1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 08/2010 <mailto:thomas.bretz@epfl.ch>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2010
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MJTrainCuts
|
---|
28 | // =========
|
---|
29 | //
|
---|
30 | // This class is meant as a tool to understand better what a trained
|
---|
31 | // random forest is doing in the multi-dimensional phase space.
|
---|
32 | // Consequently, it can also be used to deduce good one or two dimensional
|
---|
33 | // cuts from the results by mimicing the behaviour of the random forest.
|
---|
34 | //
|
---|
35 | //
|
---|
36 | // Usage
|
---|
37 | // -----
|
---|
38 | //
|
---|
39 | // The instance is created by its default constructor
|
---|
40 | //
|
---|
41 | // MJTrainCuts opt;
|
---|
42 | //
|
---|
43 | // In a first step a random forest must be trained and in a second step its
|
---|
44 | // performance can be evaluated with an independent test sample. The used
|
---|
45 | // samples are defined by two MDataSet objects, one for the on-data (e.g.
|
---|
46 | // gammas) and the other one for the off-data (e.g. protons). SequencesOn
|
---|
47 | // and SequencesOff are used for testing and training respectively.
|
---|
48 | //
|
---|
49 | // MDataSet seton ("myondata.txt");
|
---|
50 | // MDataSet setoff("myoffdata.txt");
|
---|
51 | //
|
---|
52 | // // If you want to use all available events
|
---|
53 | // opt.SetDataSetOn(seton);
|
---|
54 | // opt.SetDataSetOff(setoff);
|
---|
55 | //
|
---|
56 | // // Try to select 10000 and 30000 events for training and testing resp.
|
---|
57 | // // opt.SetDataSetOn(seton, 10000, 30000);
|
---|
58 | // // opt.SetDataSetOff(setoff, 10000, 30000);
|
---|
59 | //
|
---|
60 | // Note that by using several data set in one file (see MDataSet) you can
|
---|
61 | // have everything in a single file.
|
---|
62 | //
|
---|
63 | // The variables which are used for training are now setup as usual
|
---|
64 | //
|
---|
65 | // Int_t p1 = opt.AddParameter("MHillas.fSize");
|
---|
66 | // Int_t p2 = opt.AddParameter("MHillas.GetArea*MGeomCam.fConvMm2Deg^2");
|
---|
67 | // Int_t p3 = opt.AddParameter("MHillasSrc.fDist*MGeomCam.fConvMm2Deg");
|
---|
68 | //
|
---|
69 | // In addition you can now setup a binning for the display of each train
|
---|
70 | // parameter as follows (for details see MBinning)
|
---|
71 | //
|
---|
72 | // opt.AddBinning(p1, MBinning(40, 10, 10000, "", "log"));
|
---|
73 | // opt.AddBinning(p2, MBinning(50, 0, 0.25));
|
---|
74 | // opt.AddBinning(p3, MBinning(50, 0, 2.5));
|
---|
75 | //
|
---|
76 | // Since with increasing number of variables the possibly combinations
|
---|
77 | // increase to fast you have to define which plots you are interested in,
|
---|
78 | // for example:
|
---|
79 | //
|
---|
80 | // opt.AddHist(p3); // A 1D plot dist
|
---|
81 | // opt.AddHist(p1, p2); // A 2D plot area vs. size
|
---|
82 | // opt.AddHist(p3, p2); // A 2D plot dist vs. size
|
---|
83 | //
|
---|
84 | // Also 3D plots are avaiable but they are most probably difficult to
|
---|
85 | // interprete.
|
---|
86 | //
|
---|
87 | // In addition to this you have the usual user interface, i.e. that
|
---|
88 | // - PreCuts
|
---|
89 | // - TrainCuts
|
---|
90 | // - TestCuts
|
---|
91 | // - PreTasks
|
---|
92 | // - PostTasks
|
---|
93 | // - TestTasks
|
---|
94 | // are available. For details see MJOptimizeBase
|
---|
95 | //
|
---|
96 | // void EnableRegression() / void EnableClassification()
|
---|
97 | // Defines whether to use the random forest's regression of
|
---|
98 | // classification method. Classification is the default.
|
---|
99 | //
|
---|
100 | //
|
---|
101 | // The produced plots
|
---|
102 | // ------------------
|
---|
103 | //
|
---|
104 | // The tab with the plots filled will always look like this:
|
---|
105 | //
|
---|
106 | // +--------+--------+
|
---|
107 | // |1 |2 |
|
---|
108 | // +--------+--------|
|
---|
109 | // |3 |4 |
|
---|
110 | // +--------+ |
|
---|
111 | // |5 | |
|
---|
112 | // +--------+--------+
|
---|
113 | //
|
---|
114 | // Pad1 and Pad2 contain the weighted event distribution of the test-sample.
|
---|
115 | //
|
---|
116 | // Pad2 and Pad5 conatin a profile of the hadronness distribution of the
|
---|
117 | // test-sample.
|
---|
118 | //
|
---|
119 | // Pad4 contains a profile of the hadronness distribution of on-data and
|
---|
120 | // off-data together of the test-data.
|
---|
121 | //
|
---|
122 | // If the profiles for on-data and off-data are identical the displayed
|
---|
123 | // hadronness is obviously independant of the other (non shown) trainings
|
---|
124 | // variables. Therefore the difference between the two plots show how much
|
---|
125 | // the variables are correlated. The same is true if the prfiles in
|
---|
126 | // pad3 and pad5 don't differe from the profile in pad4.
|
---|
127 | //
|
---|
128 | // In the most simple case - the random forest is only trained with the
|
---|
129 | // variables displayed - all three plots should be identical (apart from the
|
---|
130 | // difference in the distrubution of the three sets).
|
---|
131 | //
|
---|
132 | // The plot in pad4 can now be used to deduce a good classical cut in the
|
---|
133 | // displayed variables.
|
---|
134 | //
|
---|
135 | //
|
---|
136 | // Example:
|
---|
137 | // --------
|
---|
138 | //
|
---|
139 | // MJTrainCuts opt;
|
---|
140 | // MDataSet seton ("dataset_on.txt");
|
---|
141 | // MDataSet setoff("dataset_off.txt");
|
---|
142 | // opt.SetDataSetOn(seton);
|
---|
143 | // opt.SetDataSetOff(setmix);
|
---|
144 | // Int_t p00 = opt.AddParameter("MHillas.fSize");
|
---|
145 | // Int_t p01 = opt.AddParameter("MHillas.GetArea*MGeomCam.fConvMm2Deg^2");
|
---|
146 | // opt.AddHist(p00, p01); // Area vs Size
|
---|
147 | // MStatusDisplay *d = new MStatusDisplay;
|
---|
148 | // opt.SetDisplay(d);
|
---|
149 | // opt.Process("rf-cuts.root");
|
---|
150 | //
|
---|
151 | //
|
---|
152 | // Random Numbers:
|
---|
153 | // ---------------
|
---|
154 | // Use:
|
---|
155 | // if(gRandom)
|
---|
156 | // delete gRandom;
|
---|
157 | // gRandom = new TRandom3();
|
---|
158 | // in advance to change the random number generator.
|
---|
159 | //
|
---|
160 | ////////////////////////////////////////////////////////////////////////////
|
---|
161 | #include "MJTrainCuts.h"
|
---|
162 |
|
---|
163 | #include <TGraph.h>
|
---|
164 | #include <TMarker.h>
|
---|
165 | #include <TCanvas.h>
|
---|
166 | #include <TPRegexp.h>
|
---|
167 | #include <TStopwatch.h>
|
---|
168 |
|
---|
169 | #include "MHMatrix.h"
|
---|
170 |
|
---|
171 | #include "MLog.h"
|
---|
172 | #include "MLogManip.h"
|
---|
173 |
|
---|
174 | // tools
|
---|
175 | #include "MMath.h"
|
---|
176 | #include "MBinning.h"
|
---|
177 | #include "MTFillMatrix.h"
|
---|
178 | #include "MStatusDisplay.h"
|
---|
179 |
|
---|
180 | // eventloop
|
---|
181 | #include "MParList.h"
|
---|
182 | #include "MTaskList.h"
|
---|
183 | #include "MEvtLoop.h"
|
---|
184 |
|
---|
185 | // tasks
|
---|
186 | #include "MReadMarsFile.h"
|
---|
187 | #include "MContinue.h"
|
---|
188 | #include "MFillH.h"
|
---|
189 | #include "MRanForestCalc.h"
|
---|
190 |
|
---|
191 | // container
|
---|
192 | #include "MParameters.h"
|
---|
193 |
|
---|
194 | // histograms
|
---|
195 | #include "MHn.h"
|
---|
196 | #include "MHHadronness.h"
|
---|
197 |
|
---|
198 | // filter
|
---|
199 | #include "MFEventSelector.h"
|
---|
200 | #include "MFilterList.h"
|
---|
201 |
|
---|
202 | using namespace std;
|
---|
203 |
|
---|
204 | class HistSet1D : public TObject
|
---|
205 | {
|
---|
206 | protected:
|
---|
207 | UInt_t fNx;
|
---|
208 |
|
---|
209 | virtual void AddHist(MHn &h, const char *rx, const char *, const char *) const
|
---|
210 | {
|
---|
211 | h.AddHist(rx);
|
---|
212 | }
|
---|
213 | virtual void AddProf(MHn &h, const char *rx, const char *, const char *) const
|
---|
214 | {
|
---|
215 | h.AddHist(rx, "MHadronness.fVal", MH3::kProfileSpread);
|
---|
216 | }
|
---|
217 | virtual void SetupName(MHn &h, const char *name) const
|
---|
218 | {
|
---|
219 | h.InitName(Form("%s%d;%d", name, fNx, fNx));
|
---|
220 | }
|
---|
221 | virtual void SetupHist(MHn &h, const char *name, const char *title) const
|
---|
222 | {
|
---|
223 | SetupName(h, name);
|
---|
224 |
|
---|
225 | h.SetAutoRange(kFALSE, kFALSE, kFALSE);
|
---|
226 | h.InitTitle(title);
|
---|
227 | }
|
---|
228 |
|
---|
229 | void CreateHist(MHn &h, const char *rx, const char *ry=0, const char *rz=0) const
|
---|
230 | {
|
---|
231 | h.SetLayout(MHn::kComplex);
|
---|
232 | h.SetBit(MHn::kDoNotReset);
|
---|
233 |
|
---|
234 | AddHist(h, rx, ry, rz);
|
---|
235 | SetupHist(h, "DistOn", "Distribution of on-data");
|
---|
236 | h.SetWeight("Type.fVal");
|
---|
237 |
|
---|
238 | AddHist(h, rx, ry, rz);
|
---|
239 | SetupHist(h, "DistOff", "Distribution of off-data");
|
---|
240 | h.SetWeight("1-Type.fVal");
|
---|
241 |
|
---|
242 | AddProf(h, rx, ry, rz);
|
---|
243 | SetupHist(h, "HadOn", "Hadronness profile for on-data");
|
---|
244 | h.SetWeight("Type.fVal");
|
---|
245 |
|
---|
246 | AddProf(h, rx, ry, rz);
|
---|
247 | SetupHist(h, "Had", "Hadronness profile for all events");
|
---|
248 |
|
---|
249 | AddProf(h, rx, ry, rz);
|
---|
250 | SetupHist(h, "HadOff", "Hadronness profile for off-data");
|
---|
251 | h.SetWeight("1-Type.fVal");
|
---|
252 | }
|
---|
253 |
|
---|
254 |
|
---|
255 | public:
|
---|
256 | HistSet1D(UInt_t nx) : fNx(nx) { }
|
---|
257 |
|
---|
258 | virtual MHn *GetHistN(const TList &rules) const
|
---|
259 | {
|
---|
260 | if (!rules.At(fNx))
|
---|
261 | return 0;
|
---|
262 |
|
---|
263 | MHn *h = new MHn(Form("%d", fNx));
|
---|
264 |
|
---|
265 | CreateHist(*h, rules.At(fNx)->GetName());
|
---|
266 |
|
---|
267 | return h;
|
---|
268 | }
|
---|
269 |
|
---|
270 | virtual Bool_t CheckBinning(const TObjArray &binnings) const
|
---|
271 | {
|
---|
272 | return binnings.FindObject(Form("Binning%d", fNx));
|
---|
273 | }
|
---|
274 | };
|
---|
275 |
|
---|
276 | class HistSet2D : public HistSet1D
|
---|
277 | {
|
---|
278 | protected:
|
---|
279 | UInt_t fNy;
|
---|
280 |
|
---|
281 | void AddHist(MHn &h, const char *rx, const char *ry, const char *) const
|
---|
282 | {
|
---|
283 | h.AddHist(rx, ry);
|
---|
284 | }
|
---|
285 | void AddProf(MHn &h, const char *rx, const char *ry, const char *) const
|
---|
286 | {
|
---|
287 | h.AddHist(rx, ry, "MHadronness.fVal", MH3::kProfileSpread);
|
---|
288 | }
|
---|
289 | void SetupName(MHn &h, const char *name) const
|
---|
290 | {
|
---|
291 | h.InitName(Form("%s%d:%d;%d;%d", name, fNx, fNy, fNx, fNy));
|
---|
292 | }
|
---|
293 |
|
---|
294 | void SetupHist(MHn &h, const char *name, const char *title) const
|
---|
295 | {
|
---|
296 | HistSet1D::SetupHist(h, name, title);
|
---|
297 | h.SetDrawOption("colz");
|
---|
298 | }
|
---|
299 |
|
---|
300 | public:
|
---|
301 | HistSet2D(UInt_t nx, UInt_t ny) : HistSet1D(nx), fNy(ny) { }
|
---|
302 |
|
---|
303 | MHn *GetHistN(const TList &rules) const
|
---|
304 | {
|
---|
305 | if (!rules.At(fNx) || !rules.At(fNy))
|
---|
306 | return 0;
|
---|
307 |
|
---|
308 | MHn *h = new MHn(Form("%d:%d", fNx, fNy));
|
---|
309 |
|
---|
310 | CreateHist(*h, rules.At(fNx)->GetName(), rules.At(fNy)->GetName());
|
---|
311 |
|
---|
312 | return h;
|
---|
313 | }
|
---|
314 | Bool_t CheckBinning(const TObjArray &binnings) const
|
---|
315 | {
|
---|
316 | return HistSet1D::CheckBinning(binnings) && binnings.FindObject(Form("Binning%d", fNy));
|
---|
317 | }
|
---|
318 | };
|
---|
319 |
|
---|
320 |
|
---|
321 | class HistSet3D : public HistSet2D
|
---|
322 | {
|
---|
323 | private:
|
---|
324 | UInt_t fNz;
|
---|
325 |
|
---|
326 | void AddHist(MHn &h, const char *rx, const char *ry, const char *rz) const
|
---|
327 | {
|
---|
328 | h.AddHist(rx, ry, rz);
|
---|
329 | }
|
---|
330 | void AddProf(MHn &h, const char *rx, const char *ry, const char *rz) const
|
---|
331 | {
|
---|
332 | h.AddHist(rx, ry, rz, "MHadronness.fVal");
|
---|
333 | }
|
---|
334 | void SetupName(MHn &h, const char *name) const
|
---|
335 | {
|
---|
336 | h.InitName(Form("%s%d:%d:%d;%d;%d;%d", name, fNx, fNy, fNz, fNx, fNy, fNz));
|
---|
337 | }
|
---|
338 |
|
---|
339 | public:
|
---|
340 | HistSet3D(UInt_t nx, UInt_t ny, UInt_t nz) : HistSet2D(nx, ny), fNz(nz) { }
|
---|
341 |
|
---|
342 | MHn *GetHistN(const TList &rules) const
|
---|
343 | {
|
---|
344 | if (!rules.At(fNx) || !rules.At(fNy) || !rules.At(fNz))
|
---|
345 | return 0;
|
---|
346 |
|
---|
347 | MHn *h = new MHn(Form("%d:%d:%d", fNx, fNy, fNz));
|
---|
348 |
|
---|
349 | CreateHist(*h,
|
---|
350 | rules.At(fNx)->GetName(),
|
---|
351 | rules.At(fNy)->GetName(),
|
---|
352 | rules.At(fNy)->GetName());
|
---|
353 |
|
---|
354 | return h;
|
---|
355 | }
|
---|
356 | Bool_t CheckBinning(const TObjArray &binnings) const
|
---|
357 | {
|
---|
358 | return HistSet2D::CheckBinning(binnings) && binnings.FindObject(Form("Binning%d", fNz));
|
---|
359 | }
|
---|
360 | };
|
---|
361 |
|
---|
362 | // ---------------------------------------------------------------------------------------
|
---|
363 |
|
---|
364 | void MJTrainCuts::AddHist(UInt_t nx)
|
---|
365 | {
|
---|
366 | fHists.Add(new HistSet1D(nx));
|
---|
367 | }
|
---|
368 |
|
---|
369 | void MJTrainCuts::AddHist(UInt_t nx, UInt_t ny)
|
---|
370 | {
|
---|
371 | fHists.Add(new HistSet2D(nx, ny));
|
---|
372 | }
|
---|
373 |
|
---|
374 | void MJTrainCuts::AddHist(UInt_t nx, UInt_t ny, UInt_t nz)
|
---|
375 | {
|
---|
376 | fHists.Add(new HistSet3D(nx, ny, nz));
|
---|
377 | }
|
---|
378 |
|
---|
379 | void MJTrainCuts::AddBinning(UInt_t n, const MBinning &bins)
|
---|
380 | {
|
---|
381 | const char *name = Form("Binning%d", n);
|
---|
382 |
|
---|
383 | TObject *o = fBinnings.FindObject(name);
|
---|
384 | if (o)
|
---|
385 | {
|
---|
386 | delete fBinnings.Remove(o);
|
---|
387 | *fLog << warn << "WARNING - Binning for parameter " << n << " (" << name << ") already exists... replaced." << endl;
|
---|
388 | }
|
---|
389 |
|
---|
390 | // FIXME: Check for existence
|
---|
391 | fBinnings.Add(new MBinning(bins, name, bins.GetTitle()));
|
---|
392 | }
|
---|
393 |
|
---|
394 | /*
|
---|
395 | void MJTrainCuts::AddBinning(const MBinning &bins)
|
---|
396 | {
|
---|
397 | // FIXME: Check for existence
|
---|
398 | fBinnings.Add(new MBinning(bins, bins.GetName(), bins.GetTitle()));
|
---|
399 | }
|
---|
400 | */
|
---|
401 |
|
---|
402 | // ---------------------------------------------------------------------------------------
|
---|
403 |
|
---|
404 | // --------------------------------------------------------------------------
|
---|
405 | //
|
---|
406 | void MJTrainCuts::DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime)
|
---|
407 | {
|
---|
408 | TH2D &g = (TH2D&)h32.GetHist();
|
---|
409 | TH2D &h = (TH2D&)h31.GetHist();
|
---|
410 |
|
---|
411 | h.SetMarkerColor(kRed);
|
---|
412 | g.SetMarkerColor(kBlue);
|
---|
413 |
|
---|
414 | TH2D res1(g);
|
---|
415 | TH2D res2(g);
|
---|
416 |
|
---|
417 | h.SetTitle("Hadronness-Distribution vs. Size");
|
---|
418 | res1.SetTitle("Significance Li/Ma");
|
---|
419 | res1.SetXTitle("Size [phe]");
|
---|
420 | res1.SetYTitle("Hadronness");
|
---|
421 | res2.SetTitle("Significance-Distribution");
|
---|
422 | res2.SetXTitle("Size-Cut [phe]");
|
---|
423 | res2.SetYTitle("Hadronness-Cut");
|
---|
424 | res1.SetContour(50);
|
---|
425 | res2.SetContour(50);
|
---|
426 |
|
---|
427 | const Int_t nx = h.GetNbinsX();
|
---|
428 | const Int_t ny = h.GetNbinsY();
|
---|
429 |
|
---|
430 | gROOT->SetSelectedPad(NULL);
|
---|
431 |
|
---|
432 |
|
---|
433 | Double_t Stot = 0;
|
---|
434 | Double_t Btot = 0;
|
---|
435 |
|
---|
436 | Double_t max2 = -1;
|
---|
437 |
|
---|
438 | TGraph gr1;
|
---|
439 | TGraph gr2;
|
---|
440 | for (int x=nx-1; x>=0; x--)
|
---|
441 | {
|
---|
442 | TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
|
---|
443 | TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
|
---|
444 |
|
---|
445 | Double_t S = 0;
|
---|
446 | Double_t B = 0;
|
---|
447 |
|
---|
448 | Double_t max1 = -1;
|
---|
449 | Int_t maxy1 = 0;
|
---|
450 | Int_t maxy2 = 0;
|
---|
451 | for (int y=ny-1; y>=0; y--)
|
---|
452 | {
|
---|
453 | const Float_t s = gx->Integral(1, y+1);
|
---|
454 | const Float_t b = hx->Integral(1, y+1);
|
---|
455 | const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
|
---|
456 | const Float_t sig2 = MMath::SignificanceLiMa(s+Stot+b+Btot, b+Btot)*TMath::Log10(s+Stot+1);
|
---|
457 | if (sig1>max1)
|
---|
458 | {
|
---|
459 | maxy1 = y;
|
---|
460 | max1 = sig1;
|
---|
461 | }
|
---|
462 | if (sig2>max2)
|
---|
463 | {
|
---|
464 | maxy2 = y;
|
---|
465 | max2 = sig2;
|
---|
466 |
|
---|
467 | S=s;
|
---|
468 | B=b;
|
---|
469 | }
|
---|
470 |
|
---|
471 | res1.SetBinContent(x+1, y+1, sig1);
|
---|
472 | }
|
---|
473 |
|
---|
474 | Stot += S;
|
---|
475 | Btot += B;
|
---|
476 |
|
---|
477 | gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
|
---|
478 | gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
|
---|
479 |
|
---|
480 | delete hx;
|
---|
481 | delete gx;
|
---|
482 | }
|
---|
483 |
|
---|
484 | //cout << "--> " << MMath::SignificanceLiMa(Stot+Btot, Btot) << " ";
|
---|
485 | //cout << Stot << " " << Btot << endl;
|
---|
486 |
|
---|
487 |
|
---|
488 | Int_t mx1=0;
|
---|
489 | Int_t my1=0;
|
---|
490 | Int_t mx2=0;
|
---|
491 | Int_t my2=0;
|
---|
492 | Int_t s1=0;
|
---|
493 | Int_t b1=0;
|
---|
494 | Int_t s2=0;
|
---|
495 | Int_t b2=0;
|
---|
496 | Double_t sig1=-1;
|
---|
497 | Double_t sig2=-1;
|
---|
498 | for (int x=0; x<nx; x++)
|
---|
499 | {
|
---|
500 | TH1 *hx = h.ProjectionY("H_py", x+1);
|
---|
501 | TH1 *gx = g.ProjectionY("G_py", x+1);
|
---|
502 | for (int y=0; y<ny; y++)
|
---|
503 | {
|
---|
504 | const Float_t s = gx->Integral(1, y+1);
|
---|
505 | const Float_t b = hx->Integral(1, y+1);
|
---|
506 | const Float_t sig = MMath::SignificanceLiMa(s+b, b);
|
---|
507 | res2.SetBinContent(x+1, y+1, sig);
|
---|
508 |
|
---|
509 | // Search for top-rightmost maximum
|
---|
510 | if (sig>=sig1)
|
---|
511 | {
|
---|
512 | mx1=x+1;
|
---|
513 | my1=y+1;
|
---|
514 | s1 = TMath::Nint(s);
|
---|
515 | b1 = TMath::Nint(b);
|
---|
516 | sig1=sig;
|
---|
517 | }
|
---|
518 | if (TMath::Log10(s)*sig>=sig2)
|
---|
519 | {
|
---|
520 | mx2=x+1;
|
---|
521 | my2=y+1;
|
---|
522 | s2 = TMath::Nint(s);
|
---|
523 | b2 = TMath::Nint(b);
|
---|
524 | sig2=TMath::Log10(s)*sig;
|
---|
525 | }
|
---|
526 | }
|
---|
527 | delete hx;
|
---|
528 | delete gx;
|
---|
529 | }
|
---|
530 |
|
---|
531 | TGraph gr3;
|
---|
532 | TGraph gr4;
|
---|
533 | gr4.SetTitle("Significance Li/Ma vs. Hadronness-cut");
|
---|
534 |
|
---|
535 | TH1 *hx = h.ProjectionY("H_py");
|
---|
536 | TH1 *gx = g.ProjectionY("G_py");
|
---|
537 | for (int y=0; y<ny; y++)
|
---|
538 | {
|
---|
539 | const Float_t s = gx->Integral(1, y+1);
|
---|
540 | const Float_t b = hx->Integral(1, y+1);
|
---|
541 | const Float_t sg1 = MMath::SignificanceLiMa(s+b, b);
|
---|
542 | const Float_t sg2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
|
---|
543 |
|
---|
544 | gr3.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sg1);
|
---|
545 | gr4.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sg2);
|
---|
546 | }
|
---|
547 | delete hx;
|
---|
548 | delete gx;
|
---|
549 |
|
---|
550 | if (fDisplay)
|
---|
551 | {
|
---|
552 | TCanvas &c = fDisplay->AddTab("OptCut");
|
---|
553 | c.SetBorderMode(0);
|
---|
554 | c.Divide(2,2);
|
---|
555 |
|
---|
556 | gROOT->SetSelectedPad(0);
|
---|
557 | c.cd(1);
|
---|
558 | gPad->SetBorderMode(0);
|
---|
559 | gPad->SetFrameBorderMode(0);
|
---|
560 | gPad->SetLogx();
|
---|
561 | gPad->SetGridx();
|
---|
562 | gPad->SetGridy();
|
---|
563 | h.DrawCopy();
|
---|
564 | g.DrawCopy("same");
|
---|
565 | gr1.SetMarkerStyle(kFullDotMedium);
|
---|
566 | gr1.DrawClone("LP")->SetBit(kCanDelete);
|
---|
567 | gr2.SetLineColor(kBlue);
|
---|
568 | gr2.SetMarkerStyle(kFullDotMedium);
|
---|
569 | gr2.DrawClone("LP")->SetBit(kCanDelete);
|
---|
570 |
|
---|
571 | gROOT->SetSelectedPad(0);
|
---|
572 | c.cd(3);
|
---|
573 | gPad->SetBorderMode(0);
|
---|
574 | gPad->SetFrameBorderMode(0);
|
---|
575 | gPad->SetGridx();
|
---|
576 | gPad->SetGridy();
|
---|
577 | gr4.SetMinimum(0);
|
---|
578 | gr4.SetMarkerStyle(kFullDotMedium);
|
---|
579 | gr4.DrawClone("ALP")->SetBit(kCanDelete);
|
---|
580 | gr3.SetLineColor(kBlue);
|
---|
581 | gr3.SetMarkerStyle(kFullDotMedium);
|
---|
582 | gr3.DrawClone("LP")->SetBit(kCanDelete);
|
---|
583 |
|
---|
584 | c.cd(2);
|
---|
585 | gPad->SetBorderMode(0);
|
---|
586 | gPad->SetFrameBorderMode(0);
|
---|
587 | gPad->SetLogx();
|
---|
588 | gPad->SetGridx();
|
---|
589 | gPad->SetGridy();
|
---|
590 | gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
|
---|
591 | res1.SetMaximum(7);
|
---|
592 | res1.DrawCopy("colz");
|
---|
593 |
|
---|
594 | c.cd(4);
|
---|
595 | gPad->SetBorderMode(0);
|
---|
596 | gPad->SetFrameBorderMode(0);
|
---|
597 | gPad->SetLogx();
|
---|
598 | gPad->SetGridx();
|
---|
599 | gPad->SetGridy();
|
---|
600 | gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
|
---|
601 | res2.SetMaximum(res2.GetMaximum()*1.05);
|
---|
602 | res2.DrawCopy("colz");
|
---|
603 |
|
---|
604 | // Int_t mx, my, mz;
|
---|
605 | // res2.GetMaximumBin(mx, my, mz);
|
---|
606 |
|
---|
607 | TMarker m;
|
---|
608 | m.SetMarkerStyle(kStar);
|
---|
609 | m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx1), res2.GetYaxis()->GetBinCenter(my1));
|
---|
610 | m.SetMarkerStyle(kPlus);
|
---|
611 | m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx2), res2.GetYaxis()->GetBinCenter(my2));
|
---|
612 | }
|
---|
613 |
|
---|
614 | if (ontime>0)
|
---|
615 | *fLog << all << "Observation Time: " << TMath::Nint(ontime/60) << "min" << endl;
|
---|
616 | *fLog << "Maximum Significance: " << Form("%.1f", sig1);
|
---|
617 | if (ontime>0)
|
---|
618 | *fLog << Form(" [%.1f/sqrt(h)]", sig1/TMath::Sqrt(ontime/3600));
|
---|
619 | *fLog << endl;
|
---|
620 |
|
---|
621 | *fLog << "Significance: S=" << Form("%.1f", sig1) << " E=" << s1 << " B=" << b1 << " h<";
|
---|
622 | *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my1)) << " s>";
|
---|
623 | *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx1))) << endl;
|
---|
624 | *fLog << "Significance*LogE: S=" << Form("%.1f", sig2/TMath::Log10(s2)) << " E=" << s2 << " B=" << b2 << " h<";
|
---|
625 | *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my2)) << " s>";
|
---|
626 | *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx2))) << endl;
|
---|
627 | *fLog << endl;
|
---|
628 | }
|
---|
629 |
|
---|
630 | // --------------------------------------------------------------------------
|
---|
631 | //
|
---|
632 | Bool_t MJTrainCuts::Process(const char *out)
|
---|
633 | {
|
---|
634 | // =========================== Consistency checks ==================================
|
---|
635 | if (!fDataSetOn.IsValid())
|
---|
636 | {
|
---|
637 | *fLog << err << "ERROR - DataSet for on-data invalid!" << endl;
|
---|
638 | return kFALSE;
|
---|
639 | }
|
---|
640 | if (!fDataSetOff.IsValid())
|
---|
641 | {
|
---|
642 | *fLog << err << "ERROR - DataSet for off-data invalid!" << endl;
|
---|
643 | return kFALSE;
|
---|
644 | }
|
---|
645 |
|
---|
646 | if (fDataSetOn.IsWobbleMode()!=fDataSetOff.IsWobbleMode())
|
---|
647 | {
|
---|
648 | *fLog << err << "ERROR - On- and Off-DataSet have different observation modes!" << endl;
|
---|
649 | return kFALSE;
|
---|
650 | }
|
---|
651 |
|
---|
652 | if (fDataSetOn.IsMonteCarlo()!=fDataSetOff.IsMonteCarlo())
|
---|
653 | {
|
---|
654 | *fLog << err << "ERROR - On- and Off-DataSet have different monte carlo modes!" << endl;
|
---|
655 | return kFALSE;
|
---|
656 | }
|
---|
657 |
|
---|
658 | if (!HasWritePermission(out))
|
---|
659 | return kFALSE;
|
---|
660 |
|
---|
661 | // Check if needed binning exists
|
---|
662 | TIter NextH(&fHists);
|
---|
663 | TObject *o = 0;
|
---|
664 | while ((o=NextH()))
|
---|
665 | {
|
---|
666 | const HistSet1D *hs = static_cast<HistSet1D*>(o);
|
---|
667 | if (hs->CheckBinning(fBinnings))
|
---|
668 | continue;
|
---|
669 |
|
---|
670 | *fLog << err << "ERROR - Not all needed binnning exist." << endl;
|
---|
671 | return kFALSE;
|
---|
672 | }
|
---|
673 |
|
---|
674 | // =========================== Preparation ==================================
|
---|
675 |
|
---|
676 | if (fDisplay)
|
---|
677 | fDisplay->SetTitle(out);
|
---|
678 |
|
---|
679 | TStopwatch clock;
|
---|
680 | clock.Start();
|
---|
681 |
|
---|
682 | // ------------------ Setup reading --------------------
|
---|
683 | MReadMarsFile read1("Events");
|
---|
684 | MReadMarsFile read2("Events");
|
---|
685 | MReadMarsFile read3("Events");
|
---|
686 | MReadMarsFile read4("Events");
|
---|
687 | read1.DisableAutoScheme();
|
---|
688 | read2.DisableAutoScheme();
|
---|
689 | read3.DisableAutoScheme();
|
---|
690 | read4.DisableAutoScheme();
|
---|
691 |
|
---|
692 | // Setup four reading tasks with the on- and off-data of the two datasets
|
---|
693 | // Training -- On
|
---|
694 | if (!fDataSetOn.AddFilesOn(read1))
|
---|
695 | return kFALSE;
|
---|
696 | // Testing -- On
|
---|
697 | if (!fDataSetOn.AddFilesOff(read4))
|
---|
698 | return kFALSE;
|
---|
699 | // Training -- Off
|
---|
700 | if (!fDataSetOff.AddFilesOn(read3))
|
---|
701 | return kFALSE;
|
---|
702 | // Testing -- Off
|
---|
703 | if (!fDataSetOff.AddFilesOff(read2))
|
---|
704 | return kFALSE;
|
---|
705 |
|
---|
706 | // ===============================================================================
|
---|
707 | // ====================== Training =========================
|
---|
708 | // ===============================================================================
|
---|
709 |
|
---|
710 | // ---------------- Setup RF Matrix ----------------
|
---|
711 | MHMatrix train("Train");
|
---|
712 | train.AddColumns(fRules);
|
---|
713 | // if (fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff])
|
---|
714 | // train.AddColumn("MWeight.fVal");
|
---|
715 | train.AddColumn("MHadronness.fVal");
|
---|
716 |
|
---|
717 | // ----------------- Prepare filling Matrix RF ------------------
|
---|
718 |
|
---|
719 | // Setup the hadronness container identifying gammas and off-data
|
---|
720 | // and setup a container for the weights
|
---|
721 | MParameterD had("MHadronness");
|
---|
722 | MParameterD wgt("MWeight");
|
---|
723 | MParameterD typ("Type");
|
---|
724 |
|
---|
725 | // Add them to the parameter list
|
---|
726 | MParList plistx;
|
---|
727 | plistx.AddToList(this); // take care of fDisplay!
|
---|
728 | plistx.AddToList(&had);
|
---|
729 | plistx.AddToList(&wgt);
|
---|
730 | plistx.AddToList(&typ);
|
---|
731 |
|
---|
732 | // Setup the tool class to fill the matrix
|
---|
733 | MTFillMatrix fill;
|
---|
734 | fill.SetLogStream(fLog);
|
---|
735 | fill.SetDisplay(fDisplay);
|
---|
736 | fill.AddPreCuts(fPreCuts);
|
---|
737 | fill.AddPreCuts(fTrainCuts);
|
---|
738 |
|
---|
739 | // ----------------- Fill on data into matrix ------------------
|
---|
740 |
|
---|
741 | // Setup the tool class to read the gammas and read them
|
---|
742 | fill.SetName("FillOn");
|
---|
743 | fill.SetDestMatrix1(&train, fNum[kTrainOn]);
|
---|
744 | fill.SetReader(&read1);
|
---|
745 | // fill.AddPreTasks(fPreTasksSet[kTrainOn]);
|
---|
746 | fill.AddPreTasks(fPreTasks);
|
---|
747 | // fill.AddPostTasks(fPostTasksSet[kTrainOn]);
|
---|
748 | fill.AddPostTasks(fPostTasks);
|
---|
749 |
|
---|
750 | // Set classifier for gammas
|
---|
751 | had.SetVal(0);
|
---|
752 | wgt.SetVal(1);
|
---|
753 | typ.SetVal(0);
|
---|
754 |
|
---|
755 | // Fill matrix
|
---|
756 | if (!fill.Process(plistx))
|
---|
757 | return kFALSE;
|
---|
758 |
|
---|
759 | // Check the number or read events
|
---|
760 | const Int_t numontrn = train.GetNumRows();
|
---|
761 | if (numontrn==0)
|
---|
762 | {
|
---|
763 | *fLog << err << "ERROR - No on-data events available for training... aborting." << endl;
|
---|
764 | return kFALSE;
|
---|
765 | }
|
---|
766 |
|
---|
767 | // Remove possible post tasks
|
---|
768 | fill.ClearPreTasks();
|
---|
769 | fill.ClearPostTasks();
|
---|
770 |
|
---|
771 | // ----------------- Fill off data into matrix ------------------
|
---|
772 |
|
---|
773 | // In case of wobble mode we have to do something special
|
---|
774 | // Setup the tool class to read the background and read them
|
---|
775 | fill.SetName("FillOff");
|
---|
776 | fill.SetDestMatrix1(&train, fNum[kTrainOff]);
|
---|
777 | fill.SetReader(&read3);
|
---|
778 | // fill.AddPreTasks(fPreTasksSet[kTrainOff]);
|
---|
779 | fill.AddPreTasks(fPreTasks);
|
---|
780 | // fill.AddPostTasks(fPostTasksSet[kTrainOff]);
|
---|
781 | fill.AddPostTasks(fPostTasks);
|
---|
782 |
|
---|
783 | // Set classifier for background
|
---|
784 | had.SetVal(1);
|
---|
785 | wgt.SetVal(1);
|
---|
786 | typ.SetVal(1);
|
---|
787 |
|
---|
788 | // Fiull matrix
|
---|
789 | if (!fill.Process(plistx))
|
---|
790 | return kFALSE;
|
---|
791 |
|
---|
792 | // Check the number or read events
|
---|
793 | const Int_t numofftrn = train.GetNumRows()-numontrn;
|
---|
794 | if (numofftrn==0)
|
---|
795 | {
|
---|
796 | *fLog << err << "ERROR - No off-data available for training... aborting." << endl;
|
---|
797 | return kFALSE;
|
---|
798 | }
|
---|
799 |
|
---|
800 | // ------------------------ Train RF --------------------------
|
---|
801 |
|
---|
802 | MRanForestCalc rf("TrainSeparation", fTitle);
|
---|
803 | rf.SetNumTrees(fNumTrees);
|
---|
804 | rf.SetNdSize(fNdSize);
|
---|
805 | rf.SetNumTry(fNumTry);
|
---|
806 | rf.SetNumObsoleteVariables(1);
|
---|
807 | // rf.SetLastDataColumnHasWeights(fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff]);
|
---|
808 | rf.SetDebug(fDebug>1);
|
---|
809 | rf.SetDisplay(fDisplay);
|
---|
810 | rf.SetLogStream(fLog);
|
---|
811 | rf.SetFileName(out);
|
---|
812 | rf.SetNameOutput("MHadronness");
|
---|
813 |
|
---|
814 | // Train the random forest either by classification or regression
|
---|
815 | if (!rf.Train(train, fUseRegression))
|
---|
816 | return kFALSE;
|
---|
817 |
|
---|
818 | // ----------------- Print result of training ------------------
|
---|
819 |
|
---|
820 | // Output information about what was going on so far.
|
---|
821 | *fLog << all;
|
---|
822 | fLog->Separator("The forest was trained with...");
|
---|
823 |
|
---|
824 | *fLog << "Training method:" << endl;
|
---|
825 | *fLog << " * " << (fUseRegression?"regression":"classification") << endl;
|
---|
826 | /*
|
---|
827 | if (fEnableWeights[kTrainOn])
|
---|
828 | *fLog << " * weights for on-data" << endl;
|
---|
829 | if (fEnableWeights[kTrainOff])
|
---|
830 | *fLog << " * weights for off-data" << endl;
|
---|
831 | */
|
---|
832 | *fLog << endl;
|
---|
833 | *fLog << "Events used for training:" << endl;
|
---|
834 | *fLog << " * Gammas: " << numontrn << endl;
|
---|
835 | *fLog << " * Background: " << numofftrn << endl;
|
---|
836 | *fLog << endl;
|
---|
837 | *fLog << "Gamma/Background ratio:" << endl;
|
---|
838 | *fLog << " * Requested: " << (float)fNum[kTrainOn]/fNum[kTrainOff] << endl;
|
---|
839 | *fLog << " * Result: " << (float)numontrn/numofftrn << endl;
|
---|
840 | *fLog << endl;
|
---|
841 | *fLog << "Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
|
---|
842 | *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
|
---|
843 | *fLog << endl;
|
---|
844 | *fLog << "Output file name: " << out << endl;
|
---|
845 |
|
---|
846 | // ===============================================================================
|
---|
847 | // ====================== Testing =========================
|
---|
848 | // ===============================================================================
|
---|
849 | fLog->Separator("Test");
|
---|
850 |
|
---|
851 | clock.Continue();
|
---|
852 |
|
---|
853 | // ---------------------- Prepare eventloop off-data ---------------------
|
---|
854 |
|
---|
855 | // Setup parlist and tasklist for testing
|
---|
856 | MParList plist;
|
---|
857 | MTaskList tlist;
|
---|
858 | plist.AddToList(this); // Take care of display
|
---|
859 | plist.AddToList(&tlist);
|
---|
860 |
|
---|
861 | // MMcEvt mcevt;
|
---|
862 | // plist.AddToList(&mcevt);
|
---|
863 |
|
---|
864 | plist.AddToList(&wgt);
|
---|
865 | plist.AddToList(&typ);
|
---|
866 |
|
---|
867 | // ----- Setup histograms -----
|
---|
868 | MBinning binsy(50, 0 , 1, "BinningMH3Y", "lin");
|
---|
869 | MBinning binsx(40, 10, 100000, "BinningMH3X", "log");
|
---|
870 |
|
---|
871 | plist.AddToList(&binsx);
|
---|
872 | plist.AddToList(&binsy);
|
---|
873 |
|
---|
874 | MH3 h31("MHillas.fSize", "MHadronness.fVal");
|
---|
875 | MH3 h32("MHillas.fSize", "MHadronness.fVal");
|
---|
876 | MH3 h40("MMcEvt.fEnergy", "MHadronness.fVal");
|
---|
877 | h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
|
---|
878 | h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
|
---|
879 | h40.SetTitle("Background probability vs. Energy:Energy [GeV]:Hadronness h");
|
---|
880 |
|
---|
881 | plist.AddToList(&fBinnings);
|
---|
882 |
|
---|
883 | MHHadronness hist;
|
---|
884 |
|
---|
885 | // ----- Setup tasks -----
|
---|
886 | MFillH fillh0(&hist, "", "FillHadronness");
|
---|
887 | MFillH fillh1(&h31, "", "FillHadVsSize");
|
---|
888 | MFillH fillh2(&h32, "", "FillHadVsSize");
|
---|
889 | MFillH fillh4(&h40, "", "FillHadVsEnergy");
|
---|
890 | fillh0.SetWeight("MWeight");
|
---|
891 | fillh1.SetWeight("MWeight");
|
---|
892 | fillh2.SetWeight("MWeight");
|
---|
893 | fillh4.SetWeight("MWeight");
|
---|
894 | fillh1.SetDrawOption("colz profy");
|
---|
895 | fillh2.SetDrawOption("colz profy");
|
---|
896 | fillh4.SetDrawOption("colz profy");
|
---|
897 | fillh1.SetNameTab("HadSzOff");
|
---|
898 | fillh2.SetNameTab("HadSzOn");
|
---|
899 | fillh4.SetNameTab("HadEnOn");
|
---|
900 | fillh0.SetBit(MFillH::kDoNotDisplay);
|
---|
901 |
|
---|
902 | // ----- Setup filter -----
|
---|
903 | MFilterList precuts;
|
---|
904 | precuts.AddToList(fPreCuts);
|
---|
905 | precuts.AddToList(fTestCuts);
|
---|
906 |
|
---|
907 | MContinue cont0(&precuts);
|
---|
908 | cont0.SetName("PreCuts");
|
---|
909 | cont0.SetInverted();
|
---|
910 |
|
---|
911 | MFEventSelector sel; // FIXME: USING IT (WITH PROB?) in READ will by much faster!!!
|
---|
912 | sel.SetNumSelectEvts(fNum[kTestOff]);
|
---|
913 |
|
---|
914 | MContinue contsel(&sel);
|
---|
915 | contsel.SetInverted();
|
---|
916 |
|
---|
917 | // ----- Setup tasklist -----
|
---|
918 | tlist.AddToList(&read2); // Reading task
|
---|
919 | tlist.AddToList(&contsel); // event selector
|
---|
920 | // tlist.AddToList(fPreTasksSet[kTestOff]);
|
---|
921 | tlist.AddToList(fPreTasks); // list of pre tasks
|
---|
922 | tlist.AddToList(&cont0); // list of pre cuts and test cuts
|
---|
923 | tlist.AddToList(&rf); // evaluate random forest
|
---|
924 | // tlist.AddToList(fPostTasksSet[kTestOff]);
|
---|
925 | tlist.AddToList(fPostTasks); // list of post tasks
|
---|
926 | tlist.AddToList(&fillh1); // Fill HadSzOff
|
---|
927 |
|
---|
928 | TList autodel;
|
---|
929 | autodel.SetOwner();
|
---|
930 |
|
---|
931 | TPRegexp regexp("([0-9]:*)+");
|
---|
932 |
|
---|
933 | NextH.Reset();
|
---|
934 | while ((o=NextH()))
|
---|
935 | {
|
---|
936 | HistSet1D *hs = static_cast<HistSet1D*>(o);
|
---|
937 |
|
---|
938 | // FIXME: Move to beginning of function
|
---|
939 | // Check if needed binning exists
|
---|
940 | if (!hs->CheckBinning(fBinnings))
|
---|
941 | return kFALSE;
|
---|
942 |
|
---|
943 | MHn *hist = hs->GetHistN(fRules);
|
---|
944 | MFillH *fill = new MFillH(hist, "", Form("Fill%s", hist->GetName()));
|
---|
945 |
|
---|
946 | fill->SetWeight("MWeight");
|
---|
947 | fill->SetDrawOption("colz");
|
---|
948 | fill->SetNameTab(hist->GetName());
|
---|
949 | fill->SetBit(MFillH::kDoNotDisplay);
|
---|
950 |
|
---|
951 | tlist.AddToList(fill);
|
---|
952 |
|
---|
953 | autodel.Add(fill);
|
---|
954 | autodel.Add(hist);
|
---|
955 | }
|
---|
956 | tlist.AddToList(&fillh0); // Fill MHHadronness (not displayed in first loop)
|
---|
957 | tlist.AddToList(&fTestTasks); // list of test tasks
|
---|
958 |
|
---|
959 | // Enable Acceleration
|
---|
960 | tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
|
---|
961 |
|
---|
962 | // ---------------------- Run eventloop on background ---------------------
|
---|
963 | MEvtLoop loop;
|
---|
964 | loop.SetDisplay(fDisplay);
|
---|
965 | loop.SetLogStream(fLog);
|
---|
966 | loop.SetParList(&plist);
|
---|
967 | //if (!SetupEnv(loop))
|
---|
968 | // return kFALSE;
|
---|
969 |
|
---|
970 | wgt.SetVal(1);
|
---|
971 | typ.SetVal(0);
|
---|
972 | if (!loop.Eventloop())
|
---|
973 | return kFALSE;
|
---|
974 |
|
---|
975 | // ---------------------- Prepare eventloop on-data ---------------------
|
---|
976 |
|
---|
977 | sel.SetNumSelectEvts(fNum[kTestOn]); // set number of target events
|
---|
978 |
|
---|
979 | fillh0.ResetBit(MFillH::kDoNotDisplay); // Switch on display MHHadronness
|
---|
980 |
|
---|
981 | TIter NextF(&autodel);
|
---|
982 | while ((o=NextF()))
|
---|
983 | {
|
---|
984 | MFillH *fill = dynamic_cast<MFillH*>(o);
|
---|
985 | if (fill)
|
---|
986 | fill->ResetBit(MFillH::kDoNotDisplay);
|
---|
987 | }
|
---|
988 |
|
---|
989 | // Remove PreTasksOff and PostTasksOff from the list
|
---|
990 | // tlist.RemoveFromList(fPreTasksSet[kTestOff]);
|
---|
991 | // tlist.RemoveFromList(fPostTasksSet[kTestOff]);
|
---|
992 |
|
---|
993 | tlist.Replace(&read4); // replace reading off-data by on-data
|
---|
994 |
|
---|
995 | // Add the PreTasksOn directly after the reading task
|
---|
996 | // tlist.AddToListAfter(fPreTasksSet[kTestOn], &c1);
|
---|
997 |
|
---|
998 | // Add the PostTasksOn after rf
|
---|
999 | // tlist.AddToListAfter(fPostTasksSet[kTestOn], &rf);
|
---|
1000 |
|
---|
1001 | tlist.Replace(&fillh2); // Fill HadSzOn instead of HadSzOff
|
---|
1002 | tlist.AddToListAfter(&fillh4, &fillh0); // Filling of HadEnOn
|
---|
1003 |
|
---|
1004 | // Enable Acceleration
|
---|
1005 | tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
|
---|
1006 |
|
---|
1007 | // ---------------------- Run eventloop on-data ---------------------
|
---|
1008 |
|
---|
1009 | wgt.SetVal(1);
|
---|
1010 | typ.SetVal(1);
|
---|
1011 | if (!loop.Eventloop())
|
---|
1012 | return kFALSE;
|
---|
1013 |
|
---|
1014 | // ---------------------- Print/Display result ---------------------
|
---|
1015 |
|
---|
1016 | // Show what was going on in the testing
|
---|
1017 | const Double_t numontst = h32.GetHist().GetEntries();
|
---|
1018 | const Double_t numofftst = h31.GetHist().GetEntries();
|
---|
1019 |
|
---|
1020 | *fLog << all;
|
---|
1021 | fLog->Separator("The forest was tested with...");
|
---|
1022 | *fLog << "Test method:" << endl;
|
---|
1023 | *fLog << " * Random Forest: " << out << endl;
|
---|
1024 | /*
|
---|
1025 | if (fEnableWeights[kTestOn])
|
---|
1026 | *fLog << " * weights for on-data" << endl;
|
---|
1027 | if (fEnableWeights[kTestOff])
|
---|
1028 | *fLog << " * weights for off-data" << endl;
|
---|
1029 | */
|
---|
1030 | *fLog << endl;
|
---|
1031 | *fLog << "Events used for test:" << endl;
|
---|
1032 | *fLog << " * Gammas: " << numontst << endl;
|
---|
1033 | *fLog << " * Background: " << numofftst << endl;
|
---|
1034 | *fLog << endl;
|
---|
1035 | *fLog << "Gamma/Background ratio:" << endl;
|
---|
1036 | *fLog << " * Requested: " << (float)fNum[kTestOn]/fNum[kTestOff] << endl;
|
---|
1037 | *fLog << " * Result: " << (float)numontst/numofftst << endl;
|
---|
1038 | *fLog << endl;
|
---|
1039 |
|
---|
1040 | // Display the result plots
|
---|
1041 | DisplayResult(h31, h32, -1);
|
---|
1042 | //DisplayResult(h31, h32, ontime);
|
---|
1043 |
|
---|
1044 | *fLog << "Total Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
|
---|
1045 | *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
|
---|
1046 | fLog->Separator();
|
---|
1047 |
|
---|
1048 | // ----------------- Write result ------------------
|
---|
1049 |
|
---|
1050 | fDataSetOn.SetName("DataSetOn");
|
---|
1051 | fDataSetOff.SetName("DataSetOff");
|
---|
1052 |
|
---|
1053 | // Write the display
|
---|
1054 | TObjArray arr;
|
---|
1055 | arr.Add(const_cast<MDataSet*>(&fDataSetOn));
|
---|
1056 | arr.Add(const_cast<MDataSet*>(&fDataSetOff));
|
---|
1057 | if (fDisplay)
|
---|
1058 | arr.Add(fDisplay);
|
---|
1059 |
|
---|
1060 | SetPathOut(out);
|
---|
1061 | return WriteContainer(arr, 0, "UPDATE");
|
---|
1062 | }
|
---|
1063 |
|
---|