1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Markus Gaug 01/2004 <mailto:markus@ifae.es>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2001-2004
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | // //
|
---|
27 | // Fast Fourier Transforms //
|
---|
28 | // //
|
---|
29 | // (Most of the code is adapted from Numerical Recipies in C++, 2nd ed., //
|
---|
30 | // pp. 509-563) //
|
---|
31 | // //
|
---|
32 | // Usage: //
|
---|
33 | // //
|
---|
34 | // 1) Functions RealFunctionFFT: (FOURIER TRANSFORM) //
|
---|
35 | // * Take as argument arrays of real numbers, //
|
---|
36 | // in some cases the dimension of the array has to be given separately//
|
---|
37 | // * Return a COMPLEX array with the following meaning: //
|
---|
38 | // array[0]: The value of F(0) (has only real component) //
|
---|
39 | // array[1]: The value of F(N/2) (has only real component) //
|
---|
40 | // array[2i]: The real part of F(i) //
|
---|
41 | // array[2i+1]: The imaginary part of F(i) //
|
---|
42 | // * Note that F(N-i)* = F(i), therefore only the positive frequency //
|
---|
43 | // half is stored. //
|
---|
44 | // * The dimension MUST be an integer power of 2, //
|
---|
45 | // otherwise, the array will be shortened!! //
|
---|
46 | // //
|
---|
47 | // 2) Functions RealFunctionIFFT: (INVERSER FOURIER TRANSFORM) //
|
---|
48 | // * Take as argument a COMPLEX array //
|
---|
49 | // of Fourier-transformed REAL numbers //
|
---|
50 | // with the following meaning: //
|
---|
51 | // array[0]: The value of F(0) (has only real component) //
|
---|
52 | // array[1]: The value of F(N/2) (has only real component) //
|
---|
53 | // array[2i]: The real part of F(i) //
|
---|
54 | // array[2i+1]: The imaginary part of F(i) //
|
---|
55 | // * Returns the original complex array of dimension 2N-1 //
|
---|
56 | // //
|
---|
57 | // 3) Functions PowerSpectrumDensity: //
|
---|
58 | // * Return a histogram with the spectral density, i.e. //
|
---|
59 | // P(k) = 1/(N*N) * |F(k)|*|F(k)| //
|
---|
60 | // * The histogram is ranged between 0 and 1./(2*binwidth) //
|
---|
61 | // * The number of bins equals N/2+1 //
|
---|
62 | // * Note that histograms with unequal binwidth can not yet be treated! //
|
---|
63 | // * If the PSD does NOT CONVERGE to 0 at the maximum bin, //
|
---|
64 | // you HAVE TO sample your data finer! //
|
---|
65 | //
|
---|
66 | // Fourier-Transformation:
|
---|
67 | // =======================
|
---|
68 |
|
---|
69 | // (taken from http://www.parasitaere-kapazitaeten.net/Pd/ft.htm)
|
---|
70 | //
|
---|
71 | // The Fourier-Transformation is a mathematical function that breaks
|
---|
72 | // down a signal (like sound) into its frequency-spectrum as a set of
|
---|
73 | // sinusoidal components, converting it from the Time Domain to the
|
---|
74 | // Frequency Domain.
|
---|
75 | //
|
---|
76 | // In the Time Domain the signal x[ ] consists of N samples, labeled
|
---|
77 | // from 0 to N-1. In the Frequency Domain the RFFT produces two signals
|
---|
78 | // (signalvectors), treated as complex numbers representing the Real Part:
|
---|
79 | // Re X[ ] and the Imaginary Part: Im X[ ]. They are seen as the Cosine-
|
---|
80 | // und Sine-Components of the base frequencies. Each of these two signals
|
---|
81 | // contains one more sample than the half of the original signal: N/2 + 1
|
---|
82 | // samples. (this results from the fact, that the sine-components of the
|
---|
83 | // first frequency (0) and the last (nyquist, N/2) are always 0). With the
|
---|
84 | // complex Fourier-Transformation N complexe values are transformed to N
|
---|
85 | // new complex values. For both it applies to: the Frequency Domain
|
---|
86 | // contains exactly the same information as the Time-Domain.
|
---|
87 | //
|
---|
88 | // A Real FFT over 64 samples produces values for 33 cosine- and 33
|
---|
89 | // sine-wave-amplitudes with the frequencies 0, 1, 2, 3, ..., 30, 31, 32.
|
---|
90 | // The first value (frequency 0) is the DC (direct current), the other
|
---|
91 | // values have to be seen in practice as factors of a
|
---|
92 | // fundamental-frequency which can be calculated by dividing samplerate by
|
---|
93 | // windowsize. The highest frequency is the nyquist-frequency
|
---|
94 | // (samplerate/2).
|
---|
95 | //
|
---|
96 | //////////////////////////////////////////////////////////////////////////////
|
---|
97 |
|
---|
98 | #include "MFFT.h"
|
---|
99 |
|
---|
100 | #include <TMath.h>
|
---|
101 |
|
---|
102 | #include "MLog.h"
|
---|
103 | #include "MLogManip.h"
|
---|
104 |
|
---|
105 | #include "MArrayD.h"
|
---|
106 | #include "MArrayF.h"
|
---|
107 | #include "MArrayI.h"
|
---|
108 |
|
---|
109 | ClassImp(MFFT);
|
---|
110 |
|
---|
111 | using namespace std;
|
---|
112 |
|
---|
113 | // ---------------------------------------------------------------------------
|
---|
114 | //
|
---|
115 | // Default Constructor
|
---|
116 | // Initializes random number generator and default variables
|
---|
117 | //
|
---|
118 | MFFT::MFFT() : fDim(0)
|
---|
119 | {
|
---|
120 | }
|
---|
121 |
|
---|
122 | // --------------------------------------------------------------------------
|
---|
123 | //
|
---|
124 | // Destructor.
|
---|
125 | //
|
---|
126 | MFFT::~MFFT()
|
---|
127 | {
|
---|
128 | }
|
---|
129 |
|
---|
130 | void MFFT::TransformF(const Int_t isign, TArrayF &data)
|
---|
131 | {
|
---|
132 |
|
---|
133 | UInt_t n,mmax,m,j,istep,i;
|
---|
134 | Float_t wtemp,wr,wpr,wpi,wi,theta;
|
---|
135 | Float_t tempr,tempi;
|
---|
136 |
|
---|
137 | Int_t nn = fDim/2;
|
---|
138 | n = nn << 1;
|
---|
139 |
|
---|
140 | //
|
---|
141 | // The bit-reversal section of the routine:
|
---|
142 | // Exchange the two complex numbers
|
---|
143 | //
|
---|
144 | j=1;
|
---|
145 | for (i=1;i<n;i+=2) {
|
---|
146 | if (j > i) {
|
---|
147 | Swap(data[j-1],data[i-1]);
|
---|
148 | Swap(data[j],data[i]);
|
---|
149 | }
|
---|
150 | m=nn;
|
---|
151 | while (m >= 2 && j > m) {
|
---|
152 | j -= m;
|
---|
153 | m >>= 1;
|
---|
154 | }
|
---|
155 | j += m;
|
---|
156 | }
|
---|
157 | //
|
---|
158 | // Here begins the Danielson-Lanczos section of the routine
|
---|
159 | //
|
---|
160 | mmax=2;
|
---|
161 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
---|
162 |
|
---|
163 | istep = mmax << 1;
|
---|
164 | //
|
---|
165 | // Initialize the trigonometric recurrence:
|
---|
166 | //
|
---|
167 | theta = isign*(6.28318530717959/mmax);
|
---|
168 |
|
---|
169 | wtemp = TMath::Sin(0.5*theta);
|
---|
170 | wpr = -2.0*wtemp*wtemp;
|
---|
171 | wpi = TMath::Sin(theta);
|
---|
172 |
|
---|
173 | wr=1.0;
|
---|
174 | wi=0.0;
|
---|
175 |
|
---|
176 | for (m=1; m<mmax; m+=2) {
|
---|
177 | for (i=m; i<=n; i+=istep) {
|
---|
178 | //
|
---|
179 | // The Danielson-Lanczos formula:
|
---|
180 | //
|
---|
181 | j = i+mmax;
|
---|
182 | tempr = wr*data[j-1] - wi*data[j];
|
---|
183 | tempi = wr*data[j] + wi*data[j-1];
|
---|
184 | data[j-1] = data[i-1] - tempr;
|
---|
185 | data[j] = data[i] - tempi;
|
---|
186 | data[i-1] += tempr;
|
---|
187 | data[i] += tempi;
|
---|
188 | }
|
---|
189 |
|
---|
190 | //
|
---|
191 | // Trigonometric recurrence
|
---|
192 | //
|
---|
193 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
---|
194 | wi = wi*wpr + wtemp*wpi+wi;
|
---|
195 |
|
---|
196 | }
|
---|
197 | mmax=istep;
|
---|
198 | }
|
---|
199 | }
|
---|
200 |
|
---|
201 |
|
---|
202 | void MFFT::TransformD(const Int_t isign, TArrayD &data)
|
---|
203 | {
|
---|
204 |
|
---|
205 | UInt_t n,mmax,m,j,istep,i;
|
---|
206 | Double_t wtemp,wr,wpr,wpi,wi,theta;
|
---|
207 | Double_t tempr,tempi;
|
---|
208 |
|
---|
209 | Int_t nn = fDim/2;
|
---|
210 | n = nn << 1;
|
---|
211 |
|
---|
212 | //
|
---|
213 | // The bit-reversal section of the routine:
|
---|
214 | // Exchange the two complex numbers
|
---|
215 | //
|
---|
216 | j=1;
|
---|
217 | for (i=1;i<n;i+=2) {
|
---|
218 | if (j > i) {
|
---|
219 | Swap(data[j-1],data[i-1]);
|
---|
220 | Swap(data[j],data[i]);
|
---|
221 | }
|
---|
222 | m=nn;
|
---|
223 | while (m >= 2 && j > m) {
|
---|
224 | j -= m;
|
---|
225 | m >>= 1;
|
---|
226 | }
|
---|
227 | j += m;
|
---|
228 | }
|
---|
229 | //
|
---|
230 | // Here begins the Danielson-Lanczos section of the routine
|
---|
231 | //
|
---|
232 | mmax=2;
|
---|
233 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
---|
234 |
|
---|
235 | istep = mmax << 1;
|
---|
236 | //
|
---|
237 | // Initialize the trigonometric recurrence:
|
---|
238 | //
|
---|
239 | theta = isign*(6.28318530717959/mmax);
|
---|
240 |
|
---|
241 | wtemp = TMath::Sin(0.5*theta);
|
---|
242 | wpr = -2.0*wtemp*wtemp;
|
---|
243 | wpi = TMath::Sin(theta);
|
---|
244 |
|
---|
245 | wr=1.0;
|
---|
246 | wi=0.0;
|
---|
247 |
|
---|
248 | for (m=1; m<mmax; m+=2) {
|
---|
249 | for (i=m; i<=n; i+=istep) {
|
---|
250 | //
|
---|
251 | // The Danielson-Lanczos formula:
|
---|
252 | //
|
---|
253 | j = i+mmax;
|
---|
254 | tempr = wr*data[j-1] - wi*data[j];
|
---|
255 | tempi = wr*data[j] + wi*data[j-1];
|
---|
256 | data[j-1] = data[i-1] - tempr;
|
---|
257 | data[j] = data[i] - tempi;
|
---|
258 | data[i-1] += tempr;
|
---|
259 | data[i] += tempi;
|
---|
260 | }
|
---|
261 |
|
---|
262 | //
|
---|
263 | // Trigonometric recurrence
|
---|
264 | //
|
---|
265 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
---|
266 | wi = wi*wpr + wtemp*wpi+wi;
|
---|
267 |
|
---|
268 | }
|
---|
269 | mmax=istep;
|
---|
270 | }
|
---|
271 | }
|
---|
272 |
|
---|
273 | //
|
---|
274 | // Calculates the Fourier transform of a set of n real-valued data points.
|
---|
275 | // Replaces this data (which is stored in array data[1..n]) by the positive
|
---|
276 | // frequency half of its complex Fourier transform. The real-valued first
|
---|
277 | // and last components of the complex transform are returned as elements
|
---|
278 | // data[1] and data[2], respectively. n must be a power of 2. This routine
|
---|
279 | // also calculates the inverse transform of a complex data array if it is
|
---|
280 | // the transform of real data. (Result in this case mus be multiplied by
|
---|
281 | // 2/n.). From NUMERICAL RECIPES IN C++.
|
---|
282 | //
|
---|
283 | void MFFT::RealFTF(const Int_t isign)
|
---|
284 | {
|
---|
285 |
|
---|
286 | Int_t i,i1,i2,i3,i4;
|
---|
287 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
---|
288 | Float_t wr,wi,wpr,wpi,wtemp,theta;
|
---|
289 |
|
---|
290 | //
|
---|
291 | // Initialize the recurrence
|
---|
292 | //
|
---|
293 | theta = TMath::Pi() / (Double_t)(fDim>>1);
|
---|
294 |
|
---|
295 | if(isign==1) // forward transform
|
---|
296 | {
|
---|
297 | c2 = -0.5;
|
---|
298 | TransformF(1,fDataF);
|
---|
299 | }
|
---|
300 | else // set up backward transform
|
---|
301 | {
|
---|
302 | c2 = 0.5;
|
---|
303 | theta = -theta;
|
---|
304 | }
|
---|
305 |
|
---|
306 | wtemp = TMath::Sin(0.5*theta);
|
---|
307 | wpr = -2.0*wtemp*wtemp;
|
---|
308 | wpi = TMath::Sin(theta);
|
---|
309 |
|
---|
310 | wr = 1.0 + wpr;
|
---|
311 | wi = wpi;
|
---|
312 |
|
---|
313 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
---|
314 | {
|
---|
315 |
|
---|
316 | i2 = 1 + (i1 = i+i);
|
---|
317 | i4 = 1 + (i3 = fDim-i1);
|
---|
318 |
|
---|
319 | //
|
---|
320 | // The two separate transforms are separated out of the data
|
---|
321 | //
|
---|
322 | h1r = c1*(fDataF[i1]+fDataF[i3]);
|
---|
323 | h1i = c1*(fDataF[i2]-fDataF[i4]);
|
---|
324 | h2r = -c2*(fDataF[i2]+fDataF[i4]);
|
---|
325 | h2i = c2*(fDataF[i1]-fDataF[i3]);
|
---|
326 |
|
---|
327 | //
|
---|
328 | // Here, they are recombined to from the true transform
|
---|
329 | // of the orginal real data
|
---|
330 | //
|
---|
331 | fDataF[i1] = h1r + wr*h2r - wi*h2i;
|
---|
332 | fDataF[i2] = h1i + wr*h2i + wi*h2r;
|
---|
333 | fDataF[i3] = h1r - wr*h2r + wi*h2i;
|
---|
334 | fDataF[i4] = -h1i + wr*h2i + wi*h2r;
|
---|
335 |
|
---|
336 | //
|
---|
337 | // The recurrence
|
---|
338 | //
|
---|
339 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
---|
340 | wi = wi*wpr + wtemp*wpi + wi;
|
---|
341 | }
|
---|
342 |
|
---|
343 | //
|
---|
344 | // Squeeze the first and last data together to get them all
|
---|
345 | // within the original array
|
---|
346 | //
|
---|
347 | if(isign==1)
|
---|
348 | {
|
---|
349 | fDataF[0] = (h1r=fDataF[0]) + fDataF[1];
|
---|
350 | fDataF[1] = h1r - fDataF[1];
|
---|
351 | }
|
---|
352 | else
|
---|
353 | {
|
---|
354 |
|
---|
355 | fDataF[0] = c1*((h1r=fDataF[0]) + fDataF[1]);
|
---|
356 | fDataF[1] = c1*(h1r-fDataF[1]);
|
---|
357 |
|
---|
358 | //
|
---|
359 | // The inverse transform for the case isign = -1
|
---|
360 | //
|
---|
361 | TransformF(-1,fDataF);
|
---|
362 |
|
---|
363 | //
|
---|
364 | // normalize correctly (not done in original NR's)
|
---|
365 | //
|
---|
366 | for(i=1;i<=fDim;i++)
|
---|
367 | fDataF[i] *= (2./fDim);
|
---|
368 | }
|
---|
369 | }
|
---|
370 | void MFFT::RealFTD(const Int_t isign)
|
---|
371 | {
|
---|
372 |
|
---|
373 | Int_t i,i1,i2,i3,i4;
|
---|
374 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
---|
375 | Double_t wr,wi,wpr,wpi,wtemp,theta;
|
---|
376 |
|
---|
377 | //
|
---|
378 | // Initialize the recurrence
|
---|
379 | //
|
---|
380 | theta=3.141592653589793/(Double_t) (fDim>>1);
|
---|
381 |
|
---|
382 | if(isign==1) // forward transform
|
---|
383 | {
|
---|
384 | c2 = -0.5;
|
---|
385 | TransformD(1,fDataD);
|
---|
386 | }
|
---|
387 | else // set up backward transform
|
---|
388 | {
|
---|
389 | c2 = 0.5;
|
---|
390 | theta = -theta;
|
---|
391 | }
|
---|
392 |
|
---|
393 | wtemp = TMath::Sin(0.5*theta);
|
---|
394 | wpr = -2.0*wtemp*wtemp;
|
---|
395 | wpi = TMath::Sin(theta);
|
---|
396 |
|
---|
397 | wr = 1.0 + wpr;
|
---|
398 | wi = wpi;
|
---|
399 |
|
---|
400 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
---|
401 | {
|
---|
402 |
|
---|
403 | i2 = 1 + (i1 = i+i);
|
---|
404 | i4 = 1 + (i3 = fDim-i1);
|
---|
405 |
|
---|
406 | //
|
---|
407 | // The two separate transforms are separated out of the data
|
---|
408 | //
|
---|
409 | h1r = c1*(fDataD[i1]+fDataD[i3]);
|
---|
410 | h1i = c1*(fDataD[i2]-fDataD[i4]);
|
---|
411 | h2r = -c2*(fDataD[i2]+fDataD[i4]);
|
---|
412 | h2i = c2*(fDataD[i1]-fDataD[i3]);
|
---|
413 |
|
---|
414 | //
|
---|
415 | // Here, they are recombined to from the true transform
|
---|
416 | // of the orginal real data
|
---|
417 | //
|
---|
418 | fDataD[i1] = h1r + wr*h2r - wi*h2i;
|
---|
419 | fDataD[i2] = h1i + wr*h2i + wi*h2r;
|
---|
420 | fDataD[i3] = h1r - wr*h2r + wi*h2i;
|
---|
421 | fDataD[i4] = -h1i + wr*h2i + wi*h2r;
|
---|
422 |
|
---|
423 | //
|
---|
424 | // The recurrence
|
---|
425 | //
|
---|
426 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
---|
427 | wi = wi*wpr + wtemp*wpi + wi;
|
---|
428 | }
|
---|
429 |
|
---|
430 | //
|
---|
431 | // Squeeze the first and last data together to get them all
|
---|
432 | // within the original array
|
---|
433 | //
|
---|
434 | if(isign==1)
|
---|
435 | {
|
---|
436 | fDataD[0] = (h1r=fDataD[0]) + fDataD[1];
|
---|
437 | fDataD[1] = h1r - fDataD[1];
|
---|
438 | }
|
---|
439 | else
|
---|
440 | {
|
---|
441 |
|
---|
442 | fDataD[0] = c1*((h1r=fDataD[0]) + fDataD[1]);
|
---|
443 | fDataD[1] = c1*(h1r-fDataD[1]);
|
---|
444 |
|
---|
445 | //
|
---|
446 | // The inverse transform for the case isign = -1
|
---|
447 | //
|
---|
448 | TransformD(-1,fDataD);
|
---|
449 |
|
---|
450 | //
|
---|
451 | // normalize correctly (not done in original NR's)
|
---|
452 | //
|
---|
453 | for(i=1;i<=fDim;i++)
|
---|
454 | fDataD[i] *= (2./fDim);
|
---|
455 | }
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 | //
|
---|
460 | // Fast Fourier Transform for float arrays
|
---|
461 | //
|
---|
462 | Float_t* MFFT::RealFunctionFFT(const Int_t n, const Float_t *data)
|
---|
463 | {
|
---|
464 |
|
---|
465 | fDim = n;
|
---|
466 | CheckDim(n);
|
---|
467 |
|
---|
468 | fDataF.Set(fDim);
|
---|
469 | //
|
---|
470 | // Clone the array
|
---|
471 | //
|
---|
472 | for (Int_t i=0;i<fDim;i++)
|
---|
473 | fDataF[i] = data[i];
|
---|
474 |
|
---|
475 | RealFTF(1);
|
---|
476 |
|
---|
477 | return fDataF.GetArray();
|
---|
478 |
|
---|
479 | }
|
---|
480 |
|
---|
481 | //
|
---|
482 | // Fast Inverse Fourier Transform for float arrays
|
---|
483 | //
|
---|
484 | Float_t* MFFT::RealFunctionIFFT(const Int_t n, const Float_t *data)
|
---|
485 | {
|
---|
486 |
|
---|
487 | fDim = n;
|
---|
488 | CheckDim(fDim);
|
---|
489 |
|
---|
490 | fDataF.Set(fDim);
|
---|
491 | //
|
---|
492 | // Clone the array
|
---|
493 | //
|
---|
494 | for (Int_t i=0;i<fDim;i++)
|
---|
495 | fDataF[i] = data[i];
|
---|
496 |
|
---|
497 | RealFTF(-1);
|
---|
498 |
|
---|
499 | return fDataF.GetArray();
|
---|
500 |
|
---|
501 | }
|
---|
502 |
|
---|
503 | //
|
---|
504 | // Fast Fourier Transform for double arrays
|
---|
505 | //
|
---|
506 | Double_t* MFFT::RealFunctionFFT(const Int_t n, const Double_t *data)
|
---|
507 | {
|
---|
508 |
|
---|
509 | fDim = n;
|
---|
510 | CheckDim(n);
|
---|
511 |
|
---|
512 | fDataD.Set(fDim);
|
---|
513 | //
|
---|
514 | // Clone the array
|
---|
515 | //
|
---|
516 | for (Int_t i=0;i<fDim;i++)
|
---|
517 | fDataD[i] = data[i];
|
---|
518 |
|
---|
519 | RealFTD(1);
|
---|
520 |
|
---|
521 | return fDataD.GetArray();
|
---|
522 |
|
---|
523 | }
|
---|
524 |
|
---|
525 | //
|
---|
526 | // Fast Inverse Fourier Transform for double arrays
|
---|
527 | //
|
---|
528 | Double_t* MFFT::RealFunctionIFFT(const Int_t n, const Double_t *data)
|
---|
529 | {
|
---|
530 |
|
---|
531 | fDim = n;
|
---|
532 | CheckDim(fDim);
|
---|
533 |
|
---|
534 | fDataD.Set(fDim);
|
---|
535 | //
|
---|
536 | // Clone the array
|
---|
537 | //
|
---|
538 | for (Int_t i=0;i<fDim;i++)
|
---|
539 | fDataD[i] = data[i];
|
---|
540 |
|
---|
541 | RealFTD(-1);
|
---|
542 |
|
---|
543 | return fDataD.GetArray();
|
---|
544 |
|
---|
545 | }
|
---|
546 |
|
---|
547 | //
|
---|
548 | // Fast Fourier Transform for TArrayF's
|
---|
549 | //
|
---|
550 | TArrayF* MFFT::RealFunctionFFT(const TArrayF *data)
|
---|
551 | {
|
---|
552 |
|
---|
553 | fDim = data->GetSize();
|
---|
554 | CheckDim(fDim);
|
---|
555 |
|
---|
556 | fDataF.Set(fDim);
|
---|
557 | //
|
---|
558 | // Clone the array
|
---|
559 | //
|
---|
560 | for (Int_t i=0;i<fDim;i++)
|
---|
561 | fDataF[i] = data->At(i);
|
---|
562 |
|
---|
563 | RealFTF(1);
|
---|
564 |
|
---|
565 | return new TArrayF(fDim,fDataF.GetArray());
|
---|
566 |
|
---|
567 | }
|
---|
568 |
|
---|
569 | //
|
---|
570 | // Inverse Fast Fourier Transform for TArrayF's
|
---|
571 | //
|
---|
572 | TArrayF* MFFT::RealFunctionIFFT(const TArrayF *data)
|
---|
573 | {
|
---|
574 |
|
---|
575 | fDim = data->GetSize();
|
---|
576 | CheckDim(fDim);
|
---|
577 |
|
---|
578 | fDataF.Set(fDim);
|
---|
579 | //
|
---|
580 | // Clone the array
|
---|
581 | //
|
---|
582 | for (Int_t i=0;i<fDim;i++)
|
---|
583 | fDataF[i] = data->At(i);
|
---|
584 |
|
---|
585 | RealFTF(-1);
|
---|
586 |
|
---|
587 | return new TArrayF(fDim,fDataF.GetArray());
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 | //
|
---|
592 | // Fast Fourier Transform for TArrayD's
|
---|
593 | //
|
---|
594 | TArrayD* MFFT::RealFunctionFFT(const TArrayD *data)
|
---|
595 | {
|
---|
596 |
|
---|
597 | fDim = data->GetSize();
|
---|
598 | CheckDim(fDim);
|
---|
599 |
|
---|
600 | fDataD.Set(fDim);
|
---|
601 | //
|
---|
602 | // Clone the array
|
---|
603 | //
|
---|
604 | for (Int_t i=0;i<fDim;i++)
|
---|
605 | fDataD[i] = data->At(i);
|
---|
606 |
|
---|
607 | RealFTD(1);
|
---|
608 |
|
---|
609 | return new TArrayD(fDim,fDataD.GetArray());
|
---|
610 |
|
---|
611 | }
|
---|
612 |
|
---|
613 | //
|
---|
614 | // Inverse Fast Fourier Transform for TArrayD's
|
---|
615 | //
|
---|
616 | TArrayD* MFFT::RealFunctionIFFT(const TArrayD *data)
|
---|
617 | {
|
---|
618 |
|
---|
619 | fDim = data->GetSize();
|
---|
620 | CheckDim(fDim);
|
---|
621 |
|
---|
622 | fDataD.Set(fDim);
|
---|
623 | //
|
---|
624 | // Clone the array
|
---|
625 | //
|
---|
626 | for (Int_t i=0;i<fDim;i++)
|
---|
627 | fDataD[i] = data->At(i);
|
---|
628 |
|
---|
629 | RealFTD(-1);
|
---|
630 |
|
---|
631 | return new TArrayD(fDim,fDataD.GetArray());
|
---|
632 | }
|
---|
633 |
|
---|
634 | //----------------------------------------------------------
|
---|
635 | //
|
---|
636 | // Power Spectrum Density Calculation
|
---|
637 | //
|
---|
638 | TH1D* MFFT::PowerSpectrumDensity(const TH1D *hist)
|
---|
639 | {
|
---|
640 |
|
---|
641 | TH1D *newhist = (TH1D*)CheckHist(hist,1);
|
---|
642 |
|
---|
643 | fDataD.Set(fDim);
|
---|
644 | //
|
---|
645 | // Copy the hist into an array
|
---|
646 | //
|
---|
647 | for (Int_t i=0;i<fDim;i++)
|
---|
648 | fDataD[i] = hist->GetBinContent(i);
|
---|
649 |
|
---|
650 | RealFTD(1);
|
---|
651 |
|
---|
652 | Int_t dim2 = fDim*fDim;
|
---|
653 | Double_t c02;
|
---|
654 | Double_t ck2;
|
---|
655 | Double_t cn2;
|
---|
656 | //
|
---|
657 | // Fill the new histogram:
|
---|
658 | //
|
---|
659 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
660 | // (stored in fData{0])
|
---|
661 | //
|
---|
662 | c02 = fDataD[0]*fDataD[0];
|
---|
663 | newhist->Fill(c02/dim2);
|
---|
664 | //
|
---|
665 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)| + |C(N-k)|*|C(N-k)|)
|
---|
666 | //
|
---|
667 | for (Int_t k=2;k<fDim-2;k+=2)
|
---|
668 | {
|
---|
669 |
|
---|
670 | Int_t ki = k+1;
|
---|
671 | ck2 = (fDataD[k]*fDataD[k] + fDataD[ki]*fDataD[ki]);
|
---|
672 | newhist->Fill(ck2/dim2);
|
---|
673 | }
|
---|
674 | //
|
---|
675 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
676 | // (stored in fData[1])
|
---|
677 | //
|
---|
678 | cn2 = (fDataD[1]*fDataD[1]);
|
---|
679 | newhist->Fill(cn2/dim2);
|
---|
680 |
|
---|
681 | return newhist;
|
---|
682 | }
|
---|
683 |
|
---|
684 | // -------------------------------------------------
|
---|
685 | //
|
---|
686 | // Power Spectrum Density calculation for TArrayF
|
---|
687 | //
|
---|
688 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayF *array)
|
---|
689 | {
|
---|
690 |
|
---|
691 | fDim = array->GetSize();
|
---|
692 | CheckDim(fDim);
|
---|
693 |
|
---|
694 | fDataF.Set(fDim);
|
---|
695 | //
|
---|
696 | // Copy the hist into an array
|
---|
697 | //
|
---|
698 | for (Int_t i=0;i<fDim;i++)
|
---|
699 | fDataF[i] = array->At(i);
|
---|
700 |
|
---|
701 | RealFTF(1);
|
---|
702 |
|
---|
703 | const Int_t dim2 = fDim*fDim;
|
---|
704 | const Int_t dim05 = fDim/2;
|
---|
705 | Float_t c02;
|
---|
706 | Float_t ck2;
|
---|
707 | Float_t cn2;
|
---|
708 |
|
---|
709 | TArrayF *newarray = new TArrayF(dim05);
|
---|
710 |
|
---|
711 | //
|
---|
712 | // Fill the new histogram:
|
---|
713 | //
|
---|
714 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
715 | //
|
---|
716 | c02 = (fDataF[0]*fDataF[0]);
|
---|
717 | newarray->AddAt(c02/dim2,0);
|
---|
718 | //
|
---|
719 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
720 | //
|
---|
721 | for (Int_t k=1;k<dim05-1;k++)
|
---|
722 | {
|
---|
723 | const Int_t k2 = k+k;
|
---|
724 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
---|
725 | newarray->AddAt(ck2/dim2,k);
|
---|
726 | }
|
---|
727 | //
|
---|
728 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
729 | //
|
---|
730 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
731 | newarray->AddAt(cn2,dim05-1);
|
---|
732 |
|
---|
733 | return newarray;
|
---|
734 | }
|
---|
735 |
|
---|
736 | // -------------------------------------------------
|
---|
737 | //
|
---|
738 | // Power Spectrum Density calculation for TArrayI
|
---|
739 | //
|
---|
740 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayI *array)
|
---|
741 | {
|
---|
742 |
|
---|
743 | fDim = array->GetSize();
|
---|
744 | CheckDim(fDim);
|
---|
745 |
|
---|
746 | fDataF.Set(fDim);
|
---|
747 | //
|
---|
748 | // Copy the hist into an array
|
---|
749 | //
|
---|
750 | for (Int_t i=0;i<fDim;i++)
|
---|
751 | fDataF[i] = (Float_t)array->At(i);
|
---|
752 |
|
---|
753 | RealFTF(1);
|
---|
754 |
|
---|
755 | const Int_t dim2 = fDim*fDim;
|
---|
756 | const Int_t dim05 = fDim/2;
|
---|
757 | Float_t c02;
|
---|
758 | Float_t ck2;
|
---|
759 | Float_t cn2;
|
---|
760 |
|
---|
761 | TArrayF *newarray = new TArrayF(dim05);
|
---|
762 |
|
---|
763 | //
|
---|
764 | // Fill the new histogram:
|
---|
765 | //
|
---|
766 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
767 | //
|
---|
768 | c02 = (fDataF[0]*fDataF[0]);
|
---|
769 | newarray->AddAt(c02/dim2,0);
|
---|
770 | //
|
---|
771 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
772 | //
|
---|
773 | for (Int_t k=1;k<dim05-1;k++)
|
---|
774 | {
|
---|
775 | const Int_t k2 = k+k;
|
---|
776 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
---|
777 | newarray->AddAt(ck2/dim2,k);
|
---|
778 | }
|
---|
779 | //
|
---|
780 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
781 | //
|
---|
782 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
783 | newarray->AddAt(cn2,dim05-1);
|
---|
784 |
|
---|
785 | return newarray;
|
---|
786 | }
|
---|
787 |
|
---|
788 |
|
---|
789 | // -------------------------------------------------
|
---|
790 | //
|
---|
791 | // Power Spectrum Density calculation for TArrayD
|
---|
792 | //
|
---|
793 | TArrayD* MFFT::PowerSpectrumDensity(const TArrayD *array)
|
---|
794 | {
|
---|
795 |
|
---|
796 | fDim = array->GetSize();
|
---|
797 | CheckDim(fDim);
|
---|
798 |
|
---|
799 | fDataD.Set(fDim);
|
---|
800 | //
|
---|
801 | // Copy the hist into an array
|
---|
802 | //
|
---|
803 | for (Int_t i=0;i<fDim;i++)
|
---|
804 | fDataD[i] = array->At(i);
|
---|
805 |
|
---|
806 | RealFTD(1);
|
---|
807 |
|
---|
808 | const Int_t dim2 = fDim*fDim;
|
---|
809 | const Int_t dim05 = fDim/2;
|
---|
810 | Float_t c02;
|
---|
811 | Float_t ck2;
|
---|
812 | Float_t cn2;
|
---|
813 |
|
---|
814 | TArrayD *newarray = new TArrayD(dim05);
|
---|
815 |
|
---|
816 | //
|
---|
817 | // Fill the new histogram:
|
---|
818 | //
|
---|
819 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
820 | //
|
---|
821 | c02 = (fDataD[0]*fDataD[0]);
|
---|
822 | newarray->AddAt(c02/dim2,0);
|
---|
823 | //
|
---|
824 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
825 | //
|
---|
826 | for (Int_t k=1;k<dim05-1;k++)
|
---|
827 | {
|
---|
828 | const Int_t k2 = k+k;
|
---|
829 | ck2 = (fDataD[k2]*fDataD[k2] + fDataD[k2+1]*fDataD[k2+1]);
|
---|
830 | newarray->AddAt(ck2/dim2,k);
|
---|
831 | }
|
---|
832 | //
|
---|
833 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
834 | //
|
---|
835 | cn2 = (fDataD[1]*fDataD[1]);
|
---|
836 | newarray->AddAt(cn2,dim05-1);
|
---|
837 |
|
---|
838 | return newarray;
|
---|
839 | }
|
---|
840 |
|
---|
841 | // -------------------------------------------------
|
---|
842 | //
|
---|
843 | // Power Spectrum Density calculation for MArrayF
|
---|
844 | // The difference to the TArrayF versions is that
|
---|
845 | // the resulting array has two entries less, namely
|
---|
846 | // the first and last one are skipped!
|
---|
847 | //
|
---|
848 | MArrayF* MFFT::PowerSpectrumDensity(const MArrayF *array)
|
---|
849 | {
|
---|
850 |
|
---|
851 | fDim = array->GetSize();
|
---|
852 | CheckDim(fDim);
|
---|
853 |
|
---|
854 | fDataF.Set(fDim);
|
---|
855 | //
|
---|
856 | // Copy the hist into an array
|
---|
857 | //
|
---|
858 | for (Int_t i=0;i<fDim;i++)
|
---|
859 | fDataF[i] = array->At(i);
|
---|
860 |
|
---|
861 | RealFTF(1);
|
---|
862 |
|
---|
863 | const Int_t dim2 = fDim*fDim;
|
---|
864 | const Int_t dim05 = fDim/2;
|
---|
865 | Float_t ck2;
|
---|
866 |
|
---|
867 | MArrayF *newarray = new MArrayF(dim05-2);
|
---|
868 |
|
---|
869 | //
|
---|
870 | // Fill the new histogram:
|
---|
871 | //
|
---|
872 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
873 | //
|
---|
874 | // c02 = (fDataF[0]*fDataF[0]);
|
---|
875 | // newarray->AddAt(c02/dim2,0);
|
---|
876 | //
|
---|
877 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
878 | //
|
---|
879 | for (Int_t k=1;k<dim05-1;k++)
|
---|
880 | {
|
---|
881 | const Int_t k2 = k+k;
|
---|
882 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
---|
883 | newarray->AddAt(ck2/dim2,k-1);
|
---|
884 | }
|
---|
885 | //
|
---|
886 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
887 | //
|
---|
888 | // cn2 = (fDataF[1]*fDataF[1]);
|
---|
889 | // newarray->AddAt(cn2,dim05-1);
|
---|
890 |
|
---|
891 | return newarray;
|
---|
892 | }
|
---|
893 |
|
---|
894 | //-----------------------------------------------------
|
---|
895 | //
|
---|
896 | // Power Spectrum Density calculation for MArrayI
|
---|
897 | // The difference to the TArrayI versions is that
|
---|
898 | // the resulting array has two entries less, namely
|
---|
899 | // the first and last one are skipped!
|
---|
900 | //
|
---|
901 | MArrayF* MFFT::PowerSpectrumDensity(const MArrayI *array)
|
---|
902 | {
|
---|
903 |
|
---|
904 | fDim = array->GetSize();
|
---|
905 | CheckDim(fDim);
|
---|
906 |
|
---|
907 | fDataF.Set(fDim);
|
---|
908 | //
|
---|
909 | // Copy the hist into an array
|
---|
910 | //
|
---|
911 | for (Int_t i=0;i<fDim;i++)
|
---|
912 | fDataF[i] = (Float_t)array->At(i);
|
---|
913 |
|
---|
914 | RealFTF(1);
|
---|
915 |
|
---|
916 | const Int_t dim2 = fDim*fDim;
|
---|
917 | const Int_t dim05 = fDim/2;
|
---|
918 | Float_t ck2;
|
---|
919 |
|
---|
920 | MArrayF *newarray = new MArrayF(dim05-2);
|
---|
921 |
|
---|
922 | //
|
---|
923 | // Fill the new histogram:
|
---|
924 | //
|
---|
925 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
926 | //
|
---|
927 | // c02 = (fDataF[0]*fDataF[0]);
|
---|
928 | // newarray->AddAt(c02/dim2,0);
|
---|
929 | //
|
---|
930 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
931 | //
|
---|
932 | for (Int_t k=1;k<dim05-1;k++)
|
---|
933 | {
|
---|
934 | const Int_t k2 = k+k;
|
---|
935 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
---|
936 | newarray->AddAt(ck2/dim2,k-1);
|
---|
937 | }
|
---|
938 | //
|
---|
939 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
940 | //
|
---|
941 | // cn2 = (fDataF[1]*fDataF[1]);
|
---|
942 | // newarray->AddAt(cn2,dim05-1);
|
---|
943 |
|
---|
944 | return newarray;
|
---|
945 | }
|
---|
946 |
|
---|
947 | // -------------------------------------------------
|
---|
948 | //
|
---|
949 | // Power Spectrum Density calculation for MArrayD
|
---|
950 | // The difference to the TArrayI versions is that
|
---|
951 | // the resulting array has two entries less, namely
|
---|
952 | // the first and last one are skipped!
|
---|
953 | //
|
---|
954 | MArrayD* MFFT::PowerSpectrumDensity(const MArrayD *array)
|
---|
955 | {
|
---|
956 |
|
---|
957 | fDim = array->GetSize();
|
---|
958 | CheckDim(fDim);
|
---|
959 |
|
---|
960 | fDataD.Set(fDim);
|
---|
961 | //
|
---|
962 | // Copy the hist into an array
|
---|
963 | //
|
---|
964 | for (Int_t i=0;i<fDim;i++)
|
---|
965 | fDataD[i] = array->At(i);
|
---|
966 |
|
---|
967 | RealFTD(1);
|
---|
968 |
|
---|
969 | const Int_t dim2 = fDim*fDim;
|
---|
970 | const Int_t dim05 = fDim/2;
|
---|
971 | Float_t ck2;
|
---|
972 |
|
---|
973 | MArrayD *newarray = new MArrayD(dim05-2);
|
---|
974 |
|
---|
975 | //
|
---|
976 | // Fill the new histogram:
|
---|
977 | //
|
---|
978 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
979 | //
|
---|
980 | // c02 = (fDataD[0]*fDataD[0]);
|
---|
981 | // newarray->AddAt(c02/dim2,0);
|
---|
982 | //
|
---|
983 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
984 | //
|
---|
985 | for (Int_t k=1;k<dim05-1;k++)
|
---|
986 | {
|
---|
987 | const Int_t k2 = k+k;
|
---|
988 | ck2 = (fDataD[k2]*fDataD[k2] + fDataD[k2+1]*fDataD[k2+1]);
|
---|
989 | newarray->AddAt(ck2/dim2,k-1);
|
---|
990 | }
|
---|
991 | //
|
---|
992 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
993 | //
|
---|
994 | // cn2 = (fDataD[1]*fDataD[1]);
|
---|
995 | // newarray->AddAt(cn2,dim05-1);
|
---|
996 |
|
---|
997 | return newarray;
|
---|
998 | }
|
---|
999 |
|
---|
1000 | // -----------------------------------------------
|
---|
1001 | //
|
---|
1002 | // Power Spectrum Density calculation for TH1
|
---|
1003 | //
|
---|
1004 | TH1F* MFFT::PowerSpectrumDensity(const TH1 *hist)
|
---|
1005 | {
|
---|
1006 |
|
---|
1007 | TH1F *newhist = (TH1F*)CheckHist(hist,0);
|
---|
1008 |
|
---|
1009 | fDataF.Set(fDim);
|
---|
1010 | //
|
---|
1011 | // Copy the hist into an array
|
---|
1012 | //
|
---|
1013 | for (Int_t i=0;i<fDim;i++)
|
---|
1014 | fDataF[i] = hist->GetBinContent(i);
|
---|
1015 |
|
---|
1016 | RealFTF(1);
|
---|
1017 |
|
---|
1018 | Int_t dim2 = fDim*fDim;
|
---|
1019 | Float_t c02;
|
---|
1020 | Float_t ck2;
|
---|
1021 | Float_t cn2;
|
---|
1022 | //
|
---|
1023 | // Fill the new histogram:
|
---|
1024 | //
|
---|
1025 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
---|
1026 | //
|
---|
1027 | c02 = (fDataF[0]*fDataF[0]);
|
---|
1028 | newhist->Fill(0.,c02/dim2);
|
---|
1029 | //
|
---|
1030 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
---|
1031 | //
|
---|
1032 | for (Int_t k=2;k<fDim;k+=2)
|
---|
1033 | {
|
---|
1034 | ck2 = (fDataF[k]*fDataF[k] + fDataF[k+1]*fDataF[k+1]);
|
---|
1035 | newhist->Fill(k/2.,ck2/dim2);
|
---|
1036 | }
|
---|
1037 | //
|
---|
1038 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
---|
1039 | //
|
---|
1040 | cn2 = (fDataF[1]*fDataF[1]);
|
---|
1041 | newhist->Fill(fDim/2.-1.,cn2/dim2);
|
---|
1042 |
|
---|
1043 | return newhist;
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 |
|
---|
1047 | //
|
---|
1048 | // Power Spectrum Density calculation for TH1I
|
---|
1049 | //
|
---|
1050 | TH1F* MFFT::PowerSpectrumDensity(const TH1F *hist)
|
---|
1051 | {
|
---|
1052 | return PowerSpectrumDensity((TH1*)hist);
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | //
|
---|
1056 | // Power Spectrum Density calculation for TH1I
|
---|
1057 | //
|
---|
1058 | TH1F* MFFT::PowerSpectrumDensity(const TH1I *hist)
|
---|
1059 | {
|
---|
1060 | return PowerSpectrumDensity((TH1*)hist);
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 |
|
---|
1064 | void MFFT::CheckDim(Int_t a)
|
---|
1065 | {
|
---|
1066 |
|
---|
1067 | // If even number, return 0
|
---|
1068 | if (a==2) return;
|
---|
1069 |
|
---|
1070 | // If odd number, return the closest power of 2
|
---|
1071 | if (a & 1)
|
---|
1072 | {
|
---|
1073 | Int_t b = 1;
|
---|
1074 | while (b < fDim/2+1)
|
---|
1075 | b <<= 1;
|
---|
1076 |
|
---|
1077 | fDim = b;
|
---|
1078 | // gLog << warn << "Dimension of Data is not a multiple of 2, will take only first "
|
---|
1079 | // << fDim << " entries! " << endl;
|
---|
1080 | return;
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 | CheckDim(a>>1);
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | TH1* MFFT::CheckHist(const TH1 *hist, const Int_t flag)
|
---|
1087 | {
|
---|
1088 |
|
---|
1089 | // number of entries
|
---|
1090 | fDim = hist->GetNbinsX();
|
---|
1091 | CheckDim(fDim);
|
---|
1092 |
|
---|
1093 | // Step width
|
---|
1094 | Double_t delta = hist->GetBinWidth(1);
|
---|
1095 |
|
---|
1096 | // Nyquist frequency
|
---|
1097 | Axis_t fcrit = 1./(2.*delta);
|
---|
1098 | Axis_t low = -0.5;
|
---|
1099 | Axis_t up = fcrit;
|
---|
1100 |
|
---|
1101 | switch (flag)
|
---|
1102 | {
|
---|
1103 | case 0:
|
---|
1104 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
---|
1105 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
---|
1106 | fDim/2,low,up);
|
---|
1107 | break;
|
---|
1108 | case 1:
|
---|
1109 | return new TH1D(Form("%s%s",hist->GetName()," PSD"),
|
---|
1110 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
---|
1111 | fDim/2,low,up);
|
---|
1112 | break;
|
---|
1113 | default:
|
---|
1114 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
---|
1115 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
---|
1116 | fDim/2,low,up);
|
---|
1117 | break;
|
---|
1118 | }
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | //
|
---|
1122 | // Real function spectrum with data windowing
|
---|
1123 | //
|
---|
1124 | TArrayF* MFFT::RealFunctionSpectrum(const TArrayF *data)
|
---|
1125 | {
|
---|
1126 |
|
---|
1127 | fDim = data->GetSize();
|
---|
1128 | CheckDim(fDim);
|
---|
1129 |
|
---|
1130 | fDataF.Set(fDim);
|
---|
1131 | //
|
---|
1132 | // Copy the hist into an array
|
---|
1133 | //
|
---|
1134 | for (Int_t i=0;i<fDim;i++)
|
---|
1135 | fDataF[i] = data->At(i);
|
---|
1136 |
|
---|
1137 | fWindowF.Set(fDim);
|
---|
1138 |
|
---|
1139 | Int_t dim2 = fDim/2;
|
---|
1140 |
|
---|
1141 | TArrayF *power = new TArrayF(dim2);
|
---|
1142 |
|
---|
1143 | //
|
---|
1144 | // Start program spctrm from NR's
|
---|
1145 | //
|
---|
1146 | Float_t w, facp, facm, sumw=0.;
|
---|
1147 |
|
---|
1148 | facm = dim2;
|
---|
1149 | facp = 1./dim2;
|
---|
1150 |
|
---|
1151 | for (Int_t j=0;j<dim2;j++)
|
---|
1152 | {
|
---|
1153 | Int_t j2 = j+j;
|
---|
1154 | w = ApplyWindow(j,facm,facp);
|
---|
1155 | sumw += w*w;
|
---|
1156 | fWindowF[j2] = fDataF[j]*w;
|
---|
1157 | fWindowF[j2+1] = fDataF[dim2+j]*w;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | TransformF(1,fWindowF);
|
---|
1161 |
|
---|
1162 | power->AddAt(fWindowF[0]*fWindowF[0] + fWindowF[1]*fWindowF[1],0);
|
---|
1163 |
|
---|
1164 | // power->AddAt(fWindowF[0]*fWindowF[0],0);
|
---|
1165 | // power->AddAt(fWindowF[1]*fWindowF[1],dim2-1);
|
---|
1166 |
|
---|
1167 |
|
---|
1168 | for (Int_t j=1;j<dim2;j++)
|
---|
1169 | // for (Int_t j=1;j<dim2;j++)
|
---|
1170 | {
|
---|
1171 | Int_t j2 = j+j;
|
---|
1172 | Float_t buf = fWindowF[j2+1] *fWindowF[j2+1]
|
---|
1173 | + fWindowF[j2 ] *fWindowF[j2 ]
|
---|
1174 | + fWindowF[fDim-j2+1]*fWindowF[fDim-j2+1]
|
---|
1175 | + fWindowF[fDim-j2 ]*fWindowF[fDim-j2 ] ;
|
---|
1176 | power->AddAt(buf/sumw/(fDim+fDim),j);
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | return power;
|
---|
1180 |
|
---|
1181 | }
|
---|