/* ======================================================================== *\ ! ! * ! * This file is part of CheObs, the Modular Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appears in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 12/2000 ! Author(s): Qi Zhe, 06/2007 ! ! Copyright: CheObs Software Development, 2000-2009 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MPhotonEvent // // Storage container to store photon collections // // The class is designed to be extremely fast which is important taking into // account the extremely high number of photons. This has some impacts on // its handling. // // The list has to be kept consistent, i.e. without holes. // // There are two ways to achieve this: // // a) Use RemoveAt to remove an entry somewhere // b) Compress() the TClonesArray afterwards // // Compress is not the fastes, so there is an easier way. // // a) When you loop over the list and want to remove an entry copy all // following entry backward in the list, so that the hole will // be created at its end. // b) Call Shrink(n) with n the number of valid entries in your list. // // To loop over the TClonesArray you can use a TIter which has some // unnecessary overhead and therefore is slower than necessary. // // Since the list is kept consistent you can use a simple loop saving // a lot of CPU time taking into account the high number of calls to // TObjArrayIter::Next which you would create. // // Here is an example (how to remove every second entry) // // --------------------------------------------------------------------- // // Int_t cnt = 0; // // const Int_t num = event->GetNumPhotons(); // for (Int_t idx=0; idxShrink(cnt); // // ---------------------------------- or ------------------------------- // // TClonesArray &arr = MPhotonEvent->GetArray(); // // Int_t cnt = 0; // // const Int_t num = arr.GetEntriesFast(); // for (Int_t idx=0; idx(arr.UncheckedAt(idx)); // // *static_cast(arr.UncheckedAt(cnt++)) = *dat; // } // // MPhotonEvent->Shrink(cnt); // // --------------------------------------------------------------------- // // The flag for a sorted array is for speed reasons not in all conditions // maintained automatically. Especially Add() doesn't reset it. // // So be sure that if you want to sort your array it is really sorted. // // // Version 1: // ---------- // - First implementation // ///////////////////////////////////////////////////////////////////////////// #include "MPhotonEvent.h" #include #include #include #include #include "MArrayF.h" #include "MLog.h" #include "MLogManip.h" #include "MPhotonData.h" #include "MCorsikaFormat.h" ClassImp(MPhotonEvent); using namespace std; // ========================================================================== class MyClonesArray : public TClonesArray { public: TObject **FirstRef() { return fCont; } // -------------------------------------------------------------------------- // // This is an extremly optimized version of ExpandCreateFast. It only resets // the marker for the last element (fLast) to n-1 and doen't change anything // else. This implicitly assumes that the stored objects don't allocate // memory. It does not necessarily mean that the slots after fLast // are empty (set to 0). This is what is assumed in the TClonesArray. // We also don't call Changed() because it would reset Sorted. If the // array was sorted before it is also sorted now. You MUST make sure // that you only set n in a range for which valid entries have been // created before (e.g. by ExpandCreateFast). // void FastShrink(Int_t n) { fLast = n - 1; } // -------------------------------------------------------------------------- // // This is a optimized (faster) version of Delete which deletes consequtive // entries from index idx1 to idx2 (both included) and calls their // destructor. Note that there is no range checking done! // void FastRemove(Int_t idx1, Int_t idx2) { // Remove object at index idx. //if (!BoundsOk("RemoveAt", idx1)) return 0; //if (!BoundsOk("RemoveAt", idx2)) return 0; Long_t dtoronly = TObject::GetDtorOnly(); idx1 -= fLowerBound; idx2 -= fLowerBound; for (TObject **obj=fCont+idx1; obj<=fCont+idx2; obj++) { if (!*obj) continue; if ((*obj)->TestBit(kNotDeleted)) { // Tell custom operator delete() not to delete space when // object fCont[i] is deleted. Only destructors are called // for this object. TObject::SetDtorOnly(*obj); delete *obj; } *obj = 0; // recalculate array size } TObject::SetDtorOnly((void*)dtoronly); if (idx1<=fLast && fLast<=idx2) { do { fLast--; } while (fLast >= 0 && fCont[fLast] == 0); } Changed(); } //void SetSorted() { fSorted = kTRUE; } // -------------------------------------------------------------------------- // // This is an optimized version of Sort which doesn't check the // IsSortable flag before. It only sorts the entries from 0 // to GetEntriesFast(). // void UncheckedSort() { if (fSorted) return; const Int_t nentries = GetEntriesFast(); if (nentries <= 0) return; QSort(GetObjectRef(First()), fKeep->GetObjectRef(fKeep->First()), 0, TMath::Min(nentries, kMaxInt-fLowerBound)); fSorted = kTRUE; } }; // ========================================================================== // -------------------------------------------------------------------------- // // Default constructor. It initializes all arrays with zero size. // MPhotonEvent::MPhotonEvent(const char *name, const char *title) : fData("MPhotonData", 1) { fName = name ? name : "MPhotonEvent"; fTitle = title ? title : "Corsika Event Data Information"; fData.SetBit(TClonesArray::kForgetBits); fData.BypassStreamer(kFALSE); } // -------------------------------------------------------------------------- // // This is an extremly optimized version of ExpandCreateFast. It only resets // the marker for the last element (fLast) to n-1 and doen't change anything // else. This has the advantage that the allocated memory is kept but only // valid entries are written to a file. // // If the array was sorted before it is also sorted now. You MUST make sure // that you only set n in a range for which valid entries have been // created before (e.g. by ExpandCreateFast). // Int_t MPhotonEvent::Shrink(Int_t n) { /* // The number of object written by the streamer is defined by // GetEntriesFast(), i.e. this number must be shrinked to // the real array size. We use RemoveAt instead of ExpandCreate // because RemoveAt doesn't free memory. Thus in the next // iteration it can be reused and doesn't need to be reallocated. // Do not change this. It is optimized for execution speed // for (int i=fData.GetSize()-1; i>=n; i--) // fData.RemoveAt(i); const Bool_t sorted = fData.IsSorted(); MyClonesArray &loc = static_cast(fData); loc.FastRemove(n, fData.GetSize()-1); // If it was sorted before it is also sorted now. if (sorted) loc.SetSorted(); */ // fData.ExpandCreateFast(n); // Just set fLast = n -1 // Just set fLast = n -1 static_cast(fData).FastShrink(n); return fData.GetEntriesFast(); } // -------------------------------------------------------------------------- // // The resized the array. If it has to be increased in size it is done // with ExpandCreateFast. If it should be shrinked it is done with // ExpandCreateFast if n>fData.GetSize()/100 or n==0. This keeps the allocated // memory and just sets the marker for the last element in the array (fLast). // // If the allocated memory grew to huge we reset the allocated memory // by calling ExpandCreate(n) (frees the allocated storage for the // objects) and Expand(n) (frees the allocated memory for the list // of pointers to the objects) // // 100 hundred is an arbitrary number taking into account that todays // computers have a lot of memory and we don't want to free and allocate // new memory too often. // // In priciple there might be more clever methods to handle the memory. // void MPhotonEvent::Resize(Int_t n) { if (n==0 || n*100>fData.GetSize()) fData.ExpandCreateFast(n); // Just set fLast = n -1 else { fData.ExpandCreate(n); // Free memory of allocated MPhotonData fData.Expand(n); // Free memory of allocated pointers } } // Overload the AsciiWrite method to store the informations of the photons onto disc. // For each corsika/pedestal... event there is a simple header written. After this // the informations for each photon are written in one line. Bool_t MPhotonEvent::AsciiWrite(ostream &out) const { // Write a simple header. Be aware there will be written one header for each // corsika/pedestal... event. Each photon of the event will be written in one // line. out << "#"; out << "photonID" << ","; out << "tag" << ","; out << "mirrorTag" << ","; out << "posX" << ","; out << "posY" << ","; out << "cosU" << ","; out << "cosV" << ","; out << "time" << ","; out << "weight" << ","; out << "wavelength" << ","; out << "productionHeight" << ","; out << "primaryID" << endl; // Get number of photons const Int_t num = GetNumPhotons(); // Loop over all photons for (Int_t i=0; ifData.GetSize() // MPhotonData &MPhotonEvent::Add(Int_t n) { // Do not modify this. It is optimized for execution // speed and flexibility! TObject *o = 0; if (n(fData).FastShrink(n+1); } else { o=fData.New(n); } return static_cast(*o); } // -------------------------------------------------------------------------- // // Add a new photon (MPhtonData) at the end of the array. // In this case the default constructor of MPhotonData is called. // // A reference to the new object is returned. // MPhotonData &MPhotonEvent::Add() { return Add(GetNumPhotons()); } void MPhotonEvent::Sort(Bool_t force) { if (force) fData.UnSort(); static_cast(fData).UncheckedSort(); /*Sort(GetEntriesFast())*/ } // -------------------------------------------------------------------------- // // Get the i-th photon from the array. Not, for speed reasons there is no // range check so you are responsible that you do not excess the number // of photons (GetNumPhotons) // MPhotonData &MPhotonEvent::operator[](UInt_t idx) { return *static_cast(fData.UncheckedAt(idx)); } // -------------------------------------------------------------------------- // // Get the i-th photon from the array. Not, for speed reasons there is no // range check so you are responsible that you do not excess the number // of photons (GetNumPhotons) // const MPhotonData &MPhotonEvent::operator[](UInt_t idx) const { return *static_cast(fData.UncheckedAt(idx)); } // -------------------------------------------------------------------------- // // Return a pointer to the first photon if available. // MPhotonData *MPhotonEvent::GetFirst() const { return fData.GetEntriesFast()==0 ? 0 : static_cast(fData.First()); } // -------------------------------------------------------------------------- // // Return a pointer to the last photon if available. // MPhotonData *MPhotonEvent::GetLast() const { return fData.GetEntriesFast()==0 ? 0 : static_cast(fData.Last()); } // -------------------------------------------------------------------------- // // Return the number of "external" photons, i.e. which are not NightSky // Int_t MPhotonEvent::GetNumExternal() const { const Int_t n=GetNumPhotons(); Int_t rc = 0; for (int i=0; iGetTime() : 0; } // -------------------------------------------------------------------------- // // Return time of first photon, 0 if none in array. // Note: If you want this to be the latest make sure that the array // is properly sorted. // Float_t MPhotonEvent::GetTimeLast() const { const MPhotonData *dat=GetLast(); return dat ? dat->GetTime() : 0; } // -------------------------------------------------------------------------- // // Return the median devian from the median of all arrival times. // The median deviation is calculated using MMath::MedianDev. // It is the half width in which one sigma (~68%) of all times are // contained around the median. // Double_t MPhotonEvent::GetTimeMedianDev() const { const UInt_t n = GetNumPhotons(); MArrayF arr(n); for (UInt_t i=0; i0) return; for (UInt_t i=0; iRead(bunchHeader, 3 * sizeof(Int_t)); Int_t n = 0; for (int bunch = 0; bunch < bunchHeader[2]; bunch++) { Short_t buffer[8]; fInFormat->Read(buffer, 8 * sizeof(Short_t)); if (Add(n).FillEventIO(buffer)) n++; } Resize(n); fData.UnSort(); SetReadyToSave(); //*fLog << all << "Number of photon bunches: " << fData.GetEntriesFast() << endl; return kTRUE; } Int_t MPhotonEvent::ReadEventIoEvt(MCorsikaFormat *fInFormat) { Int_t bunchHeader[3]; fInFormat->Read(bunchHeader, 3 * sizeof(Int_t)); Int_t n = 0; for (int bunch = 0; bunch < bunchHeader[2]; bunch++) { Float_t buffer[8]; fInFormat->Read(buffer, 8 * sizeof(Float_t)); if (Add(n).FillEventIO(buffer)) n++; } Resize(n); fData.UnSort(); SetReadyToSave(); //*fLog << all << "Number of photon bunches: " << fData.GetEntriesFast() << endl; return kTRUE; } Int_t MPhotonEvent::ReadCorsikaEvt(Float_t * data, Int_t numEvents, Int_t arrayIdx) { Int_t n = 0; for (Int_t event = 0; event < numEvents; event++) { const Int_t rc = Add(n).FillCorsika(data + 7 * event, arrayIdx); switch (rc) { case kCONTINUE: continue; // No data in this bunch... skip it. case kERROR: return kERROR; // Error occured } // This is a photon we would like to keep later. // Increase the counter by one n++; } Resize(n); fData.UnSort(); SetReadyToSave(); //*fLog << all << "Number of photon bunches: " << fData.GetEntriesFast() << endl; return kTRUE; } // -------------------------------------------------------------------------- // // Print the array // void MPhotonEvent::Print(Option_t *) const { // This is much faster than looping over all entries and discarding // the empty ones const UInt_t n = GetNumPhotons(); for (UInt_t i=0; iGetPosY()*10); // north m.SetY(ph->GetPosX()*10); // east m.Paint(); } }