1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Sebastian Raducci 01/2004 <mailto:raducci@fisica.uniud.it>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2001-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // Cubic Spline Interpolation
|
---|
28 | //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 | #include "MCubicCoeff.h"
|
---|
31 |
|
---|
32 | #include <TMath.h>
|
---|
33 |
|
---|
34 | #include "MLog.h"
|
---|
35 | #include "MLogManip.h"
|
---|
36 |
|
---|
37 | ClassImp(MCubicCoeff);
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 |
|
---|
41 | //----------------------------------------------------------------------------
|
---|
42 | //
|
---|
43 | // Constructor (The spline is: fA(x-fX)3+fB(x-fX)2+fC(x-fX)+fY
|
---|
44 | // where x is the independent variable, 2 and 3 are exponents
|
---|
45 | //
|
---|
46 | MCubicCoeff::MCubicCoeff(Double_t x, Double_t xNext, Double_t y, Double_t yNext,
|
---|
47 | Double_t a, Double_t b, Double_t c) :
|
---|
48 | fX(x), fXNext(xNext), fA(a), fB(b), fC(c), fY(y), fYNext(yNext)
|
---|
49 | {
|
---|
50 | fH = fXNext - fX;
|
---|
51 | if (EvalMinMax())
|
---|
52 | return;
|
---|
53 |
|
---|
54 | gLog << warn << "Failed to eval interval Minimum and Maximum, returning zeros" << endl;
|
---|
55 | fMin = 0;
|
---|
56 | fMax = 0;
|
---|
57 | }
|
---|
58 |
|
---|
59 | //----------------------------------------------------------------------------
|
---|
60 | //
|
---|
61 | // Evaluate the spline at a given point
|
---|
62 | //
|
---|
63 |
|
---|
64 | Double_t MCubicCoeff::Eval(Double_t x)
|
---|
65 | {
|
---|
66 | const Double_t dx = x - fX;
|
---|
67 | return fY + dx*(fC + dx*(fB + dx*fA));
|
---|
68 | }
|
---|
69 |
|
---|
70 | //----------------------------------------------------------------------------
|
---|
71 | //
|
---|
72 | // Find min and max using derivatives. The min and max could be at the begin
|
---|
73 | // or at the end of the interval or somewhere inside the interval (in this case
|
---|
74 | // a comparison between the first derivative and zero is made)
|
---|
75 | // The first derivative coefficients are obviously: 3*fA, 2*fB, fC
|
---|
76 | //
|
---|
77 | Bool_t MCubicCoeff::EvalMinMax()
|
---|
78 | {
|
---|
79 | fMin = fY;
|
---|
80 | fMax = fY;
|
---|
81 |
|
---|
82 | fAbMin = fX;
|
---|
83 | fAbMax = fX;
|
---|
84 |
|
---|
85 | if (fYNext < fMin)
|
---|
86 | {
|
---|
87 | fMin = fYNext;
|
---|
88 | fAbMin = fXNext;
|
---|
89 | }
|
---|
90 | if (fYNext > fMax)
|
---|
91 | {
|
---|
92 | fMax = fYNext;
|
---|
93 | fAbMax = fXNext;
|
---|
94 | }
|
---|
95 |
|
---|
96 | const Double_t delta = fB*fB*4 - fA*fC*12;
|
---|
97 | if (delta >= 0 && fA != 0)
|
---|
98 | {
|
---|
99 | const Double_t sqrtDelta = TMath::Sqrt(delta);
|
---|
100 |
|
---|
101 | const Double_t xPlus = (-fB*2 + sqrtDelta)/(fA*6);
|
---|
102 | const Double_t xMinus = (-fB*2 - sqrtDelta)/(fA*6);
|
---|
103 |
|
---|
104 | if (xPlus >= 0 && xPlus <= fH)
|
---|
105 | {
|
---|
106 | const Double_t tempMinMax = Eval(fX+xPlus);
|
---|
107 | if (tempMinMax < fMin)
|
---|
108 | {
|
---|
109 | fMin = tempMinMax;
|
---|
110 | fAbMin = fX + xPlus;
|
---|
111 | }
|
---|
112 | if (tempMinMax > fMax)
|
---|
113 | {
|
---|
114 | fMax = tempMinMax;
|
---|
115 | fAbMax = fX + xPlus;
|
---|
116 | }
|
---|
117 | }
|
---|
118 | if (xMinus >= 0 && xMinus <= fH)
|
---|
119 | {
|
---|
120 | const Double_t tempMinMax = Eval(fX+xMinus);
|
---|
121 | if (tempMinMax < fMin)
|
---|
122 | {
|
---|
123 | fMin = tempMinMax;
|
---|
124 | fAbMin = fX + xMinus;
|
---|
125 | }
|
---|
126 | if (tempMinMax > fMax)
|
---|
127 | {
|
---|
128 | fMax = tempMinMax;
|
---|
129 | fAbMax = fX + xMinus;
|
---|
130 | }
|
---|
131 | }
|
---|
132 | return kTRUE;
|
---|
133 | }
|
---|
134 |
|
---|
135 | /* if fA is zero then we have only one possible solution */
|
---|
136 | if (fA == 0 && fB != 0)
|
---|
137 | {
|
---|
138 | const Double_t xSolo = -fC/(fB*2);
|
---|
139 |
|
---|
140 | if (xSolo < 0 || xSolo > fH)
|
---|
141 | return kTRUE;
|
---|
142 |
|
---|
143 | const Double_t tempMinMax = Eval(fX+xSolo);
|
---|
144 | if (tempMinMax < fMin)
|
---|
145 | {
|
---|
146 | fMin = tempMinMax;
|
---|
147 | fAbMin = fX + xSolo;
|
---|
148 | }
|
---|
149 | if (tempMinMax > fMax)
|
---|
150 | {
|
---|
151 | fMax = tempMinMax;
|
---|
152 | fAbMax = fX + xSolo;
|
---|
153 | }
|
---|
154 | return kTRUE;
|
---|
155 | }
|
---|
156 |
|
---|
157 | return kTRUE;
|
---|
158 | }
|
---|
159 | //-------------------------------------------------------------------------
|
---|
160 | //
|
---|
161 | // Given y finds x using the cubic (cardan) formula.
|
---|
162 | //
|
---|
163 | // we consider the following form: x3 + ax2 + bx + c = 0 where
|
---|
164 | // a = fB/fA, b = fC/fA, c = (fY - y)/fA
|
---|
165 | //
|
---|
166 | // There could be three or one real solutions
|
---|
167 | //
|
---|
168 | Short_t MCubicCoeff::FindCardanRoot(Double_t y, Double_t *x)
|
---|
169 | {
|
---|
170 | const Double_t a = fB/fA;
|
---|
171 | const Double_t b = fC/fA;
|
---|
172 | const Double_t c = (fY - y)/fA;
|
---|
173 |
|
---|
174 | const Double_t q = (a*a - b*3)/9;
|
---|
175 | const Double_t r = (a*a*a*2 - a*b*9 + c*27)/54;
|
---|
176 |
|
---|
177 | const Double_t aOver3 = a/3;
|
---|
178 | const Double_t r2 = r*r;
|
---|
179 | const Double_t q3 = q*q*q;
|
---|
180 |
|
---|
181 | if (r2 < q3) //3 real sol
|
---|
182 | {
|
---|
183 | const Double_t sqrtQ = TMath::Sqrt(q);
|
---|
184 | const Double_t min2SqQ = -sqrtQ*2;
|
---|
185 | const Double_t theta = TMath::ACos(r/(sqrtQ*sqrtQ*sqrtQ));
|
---|
186 |
|
---|
187 | x[0] = min2SqQ * TMath::Cos(theta/3) - aOver3;
|
---|
188 | x[1] = min2SqQ * TMath::Cos((theta+TMath::TwoPi())/3) - aOver3;
|
---|
189 | x[2] = min2SqQ * TMath::Cos((theta-TMath::TwoPi())/3) - aOver3;
|
---|
190 |
|
---|
191 | for (Int_t i = 0; i < 3; i++)
|
---|
192 | if (x[i] >= 0 && x[i] <= fH)
|
---|
193 | {
|
---|
194 | x[i] += fX;
|
---|
195 | return i;
|
---|
196 | }
|
---|
197 | return -1;
|
---|
198 | }
|
---|
199 |
|
---|
200 | const Double_t s = r==0 ? 0 : -TMath::Sign(TMath::Power(TMath::Abs(r) + TMath::Sqrt(r2 - q3), 1./3), r);
|
---|
201 |
|
---|
202 | x[0] = s==0 ? - aOver3 : (s + q/s) - aOver3;
|
---|
203 |
|
---|
204 | if (x[0] < 0 || x[0] > fH)
|
---|
205 | return -1;
|
---|
206 |
|
---|
207 | x[0] += fX;
|
---|
208 | return 0;
|
---|
209 | }
|
---|
210 |
|
---|
211 | //------------------------------------------------------------------------------------
|
---|
212 | //
|
---|
213 | // return true if x is in this interval
|
---|
214 | //
|
---|
215 |
|
---|
216 | Bool_t MCubicCoeff :: IsIn(Double_t x)
|
---|
217 | {
|
---|
218 | return x >= fX && x <= fXNext;
|
---|
219 | }
|
---|