1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | ! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
|
---|
18 | ! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2002-2007
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MExtractTimeAndChargeSpline
|
---|
28 | //
|
---|
29 | // Fast Spline extractor using a cubic spline algorithm, adapted from
|
---|
30 | // Numerical Recipes in C++, 2nd edition, pp. 116-119.
|
---|
31 | //
|
---|
32 | // The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal"
|
---|
33 | // which means the FADC value subtracted by the clock-noise corrected pedestal.
|
---|
34 | //
|
---|
35 | // The coefficients "y2a" get immediately divided 6. and are called here
|
---|
36 | // "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly
|
---|
37 | // the second derivative coefficients any more.
|
---|
38 | //
|
---|
39 | // The calculation of the cubic-spline interpolated value "y" on a point
|
---|
40 | // "x" along the FADC-slices axis becomes:
|
---|
41 | //
|
---|
42 | // y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi]
|
---|
43 | // + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]
|
---|
44 | //
|
---|
45 | // with:
|
---|
46 | // a = (khi - x)
|
---|
47 | // b = (x - klo)
|
---|
48 | //
|
---|
49 | // and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index.
|
---|
50 | // fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi".
|
---|
51 | //
|
---|
52 | // An analogues formula is used for the low-gain values.
|
---|
53 | //
|
---|
54 | // The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the
|
---|
55 | // following simplified algorithm:
|
---|
56 | //
|
---|
57 | // for (Int_t i=1;i<range-1;i++) {
|
---|
58 | // pp = fHiGainSecondDeriv[i-1] + 4.;
|
---|
59 | // fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1]
|
---|
60 | // fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
|
---|
61 | // }
|
---|
62 | //
|
---|
63 | // for (Int_t k=range-2;k>=0;k--)
|
---|
64 | // fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.;
|
---|
65 | //
|
---|
66 | //
|
---|
67 | // This algorithm takes advantage of the fact that the x-values are all separated by exactly 1
|
---|
68 | // which simplifies the Numerical Recipes algorithm.
|
---|
69 | // (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.)
|
---|
70 | //
|
---|
71 | // The algorithm to search the time proceeds as follows:
|
---|
72 | //
|
---|
73 | // 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast
|
---|
74 | // (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of
|
---|
75 | // the MAGIC FADCs).
|
---|
76 | // 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos".
|
---|
77 | // 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst,
|
---|
78 | // return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here).
|
---|
79 | // 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array
|
---|
80 | // 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2.
|
---|
81 | // If no maximum is found, go to interval fAbMaxPos+1.
|
---|
82 | // --> 4 function evaluations
|
---|
83 | // 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2
|
---|
84 | // --> 4 function evaluations
|
---|
85 | // 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2
|
---|
86 | // in steps of 0.025 (83 psec. in the case of the MAGIC FADCs).
|
---|
87 | // --> 14 function evaluations
|
---|
88 | // 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is
|
---|
89 | // returned, else:
|
---|
90 | // 9) The Half Maximum is calculated.
|
---|
91 | // 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax
|
---|
92 | // is found at "klo".
|
---|
93 | // 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as
|
---|
94 | // the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01).
|
---|
95 | // --> maximum 12 interations.
|
---|
96 | //
|
---|
97 | // The algorithm to search the charge proceeds as follows:
|
---|
98 | //
|
---|
99 | // 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the
|
---|
100 | // time search.
|
---|
101 | // 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between:
|
---|
102 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain) and
|
---|
103 | // (Int_t)(fAbMaxPos + fFallTimeHiGain)
|
---|
104 | // (default: fRiseTime: 1.5, fFallTime: 4.5)
|
---|
105 | // sum the fLoGainSignal between:
|
---|
106 | // (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and
|
---|
107 | // (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch)
|
---|
108 | // (default: fLoGainStretch: 1.5)
|
---|
109 | //
|
---|
110 | // The values: fNumHiGainSamples and fNumLoGainSamples are set to:
|
---|
111 | // 1) If Charge Type: kAmplitude was chosen: 1.
|
---|
112 | // 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain
|
---|
113 | // or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain
|
---|
114 | //
|
---|
115 | // Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast)
|
---|
116 | // to modify the ranges.
|
---|
117 | //
|
---|
118 | // Defaults:
|
---|
119 | // fHiGainFirst = 2
|
---|
120 | // fHiGainLast = 14
|
---|
121 | // fLoGainFirst = 2
|
---|
122 | // fLoGainLast = 14
|
---|
123 | //
|
---|
124 | // Call: SetResolution() to define the resolution of the half-maximum search.
|
---|
125 | // Default: 0.01
|
---|
126 | //
|
---|
127 | // Call: SetRiseTime() and SetFallTime() to define the integration ranges
|
---|
128 | // for the case, the extraction type kIntegral has been chosen.
|
---|
129 | //
|
---|
130 | // Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the
|
---|
131 | // computation of the amplitude at the maximum (default) and extraction
|
---|
132 | // the position of the maximum (default)
|
---|
133 | // --> no further function evaluation needed
|
---|
134 | // - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the
|
---|
135 | // computation of the integral beneith the spline between fRiseTimeHiGain
|
---|
136 | // from the position of the maximum to fFallTimeHiGain after the position of
|
---|
137 | // the maximum. The Low Gain is computed with half a slice more at the rising
|
---|
138 | // edge and half a slice more at the falling edge.
|
---|
139 | // The time of the half maximum is returned.
|
---|
140 | // --> needs one function evaluations but is more precise
|
---|
141 | //
|
---|
142 | //////////////////////////////////////////////////////////////////////////////
|
---|
143 | #include "MExtractTimeAndChargeSpline.h"
|
---|
144 |
|
---|
145 | #include "MPedestalPix.h"
|
---|
146 |
|
---|
147 | #include "MLog.h"
|
---|
148 | #include "MLogManip.h"
|
---|
149 |
|
---|
150 | ClassImp(MExtractTimeAndChargeSpline);
|
---|
151 |
|
---|
152 | using namespace std;
|
---|
153 |
|
---|
154 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 0;
|
---|
155 | const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14;
|
---|
156 | const Int_t MExtractTimeAndChargeSpline::fgLoGainFirst = 1;
|
---|
157 | const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14;
|
---|
158 | const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05;
|
---|
159 | const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.64;
|
---|
160 | const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 0.76;
|
---|
161 | const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5;
|
---|
162 | const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.3;
|
---|
163 |
|
---|
164 | // --------------------------------------------------------------------------
|
---|
165 | //
|
---|
166 | // Default constructor.
|
---|
167 | //
|
---|
168 | // Calls:
|
---|
169 | // - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
|
---|
170 | //
|
---|
171 | // Initializes:
|
---|
172 | // - fResolution to fgResolution
|
---|
173 | // - fRiseTimeHiGain to fgRiseTimeHiGain
|
---|
174 | // - fFallTimeHiGain to fgFallTimeHiGain
|
---|
175 | // - Charge Extraction Type to kAmplitude
|
---|
176 | // - fLoGainStretch to fgLoGainStretch
|
---|
177 | //
|
---|
178 | MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title)
|
---|
179 | : fRiseTimeHiGain(0), fFallTimeHiGain(0), fHeightTm(0.5), fExtractionType(MExtralgoSpline::kIntegralRel)
|
---|
180 | {
|
---|
181 |
|
---|
182 | fName = name ? name : "MExtractTimeAndChargeSpline";
|
---|
183 | fTitle = title ? title : "Calculate photons arrival time using a fast spline";
|
---|
184 |
|
---|
185 | SetResolution();
|
---|
186 | SetLoGainStretch();
|
---|
187 | SetOffsetLoGain(fgOffsetLoGain);
|
---|
188 |
|
---|
189 | SetRiseTimeHiGain();
|
---|
190 | SetFallTimeHiGain();
|
---|
191 |
|
---|
192 | SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | //-------------------------------------------------------------------
|
---|
197 | //
|
---|
198 | // Set the ranges
|
---|
199 | // In order to set the fNum...Samples variables correctly for the case,
|
---|
200 | // the integral is computed, have to overwrite this function and make an
|
---|
201 | // explicit call to SetChargeType().
|
---|
202 | //
|
---|
203 | void MExtractTimeAndChargeSpline::SetRange(UShort_t hifirst, UShort_t hilast, Int_t lofirst, Byte_t lolast)
|
---|
204 | {
|
---|
205 | MExtractor::SetRange(hifirst, hilast, lofirst, lolast);
|
---|
206 |
|
---|
207 | SetChargeType(fExtractionType);
|
---|
208 | }
|
---|
209 |
|
---|
210 | //-------------------------------------------------------------------
|
---|
211 | //
|
---|
212 | // Set the Charge Extraction type. Possible are:
|
---|
213 | // - kAmplitude: Search the value of the spline at the maximum
|
---|
214 | // - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast,
|
---|
215 | // by counting the edge bins only half and setting the
|
---|
216 | // second derivative to zero, there.
|
---|
217 | //
|
---|
218 | void MExtractTimeAndChargeSpline::SetChargeType(MExtralgoSpline::ExtractionType_t typ)
|
---|
219 | {
|
---|
220 | fExtractionType = typ;
|
---|
221 |
|
---|
222 | InitArrays(fHiGainFirstDeriv.GetSize());
|
---|
223 |
|
---|
224 | switch (fExtractionType)
|
---|
225 | {
|
---|
226 | case MExtralgoSpline::kAmplitude:
|
---|
227 | case MExtralgoSpline::kAmplitudeRel:
|
---|
228 | case MExtralgoSpline::kAmplitudeAbs:
|
---|
229 | SetResolutionPerPheHiGain(0.053);
|
---|
230 | SetResolutionPerPheLoGain(0.016);
|
---|
231 | return;
|
---|
232 |
|
---|
233 | case MExtralgoSpline::kIntegralRel:
|
---|
234 | case MExtralgoSpline::kIntegralAbs:
|
---|
235 | switch (fWindowSizeHiGain)
|
---|
236 | {
|
---|
237 | case 1:
|
---|
238 | SetResolutionPerPheHiGain(0.041);
|
---|
239 | break;
|
---|
240 | case 2:
|
---|
241 | SetResolutionPerPheHiGain(0.064);
|
---|
242 | break;
|
---|
243 | case 3:
|
---|
244 | case 4:
|
---|
245 | SetResolutionPerPheHiGain(0.050);
|
---|
246 | break;
|
---|
247 | case 5:
|
---|
248 | case 6:
|
---|
249 | SetResolutionPerPheHiGain(0.030);
|
---|
250 | break;
|
---|
251 | default:
|
---|
252 | *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size "
|
---|
253 | << fWindowSizeHiGain << "... using default!" << endl;
|
---|
254 | SetResolutionPerPheHiGain(0.050);
|
---|
255 | break;
|
---|
256 | }
|
---|
257 |
|
---|
258 | switch (fWindowSizeLoGain)
|
---|
259 | {
|
---|
260 | case 1:
|
---|
261 | case 2:
|
---|
262 | SetResolutionPerPheLoGain(0.005);
|
---|
263 | break;
|
---|
264 | case 3:
|
---|
265 | case 4:
|
---|
266 | SetResolutionPerPheLoGain(0.017);
|
---|
267 | break;
|
---|
268 | case 5:
|
---|
269 | case 6:
|
---|
270 | case 7:
|
---|
271 | SetResolutionPerPheLoGain(0.005);
|
---|
272 | break;
|
---|
273 | case 8:
|
---|
274 | case 9:
|
---|
275 | SetResolutionPerPheLoGain(0.005);
|
---|
276 | break;
|
---|
277 | default:
|
---|
278 | *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size "
|
---|
279 | << fWindowSizeLoGain << "... using default!" << endl;
|
---|
280 | SetResolutionPerPheLoGain(0.005);
|
---|
281 | break;
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 | // --------------------------------------------------------------------------
|
---|
287 | //
|
---|
288 | // InitArrays
|
---|
289 | //
|
---|
290 | // Gets called in the ReInit() and initialized the arrays
|
---|
291 | //
|
---|
292 | Bool_t MExtractTimeAndChargeSpline::InitArrays(Int_t n)
|
---|
293 | {
|
---|
294 | // Initialize arrays to the maximum number of entries necessary
|
---|
295 | fHiGainFirstDeriv .Set(n);
|
---|
296 | fHiGainSecondDeriv.Set(n);
|
---|
297 |
|
---|
298 | fLoGainFirstDeriv .Set(n);
|
---|
299 | fLoGainSecondDeriv.Set(n);
|
---|
300 |
|
---|
301 | fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch;
|
---|
302 | fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch;
|
---|
303 |
|
---|
304 | switch (fExtractionType)
|
---|
305 | {
|
---|
306 | case MExtralgoSpline::kAmplitude:
|
---|
307 | case MExtralgoSpline::kAmplitudeRel:
|
---|
308 | case MExtralgoSpline::kAmplitudeAbs:
|
---|
309 | fNumHiGainSamples = 1.;
|
---|
310 | fNumLoGainSamples = fLoGainLast ? 1. : 0.;
|
---|
311 | fSqrtHiGainSamples = 1.;
|
---|
312 | fSqrtLoGainSamples = 1.;
|
---|
313 | fWindowSizeHiGain = 1;
|
---|
314 | fWindowSizeLoGain = 1;
|
---|
315 | fRiseTimeHiGain = 0.5;
|
---|
316 | break;
|
---|
317 |
|
---|
318 | case MExtralgoSpline::kIntegralAbs:
|
---|
319 | case MExtralgoSpline::kIntegralRel:
|
---|
320 | fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
|
---|
321 | fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
|
---|
322 | fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
|
---|
323 | fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
|
---|
324 | fWindowSizeHiGain = TMath::CeilNint(fRiseTimeHiGain + fFallTimeHiGain);
|
---|
325 | fWindowSizeLoGain = TMath::CeilNint(fRiseTimeLoGain + fFallTimeLoGain);
|
---|
326 | break;
|
---|
327 | }
|
---|
328 |
|
---|
329 | return kTRUE;
|
---|
330 | }
|
---|
331 |
|
---|
332 | void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain2(const Float_t *ptr, Int_t num,
|
---|
333 | Float_t &sum, Float_t &dsum,
|
---|
334 | Float_t &time, Float_t &dtime,
|
---|
335 | Byte_t sat, Int_t maxpos) const
|
---|
336 | {
|
---|
337 | // Do some handling if maxpos is last slice!
|
---|
338 | MExtralgoSpline s(ptr, num, fHiGainFirstDeriv.GetArray(), fHiGainSecondDeriv.GetArray());
|
---|
339 |
|
---|
340 | s.SetExtractionType(fExtractionType);
|
---|
341 | s.SetHeightTm(fHeightTm);
|
---|
342 | s.SetRiseFallTime(fRiseTimeHiGain, fFallTimeHiGain);
|
---|
343 |
|
---|
344 | if (IsNoiseCalculation())
|
---|
345 | {
|
---|
346 | sum = s.ExtractNoise();
|
---|
347 | dsum = 1;
|
---|
348 | return;
|
---|
349 | }
|
---|
350 |
|
---|
351 | s.Extract(maxpos);
|
---|
352 | s.GetTime(time, dtime);
|
---|
353 | s.GetSignal(sum, dsum);
|
---|
354 | }
|
---|
355 |
|
---|
356 | void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain2(const Float_t *ptr, Int_t num,
|
---|
357 | Float_t &sum, Float_t &dsum,
|
---|
358 | Float_t &time, Float_t &dtime,
|
---|
359 | Byte_t sat, Int_t maxpos) const
|
---|
360 | {
|
---|
361 | MExtralgoSpline s(ptr, num, fLoGainFirstDeriv.GetArray(), fLoGainSecondDeriv.GetArray());
|
---|
362 |
|
---|
363 | s.SetExtractionType(fExtractionType);
|
---|
364 | s.SetHeightTm(fHeightTm);
|
---|
365 | s.SetRiseFallTime(fRiseTimeLoGain, fFallTimeLoGain);
|
---|
366 |
|
---|
367 | if (IsNoiseCalculation())
|
---|
368 | {
|
---|
369 | sum = s.ExtractNoise();
|
---|
370 | return;
|
---|
371 | }
|
---|
372 |
|
---|
373 | s.Extract(maxpos);
|
---|
374 | s.GetTime(time, dtime);
|
---|
375 | s.GetSignal(sum, dsum);
|
---|
376 | }
|
---|
377 |
|
---|
378 | // --------------------------------------------------------------------------
|
---|
379 | //
|
---|
380 | // In addition to the resources of the base-class MExtractor:
|
---|
381 | // Resolution
|
---|
382 | // RiseTimeHiGain
|
---|
383 | // FallTimeHiGain
|
---|
384 | // LoGainStretch
|
---|
385 | // ExtractionType: amplitude, integral
|
---|
386 | //
|
---|
387 | Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
388 | {
|
---|
389 |
|
---|
390 | Bool_t rc = kFALSE;
|
---|
391 |
|
---|
392 | if (IsEnvDefined(env, prefix, "Resolution", print))
|
---|
393 | {
|
---|
394 | SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution));
|
---|
395 | rc = kTRUE;
|
---|
396 | }
|
---|
397 | if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print))
|
---|
398 | {
|
---|
399 | SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain));
|
---|
400 | rc = kTRUE;
|
---|
401 | }
|
---|
402 | if (IsEnvDefined(env, prefix, "FallTimeHiGain", print))
|
---|
403 | {
|
---|
404 | SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain));
|
---|
405 | rc = kTRUE;
|
---|
406 | }
|
---|
407 | if (IsEnvDefined(env, prefix, "LoGainStretch", print))
|
---|
408 | {
|
---|
409 | SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch));
|
---|
410 | rc = kTRUE;
|
---|
411 | }
|
---|
412 | if (IsEnvDefined(env, prefix, "HeightTm", print))
|
---|
413 | {
|
---|
414 | fHeightTm = GetEnvValue(env, prefix, "HeightTm", fHeightTm);
|
---|
415 | rc = kTRUE;
|
---|
416 | }
|
---|
417 |
|
---|
418 | if (IsEnvDefined(env, prefix, "ExtractionType", print))
|
---|
419 | {
|
---|
420 | TString type = GetEnvValue(env, prefix, "ExtractionType", "");
|
---|
421 | type.ToLower();
|
---|
422 | type = type.Strip(TString::kBoth);
|
---|
423 | if (type==(TString)"amplitude")
|
---|
424 | SetChargeType(MExtralgoSpline::kAmplitude);
|
---|
425 | if (type==(TString)"integralabsolute")
|
---|
426 | SetChargeType(MExtralgoSpline::kIntegralAbs);
|
---|
427 | if (type==(TString)"integralrelative")
|
---|
428 | SetChargeType(MExtralgoSpline::kIntegralRel);
|
---|
429 | rc=kTRUE;
|
---|
430 | }
|
---|
431 |
|
---|
432 | return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
|
---|
433 | }
|
---|