHSinglePheFADCSlices->GetYaxis()->GetTitle());
|
---|
925 | nulls->GetXaxis()->CenterTitle();
|
---|
926 | nulls->GetYaxis()->CenterTitle();
|
---|
927 | nulls->SetStats(0);
|
---|
928 | nulls->Draw();
|
---|
929 | fHSinglePheFADCSlices->Draw("same");
|
---|
930 | }
|
---|
931 |
|
---|
932 | pad->cd(4);
|
---|
933 | if (fAPedestalFADCSlices.GetNrows()!=1)
|
---|
934 | {
|
---|
935 |
|
---|
936 | if (fHPedestalFADCSlices)
|
---|
937 | delete fHPedestalFADCSlices;
|
---|
938 |
|
---|
939 | fHPedestalFADCSlices = new TH1F(fAPedestalFADCSlices);
|
---|
940 | fHPedestalFADCSlices->SetName("PedestalFADCSlices");
|
---|
941 | fHPedestalFADCSlices->SetTitle(Form("%s%4.1f","Pedestal FADC Slices, Sum < ",fSinglePheCut));
|
---|
942 | fHPedestalFADCSlices->SetXTitle("FADC slice number");
|
---|
943 | fHPedestalFADCSlices->SetYTitle("FADC counts");
|
---|
944 | const Int_t nbins = fHPedestalFADCSlices->GetNbinsX();
|
---|
945 | TH2D *nullp = new TH2D("Nullp",fHPedestalFADCSlices->GetTitle(),nbins,0.,
|
---|
946 | fHPedestalFADCSlices->GetXaxis()->GetBinCenter(nbins),
|
---|
947 | 100,0.,50.);
|
---|
948 | nullp->SetDirectory(NULL);
|
---|
949 | nullp->SetBit(kCanDelete);
|
---|
950 | nullp->GetXaxis()->SetTitle(fHPedestalFADCSlices->GetXaxis()->GetTitle());
|
---|
951 | nullp->GetYaxis()->SetTitle(fHPedestalFADCSlices->GetYaxis()->GetTitle());
|
---|
952 | nullp->GetXaxis()->CenterTitle();
|
---|
953 | nullp->GetYaxis()->CenterTitle();
|
---|
954 | nullp->SetStats(0);
|
---|
955 | nullp->Draw();
|
---|
956 | fHPedestalFADCSlices->Draw("same");
|
---|
957 | }
|
---|
958 | */
|
---|
959 | if (win < 2)
|
---|
960 | return;
|
---|
961 |
|
---|
962 | oldpad->cd(2);
|
---|
963 | MHCalibrationPix::Draw("fourierevents");
|
---|
964 | }
|
---|
965 |
|
---|
966 | Double_t MHCalibrationChargeBlindPix::FitFuncMichele(Double_t *x, Double_t *par)
|
---|
967 | {
|
---|
968 | Double_t lambda1cat = par[0];
|
---|
969 | Double_t lambda1dyn = par[1];
|
---|
970 | Double_t mu0 = par[2];
|
---|
971 | Double_t mu1cat = par[3];
|
---|
972 | Double_t mu1dyn = par[4];
|
---|
973 | Double_t sigma0 = par[5];
|
---|
974 | Double_t sigma1cat = par[6];
|
---|
975 | Double_t sigma1dyn = par[7];
|
---|
976 |
|
---|
977 | Double_t sumcat = 0.;
|
---|
978 | Double_t sumdyn = 0.;
|
---|
979 | Double_t arg = 0.;
|
---|
980 |
|
---|
981 | if (lambda1cat < lambda1dyn)
|
---|
982 | return FLT_MAX;
|
---|
983 |
|
---|
984 | if (mu1cat < mu0)
|
---|
985 | return FLT_MAX;
|
---|
986 |
|
---|
987 | if (mu1dyn < mu0)
|
---|
988 | return FLT_MAX;
|
---|
989 |
|
---|
990 | if (mu1cat < mu1dyn)
|
---|
991 | return FLT_MAX;
|
---|
992 |
|
---|
993 | if (sigma0 < 0.0001)
|
---|
994 | return FLT_MAX;
|
---|
995 |
|
---|
996 | if (sigma1cat < sigma0)
|
---|
997 | return FLT_MAX;
|
---|
998 |
|
---|
999 | if (sigma1dyn < sigma0)
|
---|
1000 | return FLT_MAX;
|
---|
1001 |
|
---|
1002 | Double_t mu2cat = (2.*mu1cat)-mu0;
|
---|
1003 | Double_t mu2dyn = (2.*mu1dyn)-mu0;
|
---|
1004 | Double_t mu3cat = (3.*mu1cat)-(2.*mu0);
|
---|
1005 | Double_t mu3dyn = (3.*mu1dyn)-(2.*mu0);
|
---|
1006 |
|
---|
1007 | Double_t sigma2cat = TMath::Sqrt((2.*sigma1cat*sigma1cat) - (sigma0*sigma0));
|
---|
1008 | Double_t sigma2dyn = TMath::Sqrt((2.*sigma1dyn*sigma1dyn) - (sigma0*sigma0));
|
---|
1009 | Double_t sigma3cat = TMath::Sqrt((3.*sigma1cat*sigma1cat) - (2.*sigma0*sigma0));
|
---|
1010 | Double_t sigma3dyn = TMath::Sqrt((3.*sigma1dyn*sigma1dyn) - (2.*sigma0*sigma0));
|
---|
1011 |
|
---|
1012 | Double_t lambda2cat = lambda1cat*lambda1cat;
|
---|
1013 | Double_t lambda2dyn = lambda1dyn*lambda1dyn;
|
---|
1014 | Double_t lambda3cat = lambda2cat*lambda1cat;
|
---|
1015 | Double_t lambda3dyn = lambda2dyn*lambda1dyn;
|
---|
1016 |
|
---|
1017 | // k=0:
|
---|
1018 | arg = (x[0] - mu0)/sigma0;
|
---|
1019 | sumcat = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
1020 | sumdyn = sumcat;
|
---|
1021 |
|
---|
1022 | // k=1cat:
|
---|
1023 | arg = (x[0] - mu1cat)/sigma1cat;
|
---|
1024 | sumcat += lambda1cat*TMath::Exp(-0.5*arg*arg)/sigma1cat;
|
---|
1025 | // k=1dyn:
|
---|
1026 | arg = (x[0] - mu1dyn)/sigma1dyn;
|
---|
1027 | sumdyn += lambda1dyn*TMath::Exp(-0.5*arg*arg)/sigma1dyn;
|
---|
1028 |
|
---|
1029 | // k=2cat:
|
---|
1030 | arg = (x[0] - mu2cat)/sigma2cat;
|
---|
1031 | sumcat += 0.5*lambda2cat*TMath::Exp(-0.5*arg*arg)/sigma2cat;
|
---|
1032 | // k=2dyn:
|
---|
1033 | arg = (x[0] - mu2dyn)/sigma2dyn;
|
---|
1034 | sumdyn += 0.5*lambda2dyn*TMath::Exp(-0.5*arg*arg)/sigma2dyn;
|
---|
1035 |
|
---|
1036 |
|
---|
1037 | // k=3cat:
|
---|
1038 | arg = (x[0] - mu3cat)/sigma3cat;
|
---|
1039 | sumcat += 0.1666666667*lambda3cat*TMath::Exp(-0.5*arg*arg)/sigma3cat;
|
---|
1040 | // k=3dyn:
|
---|
1041 | arg = (x[0] - mu3dyn)/sigma3dyn;
|
---|
1042 | sumdyn += 0.1666666667*lambda3dyn*TMath::Exp(-0.5*arg*arg)/sigma3dyn;
|
---|
1043 |
|
---|
1044 | sumcat = TMath::Exp(-1.*lambda1cat)*sumcat;
|
---|
1045 | sumdyn = TMath::Exp(-1.*lambda1dyn)*sumdyn;
|
---|
1046 |
|
---|
1047 | return par[8]*(sumcat+sumdyn)/2.;
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | Double_t MHCalibrationChargeBlindPix::PoissonKto4(Double_t *x, Double_t *par)
|
---|
1051 | {
|
---|
1052 | Double_t lambda = par[0];
|
---|
1053 |
|
---|
1054 | Double_t sum = 0.;
|
---|
1055 | Double_t arg = 0.;
|
---|
1056 |
|
---|
1057 | Double_t mu0 = par[1];
|
---|
1058 | Double_t mu1 = par[2];
|
---|
1059 |
|
---|
1060 | if (mu1 < mu0)
|
---|
1061 | return FLT_MAX;
|
---|
1062 |
|
---|
1063 | Double_t sigma0 = par[3];
|
---|
1064 | Double_t sigma1 = par[4];
|
---|
1065 |
|
---|
1066 | if (sigma0 < 0.0001)
|
---|
1067 | return FLT_MAX;
|
---|
1068 |
|
---|
1069 | if (sigma1 < sigma0)
|
---|
1070 | return FLT_MAX;
|
---|
1071 |
|
---|
1072 | Double_t mu2 = (2.*mu1)-mu0;
|
---|
1073 | Double_t mu3 = (3.*mu1)-(2.*mu0);
|
---|
1074 | Double_t mu4 = (4.*mu1)-(3.*mu0);
|
---|
1075 |
|
---|
1076 | Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
|
---|
1077 | Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
|
---|
1078 | Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
|
---|
1079 |
|
---|
1080 | Double_t lambda2 = lambda*lambda;
|
---|
1081 | Double_t lambda3 = lambda2*lambda;
|
---|
1082 | Double_t lambda4 = lambda3*lambda;
|
---|
1083 |
|
---|
1084 | // k=0:
|
---|
1085 | arg = (x[0] - mu0)/sigma0;
|
---|
1086 | sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
1087 |
|
---|
1088 | // k=1:
|
---|
1089 | arg = (x[0] - mu1)/sigma1;
|
---|
1090 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
1091 |
|
---|
1092 | // k=2:
|
---|
1093 | arg = (x[0] - mu2)/sigma2;
|
---|
1094 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
1095 |
|
---|
1096 | // k=3:
|
---|
1097 | arg = (x[0] - mu3)/sigma3;
|
---|
1098 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
1099 |
|
---|
1100 | // k=4:
|
---|
1101 | arg = (x[0] - mu4)/sigma4;
|
---|
1102 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
1103 |
|
---|
1104 | return TMath::Exp(-1.*lambda)*par[5]*sum;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | Double_t MHCalibrationChargeBlindPix::PoissonKto5(Double_t *x, Double_t *par)
|
---|
1108 | {
|
---|
1109 | Double_t lambda = par[0];
|
---|
1110 |
|
---|
1111 | Double_t sum = 0.;
|
---|
1112 | Double_t arg = 0.;
|
---|
1113 |
|
---|
1114 | Double_t mu0 = par[1];
|
---|
1115 | Double_t mu1 = par[2];
|
---|
1116 |
|
---|
1117 | if (mu1 < mu0)
|
---|
1118 | return FLT_MAX;
|
---|
1119 |
|
---|
1120 | Double_t sigma0 = par[3];
|
---|
1121 | Double_t sigma1 = par[4];
|
---|
1122 |
|
---|
1123 | if (sigma0 < 0.0001)
|
---|
1124 | return FLT_MAX;
|
---|
1125 |
|
---|
1126 | if (sigma1 < sigma0)
|
---|
1127 | return FLT_MAX;
|
---|
1128 |
|
---|
1129 |
|
---|
1130 | Double_t mu2 = (2.*mu1)-mu0;
|
---|
1131 | Double_t mu3 = (3.*mu1)-(2.*mu0);
|
---|
1132 | Double_t mu4 = (4.*mu1)-(3.*mu0);
|
---|
1133 | Double_t mu5 = (5.*mu1)-(4.*mu0);
|
---|
1134 |
|
---|
1135 | Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
|
---|
1136 | Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
|
---|
1137 | Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
|
---|
1138 | Double_t sigma5 = TMath::Sqrt((5.*sigma1*sigma1) - (4.*sigma0*sigma0));
|
---|
1139 |
|
---|
1140 | Double_t lambda2 = lambda*lambda;
|
---|
1141 | Double_t lambda3 = lambda2*lambda;
|
---|
1142 | Double_t lambda4 = lambda3*lambda;
|
---|
1143 | Double_t lambda5 = lambda4*lambda;
|
---|
1144 |
|
---|
1145 | // k=0:
|
---|
1146 | arg = (x[0] - mu0)/sigma0;
|
---|
1147 | sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
1148 |
|
---|
1149 | // k=1:
|
---|
1150 | arg = (x[0] - mu1)/sigma1;
|
---|
1151 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
1152 |
|
---|
1153 | // k=2:
|
---|
1154 | arg = (x[0] - mu2)/sigma2;
|
---|
1155 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
1156 |
|
---|
1157 | // k=3:
|
---|
1158 | arg = (x[0] - mu3)/sigma3;
|
---|
1159 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
1160 |
|
---|
1161 | // k=4:
|
---|
1162 | arg = (x[0] - mu4)/sigma4;
|
---|
1163 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
1164 |
|
---|
1165 | // k=5:
|
---|
1166 | arg = (x[0] - mu5)/sigma5;
|
---|
1167 | sum += 0.008333333333333*lambda5*TMath::Exp(-0.5*arg*arg)/sigma5;
|
---|
1168 |
|
---|
1169 | return TMath::Exp(-1.*lambda)*par[5]*sum;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | Double_t MHCalibrationChargeBlindPix::PoissonKto6(Double_t *x, Double_t *par)
|
---|
1173 | {
|
---|
1174 | Double_t lambda = par[0];
|
---|
1175 |
|
---|
1176 | Double_t sum = 0.;
|
---|
1177 | Double_t arg = 0.;
|
---|
1178 |
|
---|
1179 | Double_t mu0 = par[1];
|
---|
1180 | Double_t mu1 = par[2];
|
---|
1181 |
|
---|
1182 | if (mu1 < mu0)
|
---|
1183 | return FLT_MAX;
|
---|
1184 |
|
---|
1185 | Double_t sigma0 = par[3];
|
---|
1186 | Double_t sigma1 = par[4];
|
---|
1187 |
|
---|
1188 | if (sigma0 < 0.0001)
|
---|
1189 | return FLT_MAX;
|
---|
1190 |
|
---|
1191 | if (sigma1 < sigma0)
|
---|
1192 | return FLT_MAX;
|
---|
1193 |
|
---|
1194 |
|
---|
1195 | Double_t mu2 = (2.*mu1)-mu0;
|
---|
1196 | Double_t mu3 = (3.*mu1)-(2.*mu0);
|
---|
1197 | Double_t mu4 = (4.*mu1)-(3.*mu0);
|
---|
1198 | Double_t mu5 = (5.*mu1)-(4.*mu0);
|
---|
1199 | Double_t mu6 = (6.*mu1)-(5.*mu0);
|
---|
1200 |
|
---|
1201 | Double_t sigma2 = TMath::Sqrt((2.*sigma1*sigma1) - (sigma0*sigma0));
|
---|
1202 | Double_t sigma3 = TMath::Sqrt((3.*sigma1*sigma1) - (2.*sigma0*sigma0));
|
---|
1203 | Double_t sigma4 = TMath::Sqrt((4.*sigma1*sigma1) - (3.*sigma0*sigma0));
|
---|
1204 | Double_t sigma5 = TMath::Sqrt((5.*sigma1*sigma1) - (4.*sigma0*sigma0));
|
---|
1205 | Double_t sigma6 = TMath::Sqrt((6.*sigma1*sigma1) - (5.*sigma0*sigma0));
|
---|
1206 |
|
---|
1207 | Double_t lambda2 = lambda*lambda;
|
---|
1208 | Double_t lambda3 = lambda2*lambda;
|
---|
1209 | Double_t lambda4 = lambda3*lambda;
|
---|
1210 | Double_t lambda5 = lambda4*lambda;
|
---|
1211 | Double_t lambda6 = lambda5*lambda;
|
---|
1212 |
|
---|
1213 | // k=0:
|
---|
1214 | arg = (x[0] - mu0)/sigma0;
|
---|
1215 | sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
1216 |
|
---|
1217 | // k=1:
|
---|
1218 | arg = (x[0] - mu1)/sigma1;
|
---|
1219 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
1220 |
|
---|
1221 | // k=2:
|
---|
1222 | arg = (x[0] - mu2)/sigma2;
|
---|
1223 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
1224 |
|
---|
1225 | // k=3:
|
---|
1226 | arg = (x[0] - mu3)/sigma3;
|
---|
1227 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
1228 |
|
---|
1229 | // k=4:
|
---|
1230 | arg = (x[0] - mu4)/sigma4;
|
---|
1231 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
1232 |
|
---|
1233 | // k=5:
|
---|
1234 | arg = (x[0] - mu5)/sigma5;
|
---|
1235 | sum += 0.008333333333333*lambda5*TMath::Exp(-0.5*arg*arg)/sigma5;
|
---|
1236 |
|
---|
1237 | // k=6:
|
---|
1238 | arg = (x[0] - mu6)/sigma6;
|
---|
1239 | sum += 0.001388888888889*lambda6*TMath::Exp(-0.5*arg*arg)/sigma6;
|
---|
1240 |
|
---|
1241 | return TMath::Exp(-1.*lambda)*par[5]*sum;
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | Double_t MHCalibrationChargeBlindPix::Polya(Double_t *x, Double_t *par)
|
---|
1245 | {
|
---|
1246 | const Double_t QEcat = 0.247; // mean quantum efficiency
|
---|
1247 | const Double_t sqrt2 = 1.4142135623731;
|
---|
1248 | const Double_t sqrt3 = 1.7320508075689;
|
---|
1249 | const Double_t sqrt4 = 2.;
|
---|
1250 |
|
---|
1251 | const Double_t lambda = par[0]; // mean number of photons
|
---|
1252 |
|
---|
1253 | const Double_t excessPoisson = par[1]; // non-Poissonic noise contribution
|
---|
1254 | const Double_t delta1 = par[2]; // amplification first dynode
|
---|
1255 | const Double_t delta2 = par[3]; // amplification subsequent dynodes
|
---|
1256 |
|
---|
1257 | const Double_t electronicAmpl = par[4]; // electronic amplification and conversion to FADC charges
|
---|
1258 |
|
---|
1259 | const Double_t pmtAmpl = delta1*delta2*delta2*delta2*delta2*delta2; // total PMT gain
|
---|
1260 | const Double_t A = 1. + excessPoisson - QEcat
|
---|
1261 | + 1./delta1
|
---|
1262 | + 1./delta1/delta2
|
---|
1263 | + 1./delta1/delta2/delta2; // variance contributions from PMT and QE
|
---|
1264 |
|
---|
1265 | const Double_t totAmpl = QEcat*pmtAmpl*electronicAmpl; // Total gain and conversion
|
---|
1266 |
|
---|
1267 | const Double_t mu0 = par[7]; // pedestal
|
---|
1268 | const Double_t mu1 = totAmpl; // single phe position
|
---|
1269 | const Double_t mu2 = 2*totAmpl; // double phe position
|
---|
1270 | const Double_t mu3 = 3*totAmpl; // triple phe position
|
---|
1271 | const Double_t mu4 = 4*totAmpl; // quadruple phe position
|
---|
1272 |
|
---|
1273 | const Double_t sigma0 = par[5];
|
---|
1274 | const Double_t sigma1 = electronicAmpl*pmtAmpl*TMath::Sqrt(QEcat*A);
|
---|
1275 | const Double_t sigma2 = sqrt2*sigma1;
|
---|
1276 | const Double_t sigma3 = sqrt3*sigma1;
|
---|
1277 | const Double_t sigma4 = sqrt4*sigma1;
|
---|
1278 |
|
---|
1279 | const Double_t lambda2 = lambda*lambda;
|
---|
1280 | const Double_t lambda3 = lambda2*lambda;
|
---|
1281 | const Double_t lambda4 = lambda3*lambda;
|
---|
1282 |
|
---|
1283 | //-- calculate the area----
|
---|
1284 | Double_t arg = (x[0] - mu0)/sigma0;
|
---|
1285 | Double_t sum = TMath::Exp(-0.5*arg*arg)/sigma0;
|
---|
1286 |
|
---|
1287 | // k=1:
|
---|
1288 | arg = (x[0] - mu1)/sigma1;
|
---|
1289 | sum += lambda*TMath::Exp(-0.5*arg*arg)/sigma1;
|
---|
1290 |
|
---|
1291 | // k=2:
|
---|
1292 | arg = (x[0] - mu2)/sigma2;
|
---|
1293 | sum += 0.5*lambda2*TMath::Exp(-0.5*arg*arg)/sigma2;
|
---|
1294 |
|
---|
1295 | // k=3:
|
---|
1296 | arg = (x[0] - mu3)/sigma3;
|
---|
1297 | sum += 0.1666666667*lambda3*TMath::Exp(-0.5*arg*arg)/sigma3;
|
---|
1298 |
|
---|
1299 | // k=4:
|
---|
1300 | arg = (x[0] - mu4)/sigma4;
|
---|
1301 | sum += 0.041666666666667*lambda4*TMath::Exp(-0.5*arg*arg)/sigma4;
|
---|
1302 |
|
---|
1303 | return TMath::Exp(-1.*lambda)*par[6]*sum;
|
---|
1304 | }
|
---|