1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Wolfgang Wittek, July 2003 <mailto:wittek@mppmu.mpg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2003
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MHFindSignificance
|
---|
28 | //
|
---|
29 | // determines the significance of a gamma signal in an |alpha| plot
|
---|
30 | //
|
---|
31 | //
|
---|
32 | // Input : TH1 histogram of |alpha| : with 0 < |alpha| < 90 degrees
|
---|
33 | // alphamin, alphamax : defining the background region
|
---|
34 | // alphasig : defining the signal region for which
|
---|
35 | // the significance is calculated
|
---|
36 | // degree : the degree of the polynomial to be fitted to the background
|
---|
37 | // ( a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
38 | //
|
---|
39 | // Output :
|
---|
40 | //
|
---|
41 | // - polynomial which describes the background in the background region
|
---|
42 | // - the number of events in the signal region (Non)
|
---|
43 | // the number of background events in the signal region (Nbg)
|
---|
44 | // - the number of excess events in the signal region (Nex = Non - Nbg)
|
---|
45 | // - thew effective number of background events (Noff), and gamma :
|
---|
46 | // Nbg = gamma * Noff
|
---|
47 | // - the significance of the gamma signal according to Li & Ma
|
---|
48 | //
|
---|
49 | //
|
---|
50 | // call member function 'FindSigma'
|
---|
51 | // to fit the background and to determine the significance
|
---|
52 | //
|
---|
53 | // call the member function 'SigmaVsAlpha'
|
---|
54 | // to determine the significance as a function of alphasig
|
---|
55 | //
|
---|
56 | /////////////////////////////////////////////////////////////////////////////
|
---|
57 | #include "MHFindSignificance.h"
|
---|
58 |
|
---|
59 | #include <fstream>
|
---|
60 | #include <math.h>
|
---|
61 |
|
---|
62 | #include <TArrayD.h>
|
---|
63 | #include <TArrayI.h>
|
---|
64 | #include <TH1.h>
|
---|
65 | #include <TF1.h>
|
---|
66 | #include <TCanvas.h>
|
---|
67 | #include <TFitter.h>
|
---|
68 | #include <TMinuit.h>
|
---|
69 | #include <TPaveText.h>
|
---|
70 | #include <TStyle.h>
|
---|
71 |
|
---|
72 | #include "MLog.h"
|
---|
73 | #include "MLogManip.h"
|
---|
74 | #include "MMinuitInterface.h"
|
---|
75 |
|
---|
76 |
|
---|
77 | ClassImp(MHFindSignificance);
|
---|
78 |
|
---|
79 | using namespace std;
|
---|
80 |
|
---|
81 | const TString MHFindSignificance::gsDefName = "MHFindSignificance";
|
---|
82 | const TString MHFindSignificance::gsDefTitle = "Find Significance in alpha plot";
|
---|
83 |
|
---|
84 |
|
---|
85 |
|
---|
86 | // --------------------------------------------------------------------------
|
---|
87 | //
|
---|
88 | // fcnpoly
|
---|
89 | //
|
---|
90 | // calculates the chi2 for the fit of the polynomial function 'poly'
|
---|
91 | // to the histogram 'fhist'
|
---|
92 | //
|
---|
93 | // it is called by CallMinuit() (which is called in FitPolynomial())
|
---|
94 | //
|
---|
95 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
96 | // (the huge errors were set in 'FitPolynomial()')
|
---|
97 | //
|
---|
98 |
|
---|
99 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
100 | Double_t *par, Int_t iflag)
|
---|
101 | {
|
---|
102 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
103 | TF1 *fpoly = fhist->GetFunction("Poly");
|
---|
104 |
|
---|
105 |
|
---|
106 | //-------------------------------------------
|
---|
107 |
|
---|
108 | Double_t chi2 = 0.0;
|
---|
109 |
|
---|
110 | Int_t nbins = fhist->GetNbinsX();
|
---|
111 | Int_t mbins = 0;
|
---|
112 | for (Int_t i=1; i<=nbins; i++)
|
---|
113 | {
|
---|
114 | Double_t content = fhist->GetBinContent(i);
|
---|
115 | Double_t error = fhist->GetBinError(i);
|
---|
116 | Double_t center = fhist->GetBinCenter(i);
|
---|
117 |
|
---|
118 | //-----------------------------
|
---|
119 | // ignore unwanted points
|
---|
120 | if (error > 1.e19)
|
---|
121 | continue;
|
---|
122 |
|
---|
123 | if (content <= 0.0)
|
---|
124 | {
|
---|
125 | gLog << "fcnpoly : bin with zero content; i, content, error = "
|
---|
126 | << i << ", " << content << ", " << error << endl;
|
---|
127 | continue;
|
---|
128 | }
|
---|
129 |
|
---|
130 | if (error <= 0.0)
|
---|
131 | {
|
---|
132 | gLog << "fcnpoly : bin with zero error; i, content, error = "
|
---|
133 | << i << ", " << content << ", " << error << endl;
|
---|
134 | continue;
|
---|
135 | }
|
---|
136 |
|
---|
137 | //-----------------------------
|
---|
138 | mbins++;
|
---|
139 |
|
---|
140 | Double_t fu;
|
---|
141 | fu = fpoly->EvalPar(¢er, par);
|
---|
142 |
|
---|
143 | // the fitted function must not be negative
|
---|
144 | if (fu <= 0.0)
|
---|
145 | {
|
---|
146 | chi2 = 1.e10;
|
---|
147 | break;
|
---|
148 | }
|
---|
149 |
|
---|
150 | Double_t temp = (content - fu) / error;
|
---|
151 | chi2 += temp*temp;
|
---|
152 | }
|
---|
153 |
|
---|
154 | //-------------------------------------------
|
---|
155 |
|
---|
156 | f = chi2;
|
---|
157 |
|
---|
158 | //-------------------------------------------
|
---|
159 | // final calculations
|
---|
160 | //if (iflag == 3)
|
---|
161 | //{
|
---|
162 | //}
|
---|
163 |
|
---|
164 | //-------------------------------------------------------------
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | // --------------------------------------------------------------------------
|
---|
169 | //
|
---|
170 | // fcnpolygauss
|
---|
171 | //
|
---|
172 | // calculates the chi2 for the fit of the (polynomial+Gauss) function
|
---|
173 | // 'PolyGauss' to the histogram 'fhist'
|
---|
174 | //
|
---|
175 | // it is called by CallMinuit() (which is called in FitGaussPoly())
|
---|
176 | //
|
---|
177 | // bins of fhist with huge errors are ignored in the calculation of the chi2
|
---|
178 | // (the huge errors were set in 'FitGaussPoly()')
|
---|
179 | //
|
---|
180 |
|
---|
181 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f,
|
---|
182 | Double_t *par, Int_t iflag)
|
---|
183 | {
|
---|
184 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit();
|
---|
185 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss");
|
---|
186 |
|
---|
187 |
|
---|
188 | //-------------------------------------------
|
---|
189 |
|
---|
190 | Double_t chi2 = 0.0;
|
---|
191 |
|
---|
192 | Int_t nbins = fhist->GetNbinsX();
|
---|
193 | Int_t mbins = 0;
|
---|
194 | for (Int_t i=1; i<=nbins; i++)
|
---|
195 | {
|
---|
196 | Double_t content = fhist->GetBinContent(i);
|
---|
197 | Double_t error = fhist->GetBinError(i);
|
---|
198 | Double_t center = fhist->GetBinCenter(i);
|
---|
199 |
|
---|
200 | //-----------------------------
|
---|
201 | // ignore unwanted points
|
---|
202 | if (error > 1.e19)
|
---|
203 | continue;
|
---|
204 |
|
---|
205 | if (content <= 0.0)
|
---|
206 | {
|
---|
207 | gLog << "fcnpolygauss : bin with zero content; i, content, error = "
|
---|
208 | << i << ", " << content << ", " << error << endl;
|
---|
209 | continue;
|
---|
210 | }
|
---|
211 |
|
---|
212 | if (error <= 0.0)
|
---|
213 | {
|
---|
214 | gLog << "fcnpolygauss : bin with zero error; i, content, error = "
|
---|
215 | << i << ", " << content << ", " << error << endl;
|
---|
216 | continue;
|
---|
217 | }
|
---|
218 |
|
---|
219 | //-----------------------------
|
---|
220 | mbins++;
|
---|
221 |
|
---|
222 | Double_t fu;
|
---|
223 | fu = fpolygauss->EvalPar(¢er, par);
|
---|
224 |
|
---|
225 | // the fitted function must not be negative
|
---|
226 | if (fu <= 0.0)
|
---|
227 | {
|
---|
228 | chi2 = 1.e10;
|
---|
229 | break;
|
---|
230 | }
|
---|
231 |
|
---|
232 | Double_t temp = (content - fu) / error;
|
---|
233 | chi2 += temp*temp;
|
---|
234 | }
|
---|
235 |
|
---|
236 | //-------------------------------------------
|
---|
237 |
|
---|
238 | f = chi2;
|
---|
239 |
|
---|
240 | //-------------------------------------------
|
---|
241 | // final calculations
|
---|
242 | //if (iflag == 3)
|
---|
243 | //{
|
---|
244 | //}
|
---|
245 |
|
---|
246 | //-------------------------------------------------------------
|
---|
247 | }
|
---|
248 |
|
---|
249 |
|
---|
250 |
|
---|
251 | // --------------------------------------------------------------------------
|
---|
252 | //
|
---|
253 | // Constructor
|
---|
254 | //
|
---|
255 | MHFindSignificance::MHFindSignificance(const char *name, const char *title)
|
---|
256 | {
|
---|
257 | fName = name ? name : gsDefName.Data();
|
---|
258 | fTitle = title ? title : gsDefTitle.Data();
|
---|
259 |
|
---|
260 | fSigVsAlpha = NULL;
|
---|
261 |
|
---|
262 | fPoly = NULL;
|
---|
263 | fGPoly = NULL;
|
---|
264 | fGBackg = NULL;
|
---|
265 |
|
---|
266 | fHist = NULL;
|
---|
267 | fHistOrig = NULL;
|
---|
268 |
|
---|
269 | // allow rebinning of the alpha plot
|
---|
270 | fRebin = kTRUE;
|
---|
271 |
|
---|
272 | // allow reducing the degree of the polynomial
|
---|
273 | fReduceDegree = kTRUE;
|
---|
274 |
|
---|
275 | fCanvas = NULL;
|
---|
276 | }
|
---|
277 |
|
---|
278 | // --------------------------------------------------------------------------
|
---|
279 | //
|
---|
280 | // Destructor.
|
---|
281 | //
|
---|
282 | // =====> it is not clear why one obtains sometimes a segmentation violation
|
---|
283 | // when the destructor is active <=======================
|
---|
284 | //
|
---|
285 | // therefore the 'return'statement
|
---|
286 | //
|
---|
287 |
|
---|
288 | MHFindSignificance::~MHFindSignificance()
|
---|
289 | {
|
---|
290 | return;
|
---|
291 |
|
---|
292 | *fLog << "destructor of MHFindSignificance is called" << endl;
|
---|
293 |
|
---|
294 | //delete fHist;
|
---|
295 |
|
---|
296 | delete fSigVsAlpha;
|
---|
297 | delete fPoly;
|
---|
298 | delete fGPoly;
|
---|
299 | delete fGBackg;
|
---|
300 | //delete fCanvas;
|
---|
301 | }
|
---|
302 |
|
---|
303 | // --------------------------------------------------------------------------
|
---|
304 | //
|
---|
305 | // Set flag fRebin
|
---|
306 | //
|
---|
307 | // if flag is kTRUE rebinning of the alpha plot is allowed
|
---|
308 | //
|
---|
309 | //
|
---|
310 | void MHFindSignificance::SetRebin(Bool_t b)
|
---|
311 | {
|
---|
312 | fRebin = b;
|
---|
313 |
|
---|
314 | *fLog << "MHFindSignificance::SetRebin; flag fRebin set to "
|
---|
315 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
316 | }
|
---|
317 |
|
---|
318 | // --------------------------------------------------------------------------
|
---|
319 | //
|
---|
320 | // Set flag fReduceDegree
|
---|
321 | //
|
---|
322 | // if flag is kTRUE reducing of the degree of the polynomial is allowed
|
---|
323 | //
|
---|
324 | //
|
---|
325 | void MHFindSignificance::SetReduceDegree(Bool_t b)
|
---|
326 | {
|
---|
327 | fReduceDegree = b;
|
---|
328 |
|
---|
329 | *fLog << "MHFindSignificance::SetReduceDegree; flag fReduceDegree set to "
|
---|
330 | << (b? "kTRUE" : "kFALSE") << endl;
|
---|
331 | }
|
---|
332 |
|
---|
333 | // --------------------------------------------------------------------------
|
---|
334 | //
|
---|
335 | // FindSigma
|
---|
336 | //
|
---|
337 | // calls FitPolynomial to fit the background in the background region
|
---|
338 | // calls DetExcess to determine the number of excess events
|
---|
339 | // using an extrapolation of the polynomial
|
---|
340 | // into the signal region
|
---|
341 | // calls SigmaLiMa to determine the significance of the gamma signal
|
---|
342 | // in the range |alpha| < alphasig
|
---|
343 | // calls FitGaussPoly to fit a (polynomial+Gauss) function in the
|
---|
344 | // whole |alpha| region
|
---|
345 | //
|
---|
346 | //
|
---|
347 | Bool_t MHFindSignificance::FindSigma(TH1 *fhist, Double_t alphamin,
|
---|
348 | Double_t alphamax, Int_t degree, Double_t alphasig,
|
---|
349 | Bool_t drawpoly, Bool_t fitgauss, Bool_t print)
|
---|
350 | {
|
---|
351 | //*fLog << "MHFindSignificance::FindSigma;" << endl;
|
---|
352 |
|
---|
353 | fHistOrig = fhist;
|
---|
354 |
|
---|
355 | fHist = (TH1*)fHistOrig->Clone();
|
---|
356 | fHist->SetName(fhist->GetName());
|
---|
357 | if ( !fHist )
|
---|
358 | {
|
---|
359 | *fLog << "MHFindSignificance::FindSigma; Clone of histogram could not be generated"
|
---|
360 | << endl;
|
---|
361 | return kFALSE;
|
---|
362 | }
|
---|
363 |
|
---|
364 | fHist->Sumw2();
|
---|
365 | //fHist->SetNameTitle("Alpha", "alpha plot");
|
---|
366 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
367 | fHist->SetYTitle("Counts");
|
---|
368 | fHist->UseCurrentStyle();
|
---|
369 |
|
---|
370 | fAlphamin = alphamin;
|
---|
371 | fAlphamax = alphamax;
|
---|
372 | fAlphammm = (alphamin+alphamax)/2.0;
|
---|
373 | fDegree = degree;
|
---|
374 | fAlphasig = alphasig;
|
---|
375 |
|
---|
376 | fDraw = drawpoly;
|
---|
377 | fFitGauss = fitgauss;
|
---|
378 |
|
---|
379 |
|
---|
380 | //--------------------------------------------
|
---|
381 | // fit a polynomial in the background region
|
---|
382 |
|
---|
383 | //*fLog << "MHFindSignificance::FindSigma; calling FitPolynomial()" << endl;
|
---|
384 | if ( !FitPolynomial() )
|
---|
385 | {
|
---|
386 | *fLog << "MHFindSignificance::FindSigma; FitPolynomial failed"
|
---|
387 | << endl;
|
---|
388 | return kFALSE;
|
---|
389 | }
|
---|
390 |
|
---|
391 |
|
---|
392 | //--------------------------------------------
|
---|
393 | // calculate the number of excess events in the signal region
|
---|
394 |
|
---|
395 | //*fLog << "MHFindSignificance::FindSigma; calling DetExcess()" << endl;
|
---|
396 | if ( !DetExcess() )
|
---|
397 | {
|
---|
398 | *fLog << "MHFindSignificance::FindSigma; DetExcess failed"
|
---|
399 | << endl;
|
---|
400 | return kFALSE;
|
---|
401 | }
|
---|
402 |
|
---|
403 |
|
---|
404 | //--------------------------------------------
|
---|
405 | // calculate the significance of the excess
|
---|
406 |
|
---|
407 | //*fLog << "MHFindSignificance::FindSigma; calling SigmaLiMa()" << endl;
|
---|
408 | Double_t siglima = 0.0;
|
---|
409 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
---|
410 | {
|
---|
411 | *fLog << "MHFindSignificance::FindSigma; SigmaLiMa failed"
|
---|
412 | << endl;
|
---|
413 | return kFALSE;
|
---|
414 | }
|
---|
415 | fSigLiMa = siglima;
|
---|
416 |
|
---|
417 | //--------------------------------------------
|
---|
418 | // calculate the error of the number of excess events
|
---|
419 |
|
---|
420 | fdNex = fNex / fSigLiMa;
|
---|
421 |
|
---|
422 |
|
---|
423 | //--------------------------------------------
|
---|
424 |
|
---|
425 | //*fLog << "MHFindSignificance::FindSigma; calling PrintPoly()" << endl;
|
---|
426 | if (print)
|
---|
427 | PrintPoly();
|
---|
428 |
|
---|
429 |
|
---|
430 | //--------------------------------------------
|
---|
431 | // fit a (polynomial + Gauss) function
|
---|
432 |
|
---|
433 | if (fFitGauss)
|
---|
434 | {
|
---|
435 | //--------------------------------------------------
|
---|
436 | // delete objects from this fit
|
---|
437 | // in order to have independent starting conditions for the next fit
|
---|
438 |
|
---|
439 | delete gMinuit;
|
---|
440 | gMinuit = NULL;
|
---|
441 | //--------------------------------------------------
|
---|
442 |
|
---|
443 | //*fLog << "MHFindSignificance::FindSigma; calling FitGaussPoly()"
|
---|
444 | // << endl;
|
---|
445 | if ( !FitGaussPoly() )
|
---|
446 | {
|
---|
447 | *fLog << "MHFindSignificance::FindSigma; FitGaussPoly failed"
|
---|
448 | << endl;
|
---|
449 | return kFALSE;
|
---|
450 | }
|
---|
451 |
|
---|
452 | if (print)
|
---|
453 | {
|
---|
454 | //*fLog << "MHFindSignificance::FindSigma; calling PrintPolyGauss()"
|
---|
455 | // << endl;
|
---|
456 | PrintPolyGauss();
|
---|
457 | }
|
---|
458 | }
|
---|
459 |
|
---|
460 | //--------------------------------------------------
|
---|
461 | // draw the histogram if requested
|
---|
462 |
|
---|
463 | if (fDraw)
|
---|
464 | {
|
---|
465 | //*fLog << "MHFindSignificance::FindSigma; calling DrawFit()" << endl;
|
---|
466 | if ( !DrawFit() )
|
---|
467 | {
|
---|
468 | *fLog << "MHFindSignificance::FindSigma; DrawFit failed"
|
---|
469 | << endl;
|
---|
470 | return kFALSE;
|
---|
471 | }
|
---|
472 | }
|
---|
473 |
|
---|
474 |
|
---|
475 | //--------------------------------------------------
|
---|
476 | // delete objects from this fit
|
---|
477 | // in order to have independent starting conditions for the next fit
|
---|
478 |
|
---|
479 | delete gMinuit;
|
---|
480 | gMinuit = NULL;
|
---|
481 | //--------------------------------------------------
|
---|
482 |
|
---|
483 | return kTRUE;
|
---|
484 | }
|
---|
485 |
|
---|
486 | // --------------------------------------------------------------------------
|
---|
487 | //
|
---|
488 | // SigmaVsAlpha (like FindSigma. However, alphasig is scanned and
|
---|
489 | // the significance is plotted versus alphasig)
|
---|
490 | //
|
---|
491 | // calls FitPolynomial to fit the background in the background region
|
---|
492 | //
|
---|
493 | // scan alphasig; for a given alphasig :
|
---|
494 | // calls DetExcess to determine the number of excess events
|
---|
495 | // calls SigmaLiMa to determine the significance of the gamma signal
|
---|
496 | // in the range fAlphalow < |alpha| < alphasig
|
---|
497 | //
|
---|
498 |
|
---|
499 | Bool_t MHFindSignificance::SigmaVsAlpha(TH1 *fhist, Double_t alphamin,
|
---|
500 | Double_t alphamax, Int_t degree, Bool_t print)
|
---|
501 | {
|
---|
502 | //*fLog << "MHFindSignificance::SigmaVsAlpha;" << endl;
|
---|
503 |
|
---|
504 | fHistOrig = fhist;
|
---|
505 |
|
---|
506 | fHist = (TH1*)fHistOrig->Clone();
|
---|
507 | fHist->SetName(fhist->GetName());
|
---|
508 | fHist->Sumw2();
|
---|
509 | //fHist->SetNameTitle("alpha", "alpha plot");
|
---|
510 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
511 | fHist->SetYTitle("Counts");
|
---|
512 | fHist->UseCurrentStyle();
|
---|
513 |
|
---|
514 | fAlphamin = alphamin;
|
---|
515 | fAlphamax = alphamax;
|
---|
516 | fAlphammm = (alphamin+alphamax)/2.0;
|
---|
517 | fDegree = degree;
|
---|
518 |
|
---|
519 |
|
---|
520 | //--------------------------------------------
|
---|
521 | // fit a polynomial in the background region
|
---|
522 |
|
---|
523 | //*fLog << "MHFindSignificance::SigmaVsAlpha calling FitPolynomial()"
|
---|
524 | // << endl;
|
---|
525 | if ( !FitPolynomial() )
|
---|
526 | {
|
---|
527 | *fLog << "MHFindSignificance::SigmaVsAlpha; FitPolynomial() failed"
|
---|
528 | << endl;
|
---|
529 | return kFALSE;
|
---|
530 | }
|
---|
531 |
|
---|
532 |
|
---|
533 | //--------------------------------------------
|
---|
534 | // loop over different signal regions
|
---|
535 |
|
---|
536 | Int_t nsteps = 15;
|
---|
537 |
|
---|
538 | fSigVsAlpha = new TH1D("SigVsAlpha","Sigma vs Alpha", nsteps, 0.0, alphamin);
|
---|
539 | fSigVsAlpha->SetXTitle("upper edge of signal region in |alpha| [\\circ]");
|
---|
540 | fSigVsAlpha->SetYTitle("Significance of gamma signal");
|
---|
541 |
|
---|
542 | for (Int_t i=1; i<=nsteps; i++)
|
---|
543 | {
|
---|
544 | fAlphasig = fSigVsAlpha->GetBinCenter(i);
|
---|
545 |
|
---|
546 | if ( !DetExcess() )
|
---|
547 | {
|
---|
548 | *fLog << "MHFindSignificance::SigmaVsAlpha; DetExcess() failed" << endl;
|
---|
549 | continue;
|
---|
550 | }
|
---|
551 |
|
---|
552 | Double_t siglima = 0.0;
|
---|
553 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) )
|
---|
554 | {
|
---|
555 | *fLog << "MHFindSignificance::SigmaVsAlpha; SigmaLiMa() failed" << endl;
|
---|
556 | continue;
|
---|
557 | }
|
---|
558 |
|
---|
559 | fdNex = fNex / siglima;
|
---|
560 | fSigVsAlpha->SetBinContent(i, siglima);
|
---|
561 |
|
---|
562 | if (print)
|
---|
563 | PrintPoly();
|
---|
564 | }
|
---|
565 |
|
---|
566 | //--------------------------------------------
|
---|
567 | // plot significance versus alphasig
|
---|
568 |
|
---|
569 | TCanvas *ccc = new TCanvas("SigVsAlpha", "Sigma vs Alpha", 600, 600);
|
---|
570 |
|
---|
571 | gROOT->SetSelectedPad(NULL);
|
---|
572 | gStyle->SetPadLeftMargin(0.05);
|
---|
573 |
|
---|
574 | ccc->cd();
|
---|
575 | fSigVsAlpha->DrawCopy();
|
---|
576 |
|
---|
577 | ccc->Modified();
|
---|
578 | ccc->Update();
|
---|
579 |
|
---|
580 | return kTRUE;
|
---|
581 | }
|
---|
582 |
|
---|
583 | // --------------------------------------------------------------------------
|
---|
584 | //
|
---|
585 | // FitPolynomial
|
---|
586 | //
|
---|
587 | // - create a clone 'fHist' of the |alpha| distribution 'fHistOrig'
|
---|
588 | // - fit a polynomial of degree 'fDegree' to the alpha distribution
|
---|
589 | // 'fHist' in the region alphamin < |alpha| < alphamax
|
---|
590 | //
|
---|
591 | // in pathological cases the histogram is rebinned before fitting
|
---|
592 | // (this is done only if fRebin is kTRUE)
|
---|
593 | //
|
---|
594 | // if the highest coefficient of the polynomial is compatible with zero
|
---|
595 | // the fit is repeated with a polynomial of lower degree
|
---|
596 | // (this is done only if fReduceDegree is kTRUE)
|
---|
597 | //
|
---|
598 | //
|
---|
599 | Bool_t MHFindSignificance::FitPolynomial()
|
---|
600 | {
|
---|
601 | //--------------------------------------------------
|
---|
602 | // check the histogram :
|
---|
603 | // - calculate initial values of the parameters
|
---|
604 | // - check for bins with zero entries
|
---|
605 | // - set minimum errors
|
---|
606 | // - save the original errors
|
---|
607 | // - set errors huge outside the fit range
|
---|
608 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
609 |
|
---|
610 |
|
---|
611 | Double_t dummy = 1.e20;
|
---|
612 |
|
---|
613 | Double_t mean;
|
---|
614 | Double_t rms;
|
---|
615 | Double_t nclose;
|
---|
616 | Double_t nfar;
|
---|
617 | Double_t a2init = 0.0;
|
---|
618 | TArrayD saveError;
|
---|
619 |
|
---|
620 | Int_t nbins;
|
---|
621 | Int_t nrebin = 1;
|
---|
622 |
|
---|
623 | //---------------- start while loop for rebinning -----------------
|
---|
624 | while(1)
|
---|
625 | {
|
---|
626 |
|
---|
627 | fNzero = 0;
|
---|
628 | fMbins = 0;
|
---|
629 | fMlow = 0;
|
---|
630 | fNbgtot = 0.0;
|
---|
631 |
|
---|
632 | fAlphami = 10000.0;
|
---|
633 | fAlphamm = 10000.0;
|
---|
634 | fAlphama = -10000.0;
|
---|
635 |
|
---|
636 | mean = 0.0;
|
---|
637 | rms = 0.0;
|
---|
638 | nclose = 0.0;
|
---|
639 | nfar = 0.0;
|
---|
640 |
|
---|
641 | nbins = fHist->GetNbinsX();
|
---|
642 | saveError.Set(nbins);
|
---|
643 |
|
---|
644 | for (Int_t i=1; i<=nbins; i++)
|
---|
645 | {
|
---|
646 | saveError[i-1] = fHist->GetBinError(i);
|
---|
647 |
|
---|
648 | // bin should be completely contained in the fit range
|
---|
649 | // (fAlphamin, fAlphamax)
|
---|
650 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
651 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
652 |
|
---|
653 | if ( xlo >= fAlphamin-fEps && xlo <= fAlphamax+fEps &&
|
---|
654 | xup >= fAlphamin-fEps && xup <= fAlphamax+fEps )
|
---|
655 | {
|
---|
656 | fMbins++;
|
---|
657 |
|
---|
658 | if ( xlo < fAlphami )
|
---|
659 | fAlphami = xlo;
|
---|
660 |
|
---|
661 | if ( xup > fAlphama )
|
---|
662 | fAlphama = xup;
|
---|
663 |
|
---|
664 | Double_t content = fHist->GetBinContent(i);
|
---|
665 | fNbgtot += content;
|
---|
666 |
|
---|
667 | mean += content;
|
---|
668 | rms += content*content;
|
---|
669 |
|
---|
670 | // count events in low-alpha and high-alpha region
|
---|
671 | if ( xlo >= fAlphammm-fEps && xup >= fAlphammm-fEps)
|
---|
672 | {
|
---|
673 | nfar += content;
|
---|
674 | if ( xlo < fAlphamm )
|
---|
675 | fAlphamm = xlo;
|
---|
676 | if ( xup < fAlphamm )
|
---|
677 | fAlphamm = xup;
|
---|
678 | }
|
---|
679 | else
|
---|
680 | {
|
---|
681 | nclose += content;
|
---|
682 | if ( xlo > fAlphamm )
|
---|
683 | fAlphamm = xlo;
|
---|
684 | if ( xup > fAlphamm )
|
---|
685 | fAlphamm = xup;
|
---|
686 | }
|
---|
687 |
|
---|
688 | // count bins with zero entry
|
---|
689 | if (content <= 0.0)
|
---|
690 | fNzero++;
|
---|
691 |
|
---|
692 | // set minimum error
|
---|
693 | if (content < 9.0)
|
---|
694 | {
|
---|
695 | fMlow += 1;
|
---|
696 | fHist->SetBinError(i, 3.0);
|
---|
697 | }
|
---|
698 |
|
---|
699 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
700 | // << fHist->GetBinContent(i) << ", "
|
---|
701 | // << fHist->GetBinError(i) << endl;
|
---|
702 |
|
---|
703 | continue;
|
---|
704 | }
|
---|
705 | // bin is not completely contained in the fit range : set error huge
|
---|
706 |
|
---|
707 | fHist->SetBinError(i, dummy);
|
---|
708 |
|
---|
709 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
710 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
711 | // << endl;
|
---|
712 |
|
---|
713 | }
|
---|
714 |
|
---|
715 | // mean of entries/bin in the fit range
|
---|
716 | if (fMbins > 0)
|
---|
717 | {
|
---|
718 | mean /= ((Double_t) fMbins);
|
---|
719 | rms /= ((Double_t) fMbins);
|
---|
720 | }
|
---|
721 |
|
---|
722 | rms = sqrt( rms - mean*mean );
|
---|
723 |
|
---|
724 | // if there are no events in the background region
|
---|
725 | // there is no reason for rebinning
|
---|
726 | // and this is the condition for assuming a constant background (= 0)
|
---|
727 | if (mean <= 0.0)
|
---|
728 | break;
|
---|
729 |
|
---|
730 | Double_t helpmi = fAlphami*fAlphami*fAlphami;
|
---|
731 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm;
|
---|
732 | Double_t helpma = fAlphama*fAlphama*fAlphama;
|
---|
733 | Double_t help = (helpma-helpmm) * (fAlphamm-fAlphami)
|
---|
734 | - (helpmm-helpmi) * (fAlphama-fAlphamm);
|
---|
735 | if (help != 0.0)
|
---|
736 | a2init = ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose )
|
---|
737 | * 1.5 * fHist->GetBinWidth(1) / help;
|
---|
738 | else
|
---|
739 | a2init = 0.0;
|
---|
740 |
|
---|
741 |
|
---|
742 | //--------------------------------------------
|
---|
743 | // rebin the histogram
|
---|
744 | // - if a bin has no entries
|
---|
745 | // - or if there are too many bins with too few entries
|
---|
746 | // - or if the new bin width would exceed half the size of the
|
---|
747 | // signal region
|
---|
748 |
|
---|
749 | if ( !fRebin ||
|
---|
750 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins ) ||
|
---|
751 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1)
|
---|
752 | > fAlphasig/2.0 )
|
---|
753 | {
|
---|
754 | //*fLog << "before break" << endl;
|
---|
755 | break;
|
---|
756 | }
|
---|
757 |
|
---|
758 | nrebin += 1;
|
---|
759 | TString histname = fHist->GetName();
|
---|
760 | delete fHist;
|
---|
761 | fHist = NULL;
|
---|
762 |
|
---|
763 | *fLog << "MHFindSignificance::FitPolynomial; rebin the |alpha| plot, grouping "
|
---|
764 | << nrebin << " bins together" << endl;
|
---|
765 |
|
---|
766 | // TH1::Rebin doesn't work properly
|
---|
767 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned");
|
---|
768 | // use private routine RebinHistogram()
|
---|
769 | fHist = new TH1F;
|
---|
770 | fHist->Sumw2();
|
---|
771 | fHist->SetNameTitle(histname, histname);
|
---|
772 | fHist->UseCurrentStyle();
|
---|
773 |
|
---|
774 | // do rebinning such that x0 remains a lower bin edge
|
---|
775 | Double_t x0 = 0.0;
|
---|
776 | if ( !RebinHistogram(x0, nrebin) )
|
---|
777 | {
|
---|
778 | *fLog << "MHFindSignificance::FitPolynomial; RebinHistgram() failed"
|
---|
779 | << endl;
|
---|
780 | return kFALSE;
|
---|
781 | }
|
---|
782 |
|
---|
783 | fHist->SetXTitle("|alpha| [\\circ]");
|
---|
784 | fHist->SetYTitle("Counts");
|
---|
785 |
|
---|
786 | }
|
---|
787 | //---------------- end of while loop for rebinning -----------------
|
---|
788 |
|
---|
789 |
|
---|
790 | // if there are still too many bins with too few entries don't fit
|
---|
791 | // and assume a constant background
|
---|
792 |
|
---|
793 | fConstantBackg = kFALSE;
|
---|
794 | if ( fNzero > 0 || (Double_t)fMlow>0.05*(Double_t)fMbins )
|
---|
795 | {
|
---|
796 | *fLog << "MHFindSignificance::FitPolynomial; polynomial fit not possible, fNzero, fMlow, fMbins = "
|
---|
797 | << fNzero << ", " << fMlow << ", " << fMbins << endl;
|
---|
798 | *fLog << " assume a constant background" << endl;
|
---|
799 |
|
---|
800 | fConstantBackg = kTRUE;
|
---|
801 | fDegree = 0;
|
---|
802 |
|
---|
803 | TString funcname = "Poly";
|
---|
804 | Double_t xmin = 0.0;
|
---|
805 | Double_t xmax = 90.0;
|
---|
806 |
|
---|
807 | TString formula = "[0]";
|
---|
808 |
|
---|
809 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
810 | TList *funclist = fHist->GetListOfFunctions();
|
---|
811 | funclist->Add(fPoly);
|
---|
812 |
|
---|
813 | //--------------------
|
---|
814 | Int_t nparfree = 1;
|
---|
815 | fChisq = 0.0;
|
---|
816 | fNdf = fMbins - nparfree;
|
---|
817 | fProb = 0.0;
|
---|
818 | fIstat = 0;
|
---|
819 |
|
---|
820 | fValues.Set(1);
|
---|
821 | fErrors.Set(1);
|
---|
822 |
|
---|
823 | Double_t val, err;
|
---|
824 | val = mean;
|
---|
825 | err = sqrt( mean / (Double_t)fMbins );
|
---|
826 |
|
---|
827 | fPoly->SetParameter(0, val);
|
---|
828 | fPoly->SetParError (0, err);
|
---|
829 |
|
---|
830 | fValues[0] = val;
|
---|
831 | fErrors[0] = err;
|
---|
832 |
|
---|
833 | fEma[0][0] = err*err;
|
---|
834 | fCorr[0][0] = 1.0;
|
---|
835 | //--------------------
|
---|
836 |
|
---|
837 | //--------------------------------------------------
|
---|
838 | // reset the errors of the points in the histogram
|
---|
839 | for (Int_t i=1; i<=nbins; i++)
|
---|
840 | {
|
---|
841 | fHist->SetBinError(i, saveError[i-1]);
|
---|
842 | }
|
---|
843 |
|
---|
844 |
|
---|
845 | return kTRUE;
|
---|
846 | }
|
---|
847 |
|
---|
848 |
|
---|
849 | //=========== start loop for reducing the degree ==================
|
---|
850 | // of the polynomial
|
---|
851 | while (1)
|
---|
852 | {
|
---|
853 | //--------------------------------------------------
|
---|
854 | // prepare fit of a polynomial : (a0 + a1*x + a2*x**2 + a3*x**3 + ...)
|
---|
855 |
|
---|
856 | TString funcname = "Poly";
|
---|
857 | Double_t xmin = 0.0;
|
---|
858 | Double_t xmax = 90.0;
|
---|
859 |
|
---|
860 | TString formula = "[0]";
|
---|
861 | TString bra1 = "+[";
|
---|
862 | TString bra2 = "]";
|
---|
863 | TString xpower = "*x";
|
---|
864 | TString newpower = "*x";
|
---|
865 | for (Int_t i=1; i<=fDegree; i++)
|
---|
866 | {
|
---|
867 | formula += bra1;
|
---|
868 | formula += i;
|
---|
869 | formula += bra2;
|
---|
870 | formula += xpower;
|
---|
871 |
|
---|
872 | xpower += newpower;
|
---|
873 | }
|
---|
874 |
|
---|
875 | //*fLog << "FitPolynomial : formula = " << formula << endl;
|
---|
876 |
|
---|
877 | fPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
878 | TList *funclist = fHist->GetListOfFunctions();
|
---|
879 | funclist->Add(fPoly);
|
---|
880 |
|
---|
881 | //------------------------
|
---|
882 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
883 | const UInt_t npar = fDegree+1;
|
---|
884 |
|
---|
885 | TString parname[npar];
|
---|
886 | TArrayD vinit(npar);
|
---|
887 | TArrayD step(npar);
|
---|
888 | TArrayD limlo(npar);
|
---|
889 | TArrayD limup(npar);
|
---|
890 | TArrayI fix(npar);
|
---|
891 |
|
---|
892 | vinit[0] = mean;
|
---|
893 | vinit[2] = a2init;
|
---|
894 |
|
---|
895 | for (UInt_t j=0; j<npar; j++)
|
---|
896 | {
|
---|
897 | parname[j] = "p";
|
---|
898 | parname[j] += j+1;
|
---|
899 |
|
---|
900 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
901 | }
|
---|
902 |
|
---|
903 | // limit the first coefficient of the polynomial to positive values
|
---|
904 | // because the background must not be negative
|
---|
905 | limup[0] = fHist->GetEntries();
|
---|
906 |
|
---|
907 | // use the subsequernt loop if you want to apply the
|
---|
908 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
909 | for (UInt_t j=1; j<npar; j+=2)
|
---|
910 | {
|
---|
911 | vinit[j] = 0;
|
---|
912 | step[j] = 0;
|
---|
913 | fix[j] = 1;
|
---|
914 | }
|
---|
915 |
|
---|
916 | //*fLog << "FitPolynomial : before CallMinuit()" << endl;
|
---|
917 |
|
---|
918 | MMinuitInterface inter;
|
---|
919 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step,
|
---|
920 | limlo, limup, fix, fHist, "Migrad",
|
---|
921 | kFALSE);
|
---|
922 |
|
---|
923 | //*fLog << "FitPolynomial : after CallMinuit()" << endl;
|
---|
924 |
|
---|
925 | if (rc != 0)
|
---|
926 | {
|
---|
927 | // *fLog << "MHFindSignificance::FitPolynomial; polynomial fit failed"
|
---|
928 | // << endl;
|
---|
929 | // return kFALSE;
|
---|
930 | }
|
---|
931 |
|
---|
932 |
|
---|
933 | //-------------------
|
---|
934 | // get status of minimization
|
---|
935 | Double_t fmin = 0;
|
---|
936 | Double_t fedm = 0;
|
---|
937 | Double_t errdef = 0;
|
---|
938 | Int_t npari = 0;
|
---|
939 | Int_t nparx = 0;
|
---|
940 |
|
---|
941 | if (gMinuit)
|
---|
942 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat);
|
---|
943 |
|
---|
944 | *fLog << "MHFindSignificance::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = "
|
---|
945 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
946 | << ", " << nparx << ", " << fIstat << endl;
|
---|
947 |
|
---|
948 |
|
---|
949 | //-------------------
|
---|
950 | // store the results
|
---|
951 |
|
---|
952 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
953 | fChisq = fmin;
|
---|
954 | fNdf = fMbins - nparfree;
|
---|
955 | fProb = TMath::Prob(fChisq, fNdf);
|
---|
956 |
|
---|
957 |
|
---|
958 | // get fitted parameter values and errors
|
---|
959 | fValues.Set(npar);
|
---|
960 | fErrors.Set(npar);
|
---|
961 |
|
---|
962 | for (Int_t j=0; j<=fDegree; j++)
|
---|
963 | {
|
---|
964 | Double_t val, err;
|
---|
965 | if (gMinuit)
|
---|
966 | gMinuit->GetParameter(j, val, err);
|
---|
967 |
|
---|
968 | fPoly->SetParameter(j, val);
|
---|
969 | fPoly->SetParError(j, err);
|
---|
970 |
|
---|
971 | fValues[j] = val;
|
---|
972 | fErrors[j] = err;
|
---|
973 | }
|
---|
974 |
|
---|
975 |
|
---|
976 | //--------------------------------------------------
|
---|
977 | // if the highest coefficient (j0) of the polynomial
|
---|
978 | // is consistent with zero reduce the degree of the polynomial
|
---|
979 |
|
---|
980 | Int_t j0 = 0;
|
---|
981 | for (Int_t j=fDegree; j>1; j--)
|
---|
982 | {
|
---|
983 | // ignore fixed parameters
|
---|
984 | if (fErrors[j] == 0)
|
---|
985 | continue;
|
---|
986 |
|
---|
987 | // this is the highest coefficient
|
---|
988 | j0 = j;
|
---|
989 | break;
|
---|
990 | }
|
---|
991 |
|
---|
992 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0])
|
---|
993 | break;
|
---|
994 |
|
---|
995 | // reduce the degree of the polynomial
|
---|
996 | *fLog << "MHFindSignificance::FitPolynomial; reduce the degree of the polynomial from "
|
---|
997 | << fDegree << " to " << (j0-2) << endl;
|
---|
998 | fDegree = j0 - 2;
|
---|
999 |
|
---|
1000 | funclist->Remove(fPoly);
|
---|
1001 | //if (fPoly)
|
---|
1002 | delete fPoly;
|
---|
1003 | fPoly = NULL;
|
---|
1004 |
|
---|
1005 | // delete the Minuit object in order to have independent starting
|
---|
1006 | // conditions for the next minimization
|
---|
1007 | //if (gMinuit)
|
---|
1008 | delete gMinuit;
|
---|
1009 | gMinuit = NULL;
|
---|
1010 | }
|
---|
1011 | //=========== end of loop for reducing the degree ==================
|
---|
1012 | // of the polynomial
|
---|
1013 |
|
---|
1014 |
|
---|
1015 | //--------------------------------------------------
|
---|
1016 | // get the error matrix of the fitted parameters
|
---|
1017 |
|
---|
1018 |
|
---|
1019 | if (fIstat >= 1)
|
---|
1020 | {
|
---|
1021 | // error matrix was calculated
|
---|
1022 | if (gMinuit)
|
---|
1023 | gMinuit->mnemat(&fEmat[0][0], fNdim);
|
---|
1024 |
|
---|
1025 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1026 | // parameters
|
---|
1027 | TString name;
|
---|
1028 | Double_t bnd1, bnd2, val, err;
|
---|
1029 | Int_t jvarbl;
|
---|
1030 | Int_t kvarbl;
|
---|
1031 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1032 | {
|
---|
1033 | if (gMinuit)
|
---|
1034 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1035 |
|
---|
1036 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1037 | {
|
---|
1038 | if (gMinuit)
|
---|
1039 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1040 |
|
---|
1041 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1];
|
---|
1042 | }
|
---|
1043 | }
|
---|
1044 | }
|
---|
1045 | else
|
---|
1046 | {
|
---|
1047 | // error matrix was not calculated, construct it
|
---|
1048 | *fLog << "MHFindSignificance::FitPolynomial; error matrix not defined"
|
---|
1049 | << endl;
|
---|
1050 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1051 | {
|
---|
1052 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1053 | fEma[j][k] = 0;
|
---|
1054 |
|
---|
1055 | fEma[j][j] = fErrors[j]*fErrors[j];
|
---|
1056 | }
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 |
|
---|
1060 | //--------------------------------------------------
|
---|
1061 | // calculate correlation matrix
|
---|
1062 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1063 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1064 | {
|
---|
1065 | const Double_t sq = fEma[j][j]*fEma[k][k];
|
---|
1066 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]);
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 |
|
---|
1070 | //--------------------------------------------------
|
---|
1071 | // reset the errors of the points in the histogram
|
---|
1072 | for (Int_t i=1; i<=nbins; i++)
|
---|
1073 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1074 |
|
---|
1075 |
|
---|
1076 | return kTRUE;
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 | // --------------------------------------------------------------------------
|
---|
1080 | //
|
---|
1081 | // ReBinHistogram
|
---|
1082 | //
|
---|
1083 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together
|
---|
1084 | // put the result into the histogram 'fHist'
|
---|
1085 | // the rebinning is made such that 'x0' remains a lower bound of a bin
|
---|
1086 | //
|
---|
1087 |
|
---|
1088 | Bool_t MHFindSignificance::RebinHistogram(Double_t x0, Int_t nrebin)
|
---|
1089 | {
|
---|
1090 | //-----------------------------------------
|
---|
1091 | // search bin i0 which has x0 as lower edge
|
---|
1092 |
|
---|
1093 | Int_t i0 = -1;
|
---|
1094 | Int_t nbold = fHistOrig->GetNbinsX();
|
---|
1095 | for (Int_t i=1; i<=nbold; i++)
|
---|
1096 | {
|
---|
1097 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 )
|
---|
1098 | {
|
---|
1099 | i0 = i;
|
---|
1100 | break;
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | if (i0 == -1)
|
---|
1105 | {
|
---|
1106 | i0 = 1;
|
---|
1107 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0
|
---|
1108 | << " as lower edge, start rebinning with bin 1" << endl;
|
---|
1109 | }
|
---|
1110 |
|
---|
1111 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin );
|
---|
1112 |
|
---|
1113 | //-----------------------------------------
|
---|
1114 | // get new bin edges
|
---|
1115 |
|
---|
1116 | const Int_t nbnew = (nbold-istart+1) / nrebin;
|
---|
1117 | const Double_t xmin = fHistOrig->GetBinLowEdge(istart);
|
---|
1118 | const Double_t xmax = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1);
|
---|
1119 | fHist->SetBins(nbnew, xmin, xmax);
|
---|
1120 |
|
---|
1121 | *fLog << "MHFindSignificance::ReBin; x0, i0, nbold, nbnew, xmin, xmax = "
|
---|
1122 | << x0 << ", " << i0 << ", " << nbold << ", " << nbnew << ", "
|
---|
1123 | << xmin << ", " << xmax << endl;
|
---|
1124 |
|
---|
1125 | //-----------------------------------------
|
---|
1126 | // get new bin entries
|
---|
1127 |
|
---|
1128 | for (Int_t i=1; i<=nbnew; i++)
|
---|
1129 | {
|
---|
1130 | Int_t j = nrebin*(i-1) + istart;
|
---|
1131 |
|
---|
1132 | Double_t content = 0;
|
---|
1133 | Double_t error2 = 0;
|
---|
1134 | for (Int_t k=0; k<nrebin; k++)
|
---|
1135 | {
|
---|
1136 | content += fHistOrig->GetBinContent(j+k);
|
---|
1137 | error2 += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k);
|
---|
1138 | }
|
---|
1139 | fHist->SetBinContent(i, content);
|
---|
1140 | fHist->SetBinError (i, sqrt(error2));
|
---|
1141 | }
|
---|
1142 | fHist->SetEntries( fHistOrig->GetEntries() );
|
---|
1143 |
|
---|
1144 | return kTRUE;
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | // --------------------------------------------------------------------------
|
---|
1148 | //
|
---|
1149 | // FitGaussPoly
|
---|
1150 | //
|
---|
1151 | // fits a (Gauss + polynomial function) to the alpha distribution 'fhist'
|
---|
1152 | //
|
---|
1153 | //
|
---|
1154 | Bool_t MHFindSignificance::FitGaussPoly()
|
---|
1155 | {
|
---|
1156 | *fLog << "Entry FitGaussPoly" << endl;
|
---|
1157 |
|
---|
1158 | //--------------------------------------------------
|
---|
1159 | // check the histogram :
|
---|
1160 | // - calculate initial values of the parameters
|
---|
1161 | // - check for bins with zero entries
|
---|
1162 | // - set minimum errors
|
---|
1163 | // - save the original errors
|
---|
1164 | // - set errors huge outside the fit range
|
---|
1165 | // (in 'fcnpoly' points with huge errors will be ignored)
|
---|
1166 |
|
---|
1167 |
|
---|
1168 | Double_t dummy = 1.e20;
|
---|
1169 |
|
---|
1170 | fGNzero = 0;
|
---|
1171 | fGMbins = 0;
|
---|
1172 |
|
---|
1173 | //------------------------------------------
|
---|
1174 | // if a constant background has been assumed (due to low statistics)
|
---|
1175 | // fit only in the signal region
|
---|
1176 | if ( !fConstantBackg )
|
---|
1177 | {
|
---|
1178 | fAlphalow = 0.0;
|
---|
1179 | fAlphahig = fAlphamax;
|
---|
1180 | }
|
---|
1181 | else
|
---|
1182 | {
|
---|
1183 | fAlphalow = 0.0;
|
---|
1184 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig;
|
---|
1185 | }
|
---|
1186 | //------------------------------------------
|
---|
1187 |
|
---|
1188 |
|
---|
1189 | fAlphalo = 10000.0;
|
---|
1190 | fAlphahi = -10000.0;
|
---|
1191 |
|
---|
1192 |
|
---|
1193 | Int_t nbins = fHist->GetNbinsX();
|
---|
1194 | TArrayD saveError(nbins);
|
---|
1195 |
|
---|
1196 | for (Int_t i=1; i<=nbins; i++)
|
---|
1197 | {
|
---|
1198 | saveError[i-1] = fHist->GetBinError(i);
|
---|
1199 |
|
---|
1200 | // bin should be completely contained in the fit range
|
---|
1201 | // (fAlphalow, fAlphahig)
|
---|
1202 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
1203 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
1204 |
|
---|
1205 | if ( xlo >= fAlphalow-fEps && xlo <= fAlphahig+fEps &&
|
---|
1206 | xup >= fAlphalow-fEps && xup <= fAlphahig+fEps )
|
---|
1207 | {
|
---|
1208 | fGMbins++;
|
---|
1209 |
|
---|
1210 | if ( xlo < fAlphalo )
|
---|
1211 | fAlphalo = xlo;
|
---|
1212 |
|
---|
1213 | if ( xup > fAlphahi )
|
---|
1214 | fAlphahi = xup;
|
---|
1215 |
|
---|
1216 | Double_t content = fHist->GetBinContent(i);
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | // count bins with zero entry
|
---|
1220 | if (content <= 0.0)
|
---|
1221 | fGNzero++;
|
---|
1222 |
|
---|
1223 | // set minimum error
|
---|
1224 | if (content < 9.0)
|
---|
1225 | fHist->SetBinError(i, 3.0);
|
---|
1226 |
|
---|
1227 | //*fLog << "Take : i, content, error = " << i << ", "
|
---|
1228 | // << fHist->GetBinContent(i) << ", "
|
---|
1229 | // << fHist->GetBinError(i) << endl;
|
---|
1230 |
|
---|
1231 | continue;
|
---|
1232 | }
|
---|
1233 | // bin is not completely contained in the fit range : set error huge
|
---|
1234 |
|
---|
1235 | fHist->SetBinError(i, dummy);
|
---|
1236 |
|
---|
1237 | //*fLog << "Omit : i, content, error = " << i << ", "
|
---|
1238 | // << fHist->GetBinContent(i) << ", " << fHist->GetBinError(i)
|
---|
1239 | // << endl;
|
---|
1240 |
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 |
|
---|
1244 | // if a bin has no entries don't fit
|
---|
1245 | if (fGNzero > 0)
|
---|
1246 | {
|
---|
1247 | *fLog << "MHFindSignificance::FitGaussPoly; out of " << fGMbins
|
---|
1248 | << " bins there are " << fGNzero
|
---|
1249 | << " bins with zero entry" << endl;
|
---|
1250 |
|
---|
1251 | fGPoly = NULL;
|
---|
1252 | return kFALSE;
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 |
|
---|
1256 | //--------------------------------------------------
|
---|
1257 | // prepare fit of a (polynomial+Gauss) :
|
---|
1258 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 )
|
---|
1259 |
|
---|
1260 | TString funcname = "PolyGauss";
|
---|
1261 | Double_t xmin = 0.0;
|
---|
1262 | Double_t xmax = 90.0;
|
---|
1263 |
|
---|
1264 | TString xpower = "*x";
|
---|
1265 | TString newpower = "*x";
|
---|
1266 |
|
---|
1267 | TString formulaBackg = "[0]";
|
---|
1268 | for (Int_t i=1; i<=fDegree; i++)
|
---|
1269 | formulaBackg += Form("+[%d]*x^%d", i, i);
|
---|
1270 |
|
---|
1271 | const TString formulaGauss =
|
---|
1272 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)",
|
---|
1273 | fDegree+1, fDegree+3, fDegree+2, fDegree+3);
|
---|
1274 |
|
---|
1275 | TString formula = formulaBackg;
|
---|
1276 | formula += "+";
|
---|
1277 | formula += formulaGauss;
|
---|
1278 |
|
---|
1279 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl;
|
---|
1280 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl;
|
---|
1281 | *fLog << "FitGaussPoly : formula = " << formula << endl;
|
---|
1282 |
|
---|
1283 | fGPoly = new TF1(funcname, formula, xmin, xmax);
|
---|
1284 | TList *funclist = fHist->GetListOfFunctions();
|
---|
1285 | funclist->Add(fGPoly);
|
---|
1286 |
|
---|
1287 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax);
|
---|
1288 | funclist->Add(fGBackg);
|
---|
1289 |
|
---|
1290 | //------------------------
|
---|
1291 | // attention : the dimensions must agree with those in CallMinuit()
|
---|
1292 | Int_t npar = fDegree+1 + 3;
|
---|
1293 |
|
---|
1294 | TString parname[npar];
|
---|
1295 | TArrayD vinit(npar);
|
---|
1296 | TArrayD step(npar);
|
---|
1297 | TArrayD limlo(npar);
|
---|
1298 | TArrayD limup(npar);
|
---|
1299 | TArrayI fix(npar);
|
---|
1300 |
|
---|
1301 |
|
---|
1302 | // take as initial values for the polynomial
|
---|
1303 | // the result from the polynomial fit
|
---|
1304 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1305 | vinit[j] = fPoly->GetParameter(j);
|
---|
1306 |
|
---|
1307 | Double_t sigma = 8;
|
---|
1308 | vinit[fDegree+1] = 2.0 * fNex * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2);
|
---|
1309 | vinit[fDegree+2] = 0;
|
---|
1310 | vinit[fDegree+3] = sigma;
|
---|
1311 |
|
---|
1312 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = "
|
---|
1313 | << vinit[fDegree+1] << endl;
|
---|
1314 |
|
---|
1315 | for (Int_t j=0; j<npar; j++)
|
---|
1316 | {
|
---|
1317 | parname[j] = "p";
|
---|
1318 | parname[j] += j+1;
|
---|
1319 |
|
---|
1320 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001;
|
---|
1321 | }
|
---|
1322 |
|
---|
1323 | // limit the first coefficient of the polynomial to positive values
|
---|
1324 | // because the background must not be negative
|
---|
1325 | limup[0] = fHist->GetEntries()*10;
|
---|
1326 |
|
---|
1327 | // limit the sigma of the Gauss function
|
---|
1328 | limup[fDegree+3] = 20;
|
---|
1329 |
|
---|
1330 |
|
---|
1331 | // use the subsequernt loop if you want to apply the
|
---|
1332 | // constraint : uneven derivatives (at alpha=0) = zero
|
---|
1333 | for (Int_t j=1; j<=fDegree; j+=2)
|
---|
1334 | {
|
---|
1335 | vinit[j] = 0;
|
---|
1336 | step[j] = 0;
|
---|
1337 | fix[j] = 1;
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | // fix position of Gauss function
|
---|
1341 | vinit[fDegree+2] = 0;
|
---|
1342 | step[fDegree+2] = 0;
|
---|
1343 | fix[fDegree+2] = 1;
|
---|
1344 |
|
---|
1345 | // if a constant background has been assumed (due to low statistics)
|
---|
1346 | // fix the background
|
---|
1347 | if (fConstantBackg)
|
---|
1348 | {
|
---|
1349 | step[0] = 0;
|
---|
1350 | fix[0] = 1;
|
---|
1351 | }
|
---|
1352 |
|
---|
1353 | MMinuitInterface inter;
|
---|
1354 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step,
|
---|
1355 | limlo, limup, fix, fHist, "Migrad",
|
---|
1356 | kFALSE);
|
---|
1357 |
|
---|
1358 | if (rc != 0)
|
---|
1359 | {
|
---|
1360 | // *fLog << "MHFindSignificance::FitGaussPoly; (polynomial+Gauss) fit failed"
|
---|
1361 | // << endl;
|
---|
1362 | // return kFALSE;
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 |
|
---|
1366 | //-------------------
|
---|
1367 | // get status of the minimization
|
---|
1368 | Double_t fmin;
|
---|
1369 | Double_t fedm;
|
---|
1370 | Double_t errdef;
|
---|
1371 | Int_t npari;
|
---|
1372 | Int_t nparx;
|
---|
1373 |
|
---|
1374 | if (gMinuit)
|
---|
1375 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat);
|
---|
1376 |
|
---|
1377 | *fLog << "MHFindSignificance::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = "
|
---|
1378 | << fmin << ", " << fedm << ", " << errdef << ", " << npari
|
---|
1379 | << ", " << nparx << ", " << fGIstat << endl;
|
---|
1380 |
|
---|
1381 |
|
---|
1382 | //-------------------
|
---|
1383 | // store the results
|
---|
1384 |
|
---|
1385 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0;
|
---|
1386 | fGChisq = fmin;
|
---|
1387 | fGNdf = fGMbins - nparfree;
|
---|
1388 | fGProb = TMath::Prob(fGChisq, fGNdf);
|
---|
1389 |
|
---|
1390 |
|
---|
1391 | // get fitted parameter values and errors
|
---|
1392 | fGValues.Set(npar);
|
---|
1393 | fGErrors.Set(npar);
|
---|
1394 |
|
---|
1395 | for (Int_t j=0; j<npar; j++)
|
---|
1396 | {
|
---|
1397 | Double_t val, err;
|
---|
1398 | if (gMinuit)
|
---|
1399 | gMinuit->GetParameter(j, val, err);
|
---|
1400 |
|
---|
1401 | fGPoly->SetParameter(j, val);
|
---|
1402 | fGPoly->SetParError(j, err);
|
---|
1403 |
|
---|
1404 | fGValues[j] = val;
|
---|
1405 | fGErrors[j] = err;
|
---|
1406 |
|
---|
1407 | if (j <=fDegree)
|
---|
1408 | {
|
---|
1409 | fGBackg->SetParameter(j, val);
|
---|
1410 | fGBackg->SetParError(j, err);
|
---|
1411 | }
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 | fSigmaGauss = fGValues[fDegree+3];
|
---|
1415 | fdSigmaGauss = fGErrors[fDegree+3];
|
---|
1416 | // fitted total number of excess events
|
---|
1417 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) /
|
---|
1418 | (fHist->GetBinWidth(1)*2 );
|
---|
1419 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1];
|
---|
1420 |
|
---|
1421 | //--------------------------------------------------
|
---|
1422 | // get the error matrix of the fitted parameters
|
---|
1423 |
|
---|
1424 |
|
---|
1425 | if (fGIstat >= 1)
|
---|
1426 | {
|
---|
1427 | // error matrix was calculated
|
---|
1428 | if (gMinuit)
|
---|
1429 | gMinuit->mnemat(&fGEmat[0][0], fGNdim);
|
---|
1430 |
|
---|
1431 | // copy covariance matrix into a matrix which includes also the fixed
|
---|
1432 | // parameters
|
---|
1433 | TString name;
|
---|
1434 | Double_t bnd1, bnd2, val, err;
|
---|
1435 | Int_t jvarbl;
|
---|
1436 | Int_t kvarbl;
|
---|
1437 | for (Int_t j=0; j<npar; j++)
|
---|
1438 | {
|
---|
1439 | if (gMinuit)
|
---|
1440 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl);
|
---|
1441 |
|
---|
1442 | for (Int_t k=0; k<npar; k++)
|
---|
1443 | {
|
---|
1444 | if (gMinuit)
|
---|
1445 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl);
|
---|
1446 |
|
---|
1447 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1];
|
---|
1448 | }
|
---|
1449 | }
|
---|
1450 | }
|
---|
1451 | else
|
---|
1452 | {
|
---|
1453 | // error matrix was not calculated, construct it
|
---|
1454 | *fLog << "MHFindSignificance::FitPolynomial; error matrix not defined"
|
---|
1455 | << endl;
|
---|
1456 | for (Int_t j=0; j<npar; j++)
|
---|
1457 | {
|
---|
1458 | for (Int_t k=0; k<npar; k++)
|
---|
1459 | fGEma[j][k] = 0;
|
---|
1460 |
|
---|
1461 | fGEma[j][j] = fGErrors[j]*fGErrors[j];
|
---|
1462 | }
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 |
|
---|
1466 | //--------------------------------------------------
|
---|
1467 | // calculate correlation matrix
|
---|
1468 | for (Int_t j=0; j<npar; j++)
|
---|
1469 | {
|
---|
1470 | for (Int_t k=0; k<npar; k++)
|
---|
1471 | {
|
---|
1472 | const Double_t sq = fGEma[j][j]*fGEma[k][k];
|
---|
1473 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] );
|
---|
1474 | }
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 |
|
---|
1478 | //--------------------------------------------------
|
---|
1479 | // reset the errors of the points in the histogram
|
---|
1480 | for (Int_t i=1; i<=nbins; i++)
|
---|
1481 | fHist->SetBinError(i, saveError[i-1]);
|
---|
1482 |
|
---|
1483 | return kTRUE;
|
---|
1484 |
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | // --------------------------------------------------------------------------
|
---|
1488 | //
|
---|
1489 | // DetExcess
|
---|
1490 | //
|
---|
1491 | // using the result of the polynomial fit (fValues), DetExcess determines
|
---|
1492 | //
|
---|
1493 | // - the total number of events in the signal region (fNon)
|
---|
1494 | // - the number of backgound events in the signal region (fNbg)
|
---|
1495 | // - the number of excess events (fNex)
|
---|
1496 | // - the effective number of background events (fNoff), and fGamma :
|
---|
1497 | // fNbg = fGamma * fNoff; fdNbg = fGamma * sqrt(fNoff);
|
---|
1498 | //
|
---|
1499 | // It assumed that the polynomial is defined as
|
---|
1500 | // a0 + a1*x + a2*x**2 + a3*x**3 + ..
|
---|
1501 | //
|
---|
1502 | // and that the alpha distribution has the range 0 < alpha < 90 degrees
|
---|
1503 | //
|
---|
1504 |
|
---|
1505 | Bool_t MHFindSignificance::DetExcess()
|
---|
1506 | {
|
---|
1507 | //*fLog << "MHFindSignificance::DetExcess;" << endl;
|
---|
1508 |
|
---|
1509 | //--------------------------------------------
|
---|
1510 | // calculate the total number of events (fNon) in the signal region
|
---|
1511 |
|
---|
1512 | fNon = 0.0;
|
---|
1513 | fdNon = 0.0;
|
---|
1514 |
|
---|
1515 | Double_t alphaup = -1000.0;
|
---|
1516 | Double_t binwidth = fHist->GetBinWidth(1);
|
---|
1517 |
|
---|
1518 | Int_t nbins = fHist->GetNbinsX();
|
---|
1519 | for (Int_t i=1; i<=nbins; i++)
|
---|
1520 | {
|
---|
1521 | Double_t xlo = fHist->GetBinLowEdge(i);
|
---|
1522 | Double_t xup = fHist->GetBinLowEdge(i+1);
|
---|
1523 |
|
---|
1524 | // bin must be completely contained in the signal region
|
---|
1525 | if ( xlo <= (fAlphasig+fEps) && xup <= (fAlphasig+fEps) )
|
---|
1526 | {
|
---|
1527 | Double_t width = fabs(xup-xlo);
|
---|
1528 | if (fabs(width-binwidth) > fEps)
|
---|
1529 | {
|
---|
1530 | *fLog << "MHFindSignificance::DetExcess; alpha plot has variable binning, which is not allowed"
|
---|
1531 | << endl;
|
---|
1532 | return kFALSE;
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | if (xup > alphaup)
|
---|
1536 | alphaup = xup;
|
---|
1537 |
|
---|
1538 | fNon += fHist->GetBinContent(i);
|
---|
1539 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i);
|
---|
1540 | }
|
---|
1541 | }
|
---|
1542 | fdNon = sqrt(fdNon);
|
---|
1543 |
|
---|
1544 | // the actual signal range is :
|
---|
1545 | if (alphaup == -1000.0)
|
---|
1546 | return kFALSE;
|
---|
1547 |
|
---|
1548 | fAlphasi = alphaup;
|
---|
1549 |
|
---|
1550 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ", "
|
---|
1551 | // << fNon << ", " << fdNon << ", " << binwidth << ", "
|
---|
1552 | // << fDegree << endl;
|
---|
1553 |
|
---|
1554 | //--------------------------------------------
|
---|
1555 | // calculate the number of background events (fNbg) in the signal region
|
---|
1556 | // and its error (fdNbg)
|
---|
1557 |
|
---|
1558 | Double_t fac = 1.0/binwidth;
|
---|
1559 |
|
---|
1560 | fNbg = 0.0;
|
---|
1561 | Double_t altothejplus1 = fAlphasi;
|
---|
1562 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1563 | {
|
---|
1564 | fNbg += fValues[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
1565 | altothejplus1 *= fAlphasi;
|
---|
1566 | }
|
---|
1567 | fNbg *= fac;
|
---|
1568 |
|
---|
1569 | // derivative of Nbg
|
---|
1570 | Double_t facj;
|
---|
1571 | Double_t fack;
|
---|
1572 |
|
---|
1573 | Double_t sum = 0.0;
|
---|
1574 | altothejplus1 = fAlphasi;
|
---|
1575 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1576 | {
|
---|
1577 | facj = altothejplus1 / ((Double_t)(j+1));
|
---|
1578 |
|
---|
1579 | Double_t altothekplus1 = fAlphasi;
|
---|
1580 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1581 | {
|
---|
1582 | fack = altothekplus1 / ((Double_t)(k+1));
|
---|
1583 |
|
---|
1584 | sum += facj * fack * fEma[j][k];
|
---|
1585 | altothekplus1 *= fAlphasi;
|
---|
1586 | }
|
---|
1587 | altothejplus1 *= fAlphasi;
|
---|
1588 | }
|
---|
1589 | sum *= fac*fac;
|
---|
1590 |
|
---|
1591 | if (sum < 0.0)
|
---|
1592 | {
|
---|
1593 | *fLog << "MHFindsignificance::DetExcess; error squared is negative"
|
---|
1594 | << endl;
|
---|
1595 | return kFALSE;
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | fdNbg = sqrt(sum);
|
---|
1599 |
|
---|
1600 |
|
---|
1601 | //--------------------------------------------
|
---|
1602 | // AS A CHECK :
|
---|
1603 | // calculate the number of background events (fNbgtotFitted) in the
|
---|
1604 | // background region, and its error (fdNbgtotFitted)
|
---|
1605 | // expect fdnbg to be approximately equal to sqrt(fNbgtotFitted)
|
---|
1606 |
|
---|
1607 | Double_t fNmi = 0.0;
|
---|
1608 | altothejplus1 = fAlphami;
|
---|
1609 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1610 | {
|
---|
1611 | fNmi += fValues[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
1612 | altothejplus1 *= fAlphami;
|
---|
1613 | }
|
---|
1614 | fNmi *= fac;
|
---|
1615 |
|
---|
1616 | Double_t fNma = 0.0;
|
---|
1617 | altothejplus1 = fAlphama;
|
---|
1618 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1619 | {
|
---|
1620 | fNma += fValues[j] * altothejplus1 / ((Double_t)(j+1));
|
---|
1621 | altothejplus1 *= fAlphama;
|
---|
1622 | }
|
---|
1623 | fNma *= fac;
|
---|
1624 |
|
---|
1625 | fNbgtotFitted = fNma - fNmi;
|
---|
1626 |
|
---|
1627 | //----------------------
|
---|
1628 |
|
---|
1629 | sum = 0.0;
|
---|
1630 | Double_t altothejma = fAlphama;
|
---|
1631 | Double_t altothejmi = fAlphami;
|
---|
1632 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1633 | {
|
---|
1634 | facj = (altothejma-altothejmi) / ((Double_t)(j+1));
|
---|
1635 |
|
---|
1636 | Double_t altothekma = fAlphama;
|
---|
1637 | Double_t altothekmi = fAlphami;
|
---|
1638 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1639 | {
|
---|
1640 | fack = (altothekma-altothekmi) / ((Double_t)(k+1));
|
---|
1641 |
|
---|
1642 | sum += facj * fack * fEma[j][k];
|
---|
1643 | altothekma *= fAlphama;
|
---|
1644 | altothekmi *= fAlphami;
|
---|
1645 | }
|
---|
1646 | altothejma *= fAlphama;
|
---|
1647 | altothejmi *= fAlphami;
|
---|
1648 | }
|
---|
1649 | sum *= fac*fac;
|
---|
1650 |
|
---|
1651 | fdNbgtotFitted = sqrt(sum);
|
---|
1652 | if ( fabs(fdNbgtotFitted - sqrt(fNbgtotFitted)) > 0.2 * sqrt(fNbgtotFitted) )
|
---|
1653 | {
|
---|
1654 | *fLog << "MHFindSignificance::DetExcess; error of calculated number of background events (in the background region) does not agree with the expectation :"
|
---|
1655 | << endl;
|
---|
1656 | *fLog << " fNbgtotFitted, fdNbgtotFitted = "
|
---|
1657 | << fNbgtotFitted << ", " << fdNbgtotFitted
|
---|
1658 | << ", expected : " << sqrt(fNbgtotFitted) << endl;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 |
|
---|
1662 | //--------------------------------------------
|
---|
1663 | // calculate the number of excess events in the signal region
|
---|
1664 |
|
---|
1665 | fNex = fNon - fNbg;
|
---|
1666 |
|
---|
1667 | //--------------------------------------------
|
---|
1668 | // calculate the effective number of background events (fNoff) , and fGamma :
|
---|
1669 | // fNbg = fGamma * fNoff; dfNbg = fGamma * sqrt(fNoff);
|
---|
1670 |
|
---|
1671 | if (fNbg < 0.0)
|
---|
1672 | {
|
---|
1673 | *fLog << "MHFindSignificamce::DetExcess; number of background events is negative, fNbg, fdNbg = "
|
---|
1674 | << fNbg << ", " << fdNbg << endl;
|
---|
1675 |
|
---|
1676 | fGamma = 1.0;
|
---|
1677 | fNoff = 0.0;
|
---|
1678 | return kFALSE;
|
---|
1679 | }
|
---|
1680 |
|
---|
1681 | if (fNbg > 0.0)
|
---|
1682 | {
|
---|
1683 | fGamma = fdNbg*fdNbg / fNbg;
|
---|
1684 | fNoff = fNbg*fNbg / (fdNbg*fdNbg);
|
---|
1685 | }
|
---|
1686 | else
|
---|
1687 | {
|
---|
1688 | fGamma = 1.0;
|
---|
1689 | fNoff = 0.0;
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 | //*fLog << "Exit DetExcess()" << endl;
|
---|
1693 |
|
---|
1694 | return kTRUE;
|
---|
1695 | }
|
---|
1696 |
|
---|
1697 | // --------------------------------------------------------------------------
|
---|
1698 | //
|
---|
1699 | // SigmaLiMa
|
---|
1700 | //
|
---|
1701 | // calculates the significance according to Li & Ma
|
---|
1702 | // ApJ 272 (1983) 317
|
---|
1703 | //
|
---|
1704 | Bool_t MHFindSignificance::SigmaLiMa(Double_t non, Double_t noff,
|
---|
1705 | Double_t gamma, Double_t *siglima)
|
---|
1706 | {
|
---|
1707 | if (gamma <= 0.0 || non <= 0.0 || noff <= 0.0)
|
---|
1708 | {
|
---|
1709 | *siglima = 0.0;
|
---|
1710 | return kFALSE;
|
---|
1711 | }
|
---|
1712 |
|
---|
1713 | Double_t help1 = non * log( (1.0+gamma)*non / (gamma*(non+noff)) );
|
---|
1714 | Double_t help2 = noff * log( (1.0+gamma)*noff / ( non+noff ) );
|
---|
1715 | *siglima = sqrt( 2.0 * (help1+help2) );
|
---|
1716 |
|
---|
1717 | Double_t nex = non - gamma*noff;
|
---|
1718 | if (nex < 0.0)
|
---|
1719 | *siglima = - *siglima;
|
---|
1720 |
|
---|
1721 | //*fLog << "MHFindSignificance::SigmaLiMa; non, noff, gamma, *siglima = "
|
---|
1722 | // << non << ", " << noff << ", " << gamma << ", " << *siglima << endl;
|
---|
1723 |
|
---|
1724 | return kTRUE;
|
---|
1725 | }
|
---|
1726 |
|
---|
1727 | // --------------------------------------------------------------------------
|
---|
1728 | //
|
---|
1729 | Bool_t MHFindSignificance::DrawFit(const Option_t *opt)
|
---|
1730 | {
|
---|
1731 | if (fHist == NULL)
|
---|
1732 | *fLog << "MHFindSignificance::DrawFit; fHist = NULL" << endl;
|
---|
1733 |
|
---|
1734 |
|
---|
1735 | //TCanvas *fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600);
|
---|
1736 | // fCanvas = new TCanvas(fHist->GetName(), "Alpha plot", 600, 600);
|
---|
1737 |
|
---|
1738 | TVirtualPad *c = gPad ? gPad : MakeDefCanvas(this);
|
---|
1739 |
|
---|
1740 | //gStyle->SetOptFit(1011);
|
---|
1741 |
|
---|
1742 | gROOT->SetSelectedPad(NULL);
|
---|
1743 | gStyle->SetPadLeftMargin(0.1);
|
---|
1744 |
|
---|
1745 | // fCanvas->cd();
|
---|
1746 | c->cd();
|
---|
1747 |
|
---|
1748 |
|
---|
1749 | if (fHist)
|
---|
1750 | {
|
---|
1751 | fHist->DrawCopy();
|
---|
1752 | }
|
---|
1753 |
|
---|
1754 | TF1 *fpoly = fHist->GetFunction("Poly");
|
---|
1755 | if (fpoly == NULL)
|
---|
1756 | *fLog << "MHFindSignificance::DrawFit; fpoly = NULL" << endl;
|
---|
1757 |
|
---|
1758 | if (fpoly)
|
---|
1759 | {
|
---|
1760 | // 2, 1 is red and solid
|
---|
1761 | fpoly->SetLineColor(2);
|
---|
1762 | fpoly->SetLineStyle(1);
|
---|
1763 | fpoly->SetLineWidth(2);
|
---|
1764 | fpoly->DrawCopy("same");
|
---|
1765 | }
|
---|
1766 |
|
---|
1767 | if (fFitGauss)
|
---|
1768 | {
|
---|
1769 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss");
|
---|
1770 | if (fpolygauss == NULL)
|
---|
1771 | *fLog << "MHFindSignificance::DrawFit; fpolygauss = NULL" << endl;
|
---|
1772 |
|
---|
1773 | if (fpolygauss)
|
---|
1774 | {
|
---|
1775 | // 4, 1 is blue and solid
|
---|
1776 | fpolygauss->SetLineColor(4);
|
---|
1777 | fpolygauss->SetLineStyle(1);
|
---|
1778 | fpolygauss->SetLineWidth(4);
|
---|
1779 | fpolygauss->DrawCopy("same");
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 | TF1 *fbackg = fHist->GetFunction("Backg");
|
---|
1783 | if (fbackg == NULL)
|
---|
1784 | *fLog << "MHFindSignificance::DrawFit; fbackg = NULL" << endl;
|
---|
1785 |
|
---|
1786 | if (fbackg)
|
---|
1787 | {
|
---|
1788 | // 6, 4 is pink and dotted
|
---|
1789 | fbackg->SetLineColor(4);
|
---|
1790 | fbackg->SetLineStyle(4);
|
---|
1791 | fbackg->SetLineWidth(4);
|
---|
1792 | fbackg->DrawCopy("same");
|
---|
1793 | }
|
---|
1794 | }
|
---|
1795 |
|
---|
1796 |
|
---|
1797 | //-------------------------------
|
---|
1798 | // print results onto the figure
|
---|
1799 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC");
|
---|
1800 | char tx[100];
|
---|
1801 |
|
---|
1802 | sprintf(tx, "Results of polynomial fit (order %2d) :", fDegree);
|
---|
1803 | TText *t1 = pt->AddText(tx);
|
---|
1804 | t1->SetTextSize(0.03);
|
---|
1805 | t1->SetTextColor(2);
|
---|
1806 |
|
---|
1807 | sprintf(tx, " (%6.2f< |alpha| <%6.2f [\\circ])", fAlphami, fAlphama);
|
---|
1808 | pt->AddText(tx);
|
---|
1809 |
|
---|
1810 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
1811 | fChisq, fNdf, fProb);
|
---|
1812 | pt->AddText(tx);
|
---|
1813 |
|
---|
1814 | sprintf(tx, " Nbgtot(fit) = %8.1f #pm %8.1f",
|
---|
1815 | fNbgtotFitted, fdNbgtotFitted);
|
---|
1816 | pt->AddText(tx);
|
---|
1817 |
|
---|
1818 | sprintf(tx, " Nbgtot(meas) = %8.1f", fNbgtot);
|
---|
1819 | pt->AddText(tx);
|
---|
1820 |
|
---|
1821 |
|
---|
1822 | //sprintf(tx, " ");
|
---|
1823 | //pt->AddText(tx);
|
---|
1824 |
|
---|
1825 | //--------------
|
---|
1826 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi);
|
---|
1827 | TText *t6 = pt->AddText(tx);
|
---|
1828 | t6->SetTextSize(0.03);
|
---|
1829 | t6->SetTextColor(8);
|
---|
1830 |
|
---|
1831 | sprintf(tx, " Non = %8.1f #pm %8.1f", fNon, fdNon);
|
---|
1832 | pt->AddText(tx);
|
---|
1833 |
|
---|
1834 | sprintf(tx, " Nex = %8.1f #pm %8.1f", fNex, fdNex);
|
---|
1835 | pt->AddText(tx);
|
---|
1836 |
|
---|
1837 | sprintf(tx, " Nbg = %8.1f #pm %8.1f, gamma = %6.1f",
|
---|
1838 | fNbg, fdNbg, fGamma);
|
---|
1839 | pt->AddText(tx);
|
---|
1840 |
|
---|
1841 | Double_t ratio = fNbg>0.0 ? fNex/fNbg : 0.0;
|
---|
1842 | sprintf(tx, " Significance = %6.2f, Nex/Nbg = %6.2f",
|
---|
1843 | fSigLiMa, ratio);
|
---|
1844 | pt->AddText(tx);
|
---|
1845 |
|
---|
1846 | //sprintf(tx, " ");
|
---|
1847 | //pt->AddText(tx);
|
---|
1848 |
|
---|
1849 | //--------------
|
---|
1850 | if (fFitGauss)
|
---|
1851 | {
|
---|
1852 | sprintf(tx, "Results of (polynomial+Gauss) fit :");
|
---|
1853 | TText *t7 = pt->AddText(tx);
|
---|
1854 | t7->SetTextSize(0.03);
|
---|
1855 | t7->SetTextColor(4);
|
---|
1856 |
|
---|
1857 | sprintf(tx, " chi2 = %8.2f, Ndof = %4d, Prob = %6.2f",
|
---|
1858 | fGChisq, fGNdf, fGProb);
|
---|
1859 | pt->AddText(tx);
|
---|
1860 |
|
---|
1861 | sprintf(tx, " Sigma of Gauss = %8.1f #pm %8.1f [\\circ]",
|
---|
1862 | fSigmaGauss, fdSigmaGauss);
|
---|
1863 | pt->AddText(tx);
|
---|
1864 |
|
---|
1865 | sprintf(tx, " total no.of excess events = %8.1f #pm %8.1f",
|
---|
1866 | fNexGauss, fdNexGauss);
|
---|
1867 | pt->AddText(tx);
|
---|
1868 | }
|
---|
1869 | //--------------
|
---|
1870 |
|
---|
1871 | pt->SetFillStyle(0);
|
---|
1872 | pt->SetBorderSize(0);
|
---|
1873 | pt->SetTextAlign(12);
|
---|
1874 |
|
---|
1875 | pt->Draw();
|
---|
1876 |
|
---|
1877 | // fCanvas->Modified();
|
---|
1878 | // fCanvas->Update();
|
---|
1879 | c->Modified();
|
---|
1880 | c->Update();
|
---|
1881 |
|
---|
1882 | return kTRUE;
|
---|
1883 | }
|
---|
1884 |
|
---|
1885 |
|
---|
1886 |
|
---|
1887 | // --------------------------------------------------------------------------
|
---|
1888 | //
|
---|
1889 | // Print the results of the polynomial fit to the alpha distribution
|
---|
1890 | //
|
---|
1891 | //
|
---|
1892 | void MHFindSignificance::PrintPoly(Option_t *o)
|
---|
1893 | {
|
---|
1894 | *fLog << "---------------------------" << endl;
|
---|
1895 | *fLog << "MHFindSignificance::PrintPoly :" << endl;
|
---|
1896 |
|
---|
1897 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = "
|
---|
1898 | << fAlphami << ", " << fAlphama << ", " << fDegree << ", "
|
---|
1899 | << fAlphasi << endl;
|
---|
1900 |
|
---|
1901 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ", "
|
---|
1902 | << fNzero << ", " << fIstat << endl;
|
---|
1903 |
|
---|
1904 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ", "
|
---|
1905 | << fNdf << ", " << fProb << endl;
|
---|
1906 |
|
---|
1907 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = "
|
---|
1908 | << fNon << ", " << fNbg << ", " << fdNbg << ", " << fNbgtot
|
---|
1909 | << ", " << fNbgtotFitted << ", " << fdNbgtotFitted << endl;
|
---|
1910 |
|
---|
1911 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0;
|
---|
1912 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = "
|
---|
1913 | << fNex << ", " << fdNex << ", " << fGamma << ", " << fNoff
|
---|
1914 | << ", " << fSigLiMa << ", " << sigtoback << endl;
|
---|
1915 |
|
---|
1916 | //------------------------------------
|
---|
1917 | // get errors
|
---|
1918 |
|
---|
1919 | /*
|
---|
1920 | Double_t eplus;
|
---|
1921 | Double_t eminus;
|
---|
1922 | Double_t eparab;
|
---|
1923 | Double_t gcc;
|
---|
1924 | Double_t errdiag;
|
---|
1925 |
|
---|
1926 |
|
---|
1927 | if ( !fConstantBackg )
|
---|
1928 | {
|
---|
1929 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
1930 | << endl;
|
---|
1931 |
|
---|
1932 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1933 | {
|
---|
1934 | if (gMinuit)
|
---|
1935 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
1936 | errdiag = sqrt(fEma[j][j]);
|
---|
1937 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
1938 | << eplus << " " << eminus << " " << eparab << " "
|
---|
1939 | << errdiag << " " << gcc << endl;
|
---|
1940 | }
|
---|
1941 | }
|
---|
1942 | else
|
---|
1943 | {
|
---|
1944 | *fLog << "parameter value error errdiag "
|
---|
1945 | << endl;
|
---|
1946 |
|
---|
1947 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1948 | {
|
---|
1949 | errdiag = sqrt(fEma[j][j]);
|
---|
1950 | *fLog << j << " " << fValues[j] << " " << fErrors[j] << " "
|
---|
1951 | << errdiag << endl;
|
---|
1952 | }
|
---|
1953 | }
|
---|
1954 | */
|
---|
1955 |
|
---|
1956 | //----------------------------------------
|
---|
1957 | /*
|
---|
1958 | *fLog << "Covariance matrix :" << endl;
|
---|
1959 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1960 | {
|
---|
1961 | *fLog << "j = " << j << " : ";
|
---|
1962 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1963 | {
|
---|
1964 | *fLog << fEma[j][k] << " ";
|
---|
1965 | }
|
---|
1966 | *fLog << endl;
|
---|
1967 | }
|
---|
1968 |
|
---|
1969 | *fLog << "Correlation matrix :" << endl;
|
---|
1970 | for (Int_t j=0; j<=fDegree; j++)
|
---|
1971 | {
|
---|
1972 | *fLog << "j = " << j << " : ";
|
---|
1973 | for (Int_t k=0; k<=fDegree; k++)
|
---|
1974 | {
|
---|
1975 | *fLog << fCorr[j][k] << " ";
|
---|
1976 | }
|
---|
1977 | *fLog << endl;
|
---|
1978 | }
|
---|
1979 | */
|
---|
1980 |
|
---|
1981 | *fLog << "---------------------------" << endl;
|
---|
1982 | }
|
---|
1983 |
|
---|
1984 | // --------------------------------------------------------------------------
|
---|
1985 | //
|
---|
1986 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution
|
---|
1987 | //
|
---|
1988 | //
|
---|
1989 | void MHFindSignificance::PrintPolyGauss(Option_t *o)
|
---|
1990 | {
|
---|
1991 | *fLog << "---------------------------" << endl;
|
---|
1992 | *fLog << "MHFindSignificance::PrintPolyGauss :" << endl;
|
---|
1993 |
|
---|
1994 | *fLog << "fAlphalo, fAlphahi = "
|
---|
1995 | << fAlphalo << ", " << fAlphahi << endl;
|
---|
1996 |
|
---|
1997 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ", "
|
---|
1998 | << fGNzero << ", " << fGIstat << endl;
|
---|
1999 |
|
---|
2000 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ", "
|
---|
2001 | << fGNdf << ", " << fGProb << endl;
|
---|
2002 |
|
---|
2003 |
|
---|
2004 | //------------------------------------
|
---|
2005 | // get errors
|
---|
2006 |
|
---|
2007 | Double_t eplus;
|
---|
2008 | Double_t eminus;
|
---|
2009 | Double_t eparab;
|
---|
2010 | Double_t gcc;
|
---|
2011 | Double_t errdiag;
|
---|
2012 |
|
---|
2013 | *fLog << "parameter value error eplus eminus eparab errdiag gcc"
|
---|
2014 | << endl;
|
---|
2015 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
2016 | {
|
---|
2017 | if (gMinuit)
|
---|
2018 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc);
|
---|
2019 | errdiag = sqrt(fGEma[j][j]);
|
---|
2020 | *fLog << j << " " << fGValues[j] << " " << fGErrors[j] << " "
|
---|
2021 | << eplus << " " << eminus << " " << eparab << " "
|
---|
2022 | << errdiag << " " << gcc << endl;
|
---|
2023 | }
|
---|
2024 |
|
---|
2025 |
|
---|
2026 | *fLog << "Covariance matrix :" << endl;
|
---|
2027 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
2028 | {
|
---|
2029 | *fLog << "j = " << j << " : ";
|
---|
2030 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
2031 | {
|
---|
2032 | *fLog << fGEma[j][k] << " ";
|
---|
2033 | }
|
---|
2034 | *fLog << endl;
|
---|
2035 | }
|
---|
2036 |
|
---|
2037 | *fLog << "Correlation matrix :" << endl;
|
---|
2038 | for (Int_t j=0; j<=(fDegree+3); j++)
|
---|
2039 | {
|
---|
2040 | *fLog << "j = " << j << " : ";
|
---|
2041 | for (Int_t k=0; k<=(fDegree+3); k++)
|
---|
2042 | {
|
---|
2043 | *fLog << fGCorr[j][k] << " ";
|
---|
2044 | }
|
---|
2045 | *fLog << endl;
|
---|
2046 | }
|
---|
2047 |
|
---|
2048 | *fLog << "---------------------------" << endl;
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | //============================================================================
|
---|
2052 |
|
---|