source: branches/Mars_MC/mcore/DrsCalib.h@ 17735

Last change on this file since 17735 was 16843, checked in by tbretz, 11 years ago
Changed the way how the returned maximum is calculated to get a better estimate of what a good shower is to be displayed (the old version was actually also buggy)
File size: 45.4 KB
Line 
1#ifndef MARS_DrsCalib
2#define MARS_DrsCalib
3
4#include <math.h> // fabs
5#include <errno.h> // errno
6
7#ifndef MARS_fits
8#include "fits.h"
9#endif
10
11#ifndef MARS_ofits
12#include "ofits.h"
13#endif
14
15#ifdef __MARS__
16#include "MTime.h"
17#endif
18
19class DrsCalibrate
20{
21protected:
22 uint64_t fNumEntries;
23
24 size_t fNumSamples;
25 size_t fNumChannels;
26
27 std::vector<int64_t> fSum;
28 std::vector<int64_t> fSum2;
29
30public:
31 DrsCalibrate() : fNumEntries(0), fNumSamples(0), fNumChannels(0)
32 {
33 fSum.reserve(1024*1440);
34 fSum2.reserve(1024*1440);
35 }
36
37 void Reset()
38 {
39 fNumEntries = 0;
40 fNumSamples = 0;
41 fNumChannels = 0;
42
43 fSum.clear();
44 fSum2.clear();
45 }
46
47 void InitSize(uint16_t channels, uint16_t samples)
48 {
49 fNumChannels = channels;
50 fNumSamples = samples;
51
52 fSum.assign(samples*channels, 0);
53 fSum2.assign(samples*channels, 0);
54 }
55
56 void AddRel(const int16_t *val, const int16_t *start)
57 {
58 /*
59 for (size_t ch=0; ch<fNumChannels; ch++)
60 {
61 const int16_t &spos = start[ch];
62 if (spos<0)
63 continue;
64
65 const size_t pos = ch*1024;
66 for (size_t i=0; i<1024; i++)
67 {
68 // Value is relative to trigger
69 // Abs is corresponding index relative to DRS pipeline
70 const size_t rel = pos + i;
71 const size_t abs = pos + (spos+i)%1024;
72
73 const int64_t v = val[rel];
74
75 fSum[abs] += v;
76 fSum2[abs] += v*v;
77 }
78 }*/
79
80 // This version is 2.5 times faster because the compilers optimization
81 // is not biased by the evaluation of %1024
82 for (size_t ch=0; ch<fNumChannels; ch++)
83 {
84 const int16_t &spos = start[ch];
85 if (spos<0)
86 continue;
87
88 const size_t pos = ch*1024;
89
90 const int16_t *beg_val = val + pos;
91 int64_t *beg_sum = fSum.data() + pos;
92 int64_t *beg_sum2 = fSum2.data() + pos;
93
94 const int16_t *pval = beg_val; // val[rel]
95 int64_t *psum = beg_sum + spos; // fSum[abs]
96 int64_t *psum2 = beg_sum2 + spos; // fSum2[abs]
97
98 while (psum<beg_sum+1024)
99 {
100 const int64_t v = *pval++;
101
102 *psum++ += v;
103 *psum2++ += v*v;
104 }
105
106 psum = beg_sum;
107 psum2 = beg_sum2;
108
109 while (pval<beg_val+1024)
110 {
111 const int64_t v = *pval++;
112
113 *psum++ += v;
114 *psum2++ += v*v;
115 }
116 }
117
118 fNumEntries++;
119 }
120
121 void AddRel(const int16_t *val, const int16_t *start,
122 const int32_t *offset, const uint32_t scale)
123 {
124 /*
125 for (size_t ch=0; ch<fNumChannels; ch++)
126 {
127 const int16_t spos = start[ch];
128 if (spos<0)
129 continue;
130
131 const size_t pos = ch*1024;
132
133 for (size_t i=0; i<fNumSamples; i++)
134 {
135 // Value is relative to trigger
136 // Offset is relative to DRS pipeline
137 // Abs is corresponding index relative to DRS pipeline
138 const size_t rel = pos + i;
139 const size_t abs = pos + (spos+i)%1024;
140
141 const int64_t v = int64_t(val[rel])*scale-offset[abs];
142
143 fSum[abs] += v;
144 fSum2[abs] += v*v;
145 }
146 }*/
147
148 // This version is 2.5 times faster because the compilers optimization
149 // is not biased by the evaluation of %1024
150 for (size_t ch=0; ch<fNumChannels; ch++)
151 {
152 const int16_t &spos = start[ch];
153 if (spos<0)
154 continue;
155
156 const size_t pos = ch*1024;
157
158 const int16_t *beg_val = val + pos;
159 const int32_t *beg_offset = offset + pos;
160 int64_t *beg_sum = fSum.data() + pos;
161 int64_t *beg_sum2 = fSum2.data() + pos;
162
163
164 const int16_t *pval = beg_val; // val[rel]
165 const int32_t *poffset = beg_offset + spos; // offset[abs]
166 int64_t *psum = beg_sum + spos; // fSum[abs]
167 int64_t *psum2 = beg_sum2 + spos; // fSum2[abs]
168
169 while (psum<beg_sum+1024)
170 {
171 const int64_t v = int64_t(*pval++)*scale - *poffset++;
172
173 *psum++ += v;
174 *psum2++ += v*v;
175 }
176
177 psum = beg_sum;
178 psum2 = beg_sum2;
179 poffset = beg_offset;
180
181 while (pval<beg_val+1024)
182 {
183 const int64_t v = int64_t(*pval++)*scale - *poffset++;
184
185 *psum++ += v;
186 *psum2++ += v*v;
187 }
188 }
189
190 fNumEntries++;
191 }
192 /*
193 void AddAbs(const int16_t *val, const int16_t *start,
194 const int32_t *offset, const uint32_t scale)
195 {
196 for (size_t ch=0; ch<fNumChannels; ch++)
197 {
198 const int16_t spos = start[ch];
199 if (spos<0)
200 continue;
201
202 const size_t pos = ch*fNumSamples;
203
204 for (size_t i=0; i<fNumSamples; i++)
205 {
206 // Value is relative to trigger
207 // Offset is relative to DRS pipeline
208 // Abs is corresponding index relative to DRS pipeline
209 const size_t rel = pos + i;
210 const size_t abs = pos + (spos+i)%1024;
211
212 const int64_t v = int64_t(val[rel])*scale-offset[abs];
213
214 fSum[rel] += v;
215 fSum2[rel] += v*v;
216 }
217 }
218
219 fNumEntries++;
220 }*/
221
222 void AddAbs(const int16_t *val, const int16_t *start,
223 const int32_t *offset, const uint32_t scale)
224 {
225 /*
226 // 1440 without tm, 1600 with tm
227 for (size_t ch=0; ch<fNumChannels; ch++)
228 {
229 const int16_t spos = start[ch];
230 if (spos<0)
231 continue;
232
233 const size_t pos = ch*fNumSamples;
234 const size_t drs = ch>1439 ? ((ch-1440)*9+8)*1024 : ch*1024;
235
236 for (size_t i=0; i<fNumSamples; i++)
237 {
238 // Value is relative to trigger
239 // Offset is relative to DRS pipeline
240 // Abs is corresponding index relative to DRS pipeline
241 const size_t rel = pos + i;
242 const size_t abs = drs + (spos+i)%1024;
243
244 const int64_t v = int64_t(val[rel])*scale-offset[abs];
245
246 fSum[rel] += v;
247 fSum2[rel] += v*v;
248 }
249 }*/
250
251 // This version is 1.5 times faster because the compilers optimization
252 // is not biased by the evaluation of %1024
253 for (size_t ch=0; ch<fNumChannels; ch++)
254 {
255 const int16_t &spos = start[ch];
256 if (spos<0)
257 continue;
258
259 const size_t pos = ch*fNumSamples;
260
261 const int32_t *beg_offset = offset + ch*1024;
262 const int16_t *beg_val = val + pos;
263 int64_t *beg_sum = fSum.data() + pos;
264 int64_t *beg_sum2 = fSum2.data() + pos;
265
266
267 const int16_t *pval = beg_val; // val[rel]
268 const int32_t *poffset = beg_offset + spos; // offset[abs]
269 int64_t *psum = beg_sum; // fSum[rel]
270 int64_t *psum2 = beg_sum2; // fSum2[rel]
271
272 if (spos+fNumSamples>1024)
273 {
274 while (poffset<beg_offset+1024)
275 {
276 const int64_t v = int64_t(*pval++)*scale - *poffset++;
277
278 *psum++ += v;
279 *psum2++ += v*v;
280 }
281
282 poffset = beg_offset;
283 }
284
285 while (psum<beg_sum+fNumSamples)
286 {
287 const int64_t v = int64_t(*pval++)*scale - *poffset++;
288
289 *psum++ += v;
290 *psum2++ += v*v;
291 }
292 }
293
294 fNumEntries++;
295 }
296
297
298 static void ApplyCh(float *vec, const int16_t *val, int16_t start, uint32_t roi,
299 const int32_t *offset, const uint32_t scaleabs,
300 const int64_t *gain, const uint64_t scalegain)
301 {
302 if (start<0)
303 {
304 memset(vec, 0, roi);
305 return;
306 }
307 /*
308 for (size_t i=0; i<roi; i++)
309 {
310 // Value is relative to trigger
311 // Offset is relative to DRS pipeline
312 // Abs is corresponding index relative to DRS pipeline
313 const size_t abs = (start+i)%1024;
314
315 const int64_t v =
316 + int64_t(val[i])*scaleabs-offset[abs]
317 ;
318
319 const int64_t div = gain[abs];
320 vec[i] = div==0 ? 0 : double(v)*scalegain/div;
321 }
322 */
323
324 // This version is faster because the compilers optimization
325 // is not biased by the evaluation of %1024
326 // (Here we are dominated by numerics... improvement ~10%)
327 const int32_t *poffset = offset + start; // offset[abs]
328 const int64_t *pgain = gain + start; // gain[abs]
329 const int16_t *pval = val; // val[rel]
330 float *pvec = vec; // vec[rel]
331
332 if (start+roi>1024)
333 {
334 while (poffset<offset+1024)
335 {
336 const int64_t v =
337 + int64_t(*pval++)*scaleabs - *poffset++
338 ;
339
340 *pvec++ = *pgain==0 ? 0 : double(v)*scalegain / *pgain;
341
342 pgain++;
343 }
344
345 poffset = offset;
346 pgain = gain;
347 }
348
349 while (pvec<vec+roi)
350 {
351 const int64_t v =
352 + int64_t(*pval++)*scaleabs - *poffset++
353 ;
354
355 *pvec++ = *pgain==0 ? 0 : double(v)*scalegain / *pgain;
356
357 pgain++;
358 }
359 }
360
361 static void ApplyCh(float *vec, const int16_t *val, int16_t start, uint32_t roi,
362 const int32_t *offset, const uint32_t scaleabs,
363 const int64_t *gain, const uint64_t scalegain,
364 const int64_t *trgoff, const uint64_t scalerel)
365 {
366 if (start<0)
367 {
368 memset(vec, 0, roi);
369 return;
370 }
371 /*
372 for (size_t i=0; i<roi; i++)
373 {
374 // Value is relative to trigger
375 // Offset is relative to DRS pipeline
376 // Abs is corresponding index relative to DRS pipeline
377 const size_t abs = (start+i)%1024;
378
379 const int64_t v =
380 + (int64_t(val[i])*scaleabs-offset[abs])*scalerel
381 - trgoff[i]
382 ;
383
384 const int64_t div = gain[abs]*scalerel;
385 vec[i] = div==0 ? 0 : double(v)*scalegain/div;
386 }
387 */
388 // (Here we are dominated by numerics... improvement ~10%)
389 const int32_t *poffset = offset + start; // offset[abs]
390 const int64_t *pgain = gain + start; // gain[abs]
391 const int16_t *pval = val; // val[rel]
392 const int64_t *ptrgoff = trgoff; // trgoff[rel]
393 float *pvec = vec; // vec[rel]
394
395 if (start+roi>1024)
396 {
397 while (poffset<offset+1024)
398 {
399 const int64_t v =
400 + (int64_t(*pval++)*scaleabs - *poffset++)*scalerel
401 - *ptrgoff++;
402 ;
403
404 const int64_t div = *pgain * scalerel;
405 *pvec++ = div==0 ? 0 : double(v)*scalegain / div;
406
407 pgain++;
408 }
409
410 poffset = offset;
411 pgain = gain;
412 }
413
414 while (pvec<vec+roi)
415 {
416 const int64_t v =
417 + (int64_t(*pval++)*scaleabs - *poffset++)*scalerel
418 - *ptrgoff++;
419 ;
420
421 const int64_t div = *pgain * scalerel;
422 *pvec++ = div==0 ? 0 : double(v)*scalegain / div;
423
424 pgain++;
425 }
426 }
427
428 static double FindStep(const size_t ch0, const float *vec, int16_t roi, const int16_t pos, const uint16_t *map=NULL)
429 {
430 // We have about 1% of all cases which are not ahndled here,
431 // because the baseline jumps up just before the readout window
432 // and down just after it. In this cases we could determine the jump
433 // from the board time difference or throw the event away.
434 if (pos==0 || pos>=roi)
435 return 0;
436
437 double step = 0; // before
438 double rms = 0; // before
439 int cnt = 0;
440
441 // Exclude TM channel
442 for (int p=0; p<8; p++)
443 {
444 const size_t hw = ch0+p;
445 const size_t sw = (map?map[hw]:hw)*roi + pos;
446
447 const double diff = vec[sw]-vec[sw-1];
448
449 step += diff;
450 rms += (vec[sw]-vec[sw-1])*(vec[sw]-vec[sw-1]);
451
452 cnt++;
453 }
454
455 return cnt==0 ? 0 : step/cnt;
456 }
457
458 static void SubtractStep(const size_t ch0, const double avg, float *vec, int16_t roi, int32_t pos, const uint16_t *map=NULL)
459 {
460 if (pos==0 || pos>=roi)
461 return;
462
463 const int begin = avg>0 ? pos : 0;
464 const int end = avg>0 ? roi : pos;
465
466 const double sub = fabs(avg);
467
468 for (int p=0; p<9; p++)
469 {
470 for (int j=begin; j<end; j++)
471 {
472 const size_t hw = ch0+p;
473 const size_t sw = (map?map[hw]:hw)*roi + j;
474
475 vec[sw] -= sub;
476 }
477 }
478 }
479
480 struct Step
481 {
482 Step() : avg(0), rms(0), pos(0), cnt(0) { }
483 double avg;
484 double rms;
485 double pos;
486 uint16_t cnt;
487
488 static bool sort(const Step &s, const Step &r) { return s.avg<r.avg; }
489 };
490
491 static Step AverageSteps(const std::vector<Step>::iterator beg, const std::vector<Step>::iterator end)
492 {
493 Step rc;
494 for (auto it=beg; it!=end; it++)
495 {
496 rc.pos += it->pos;
497 rc.avg += it->avg;
498 rc.rms += it->avg*it->avg;
499 }
500
501 rc.cnt = end-beg;
502
503 rc.pos /= rc.cnt;
504 rc.avg /= rc.cnt;
505 rc.rms /= rc.cnt;
506
507 rc.rms = sqrt(rc.rms-rc.avg*rc.avg);
508
509 return rc;
510 }
511
512
513 static Step CorrectStep(float *vec, uint16_t nch, uint16_t roi,
514 const int16_t *prev, const int16_t *start,
515 const int16_t offset, const uint16_t *map=NULL)
516 {
517
518 std::vector<Step> list;
519 list.reserve(nch);
520
521 // Fill steps into array
522 // Exclude broken pixels?
523 // Remove maximum and minimum patches (4max and 4min)?
524 for (size_t ch=0; ch<nch; ch += 9)
525 {
526 if (prev[ch]<0 || start[ch]<0)
527 continue;
528
529 const int16_t dist = (prev[ch]-start[ch]+1024+offset)%1024;
530 const double step = FindStep(ch, vec, roi, dist, map);
531 if (step==0)
532 continue;
533
534 Step rc;
535 rc.pos = dist;
536 rc.avg = step;
537 list.push_back(rc);
538 }
539
540 if (list.empty())
541 return Step();
542
543 Step rc = AverageSteps(list.begin(), list.begin()+list.size());;
544
545 if (rc.avg==0)
546 return Step();
547
548 // std::cout << " A0=" << rc.avg << " rms=" << rc.rms << std::endl;
549 if (rc.rms>5)
550 {
551 sort(list.begin(), list.end(), Step::sort);
552
553 //for (auto it=list.begin(); it!=list.end(); it++)
554 // std::cout << " " << it->avg << std::endl;
555
556 const size_t skip = list.size()/10;
557 rc = AverageSteps(list.begin()+skip, list.begin()+list.size()-skip);
558
559 // std::cout << " A1=" << rc.avg << " rms=" << rc.rms << std::endl;
560 }
561
562 for (size_t ch=0; ch<nch; ch += 9)
563 {
564 const int16_t dist = (prev[ch]-start[ch]+1024+offset)%1024;
565 SubtractStep(ch, rc.avg, vec, roi, dist, map);
566 }
567
568 return rc;
569 }
570
571 static void RemoveSpikes(float *vec, uint32_t roi)
572 {
573 if (roi<4)
574 return;
575
576 for (size_t ch=0; ch<1440; ch++)
577 {
578 float *p = vec + ch*roi;
579
580 for (size_t i=1; i<roi-2; i++)
581 {
582 if (p[i]-p[i-1]>25 && p[i]-p[i+1]>25)
583 {
584 p[i] = (p[i-1]+p[i+1])/2;
585 }
586
587 if (p[i]-p[i-1]>22 && fabs(p[i]-p[i+1])<4 && p[i+1]-p[i+2]>22)
588 {
589 p[i] = (p[i-1]+p[i+2])/2;
590 p[i+1] = p[i];
591 }
592 }
593 }
594 }
595
596 static void RemoveSpikes2(float *vec, uint32_t roi)//from Werner
597 {
598 if (roi<4)
599 return;
600
601 for (size_t ch=0; ch<1440; ch++)
602 {
603 float *p = vec + ch*roi;
604
605 std::vector<float> Ameas(p, p+roi);
606
607 std::vector<float> diff(roi);
608 for (size_t i=1; i<roi-1; i++)
609 diff[i] = (p[i-1] + p[i+1])/2 - p[i];
610
611 //std::vector<float> N1mean(roi);
612 //for (size_t i=1; i<roi-1; i++)
613 // N1mean[i] = (p[i-1] + p[i+1])/2;
614
615 const float fract = 0.8;
616
617 for (size_t i=0; i<roi-3; i++)
618 {
619 if (diff[i]<5)
620 continue;
621
622 if (Ameas[i+2] - (Ameas[i] + Ameas[i+3])/2 > 10)
623 {
624 p[i+1]= (Ameas[i+3] - Ameas[i])/3 + Ameas[i];
625 p[i+2]= 2*(Ameas[i+3] - Ameas[i])/3 + Ameas[i];
626
627 i += 3;
628
629 continue;
630 }
631
632 if ( (diff[i+1]<-diff[i]*fract*2) && (diff[i+2]>10) )
633 {
634 p[i+1] = (Ameas[i]+Ameas[i+2])/2;
635 diff[i+2] = (p[i+1] + Ameas[i+3])/2 - Ameas[i+2];
636
637 i += 2;
638 }
639
640 // const float x = Ameas[i] - N1mean[i];
641 // if (x > -5.)
642 // continue;
643
644 // if (Ameas[i+2] - (Ameas[i] + Ameas[i+3])/2. > 10.)
645 // {
646 // p[i+1]= (Ameas[i+3] - Ameas[i])/3 + Ameas[i];
647 // p[i+2]= 2*(Ameas[i+3] - Ameas[i])/3 + Ameas[i];
648 // i += 3;
649 // continue;
650 // }
651
652 // const float xp = Ameas[i+1] - N1mean[i+1];
653 // const float xpp = Ameas[i+2] - N1mean[i+2];
654
655 // if ( (xp > -2.*x*fract) && (xpp < -10.) )
656 // {
657 // p[i+1] = N1mean[i+1];
658 // N1mean[i+2] = Ameas[i+1] - Ameas[i+3]/2;
659 //
660 // i += 2;
661 // }
662 }
663 }
664 }
665
666 static void RemoveSpikes3(float *vec, uint32_t roi)//from Werner
667 {
668 const float SingleCandidateTHR = -10.;
669 const float DoubleCandidateTHR = -5.;
670
671 const std::vector<float> src(vec, vec+roi);
672
673 std::vector<float> diff(roi);
674 for (size_t i=1; i<roi-1; i++)
675 diff[i] = src[i] - (src[i-1] + src[i+1])/2;
676
677 // find the spike and replace it by mean value of neighbors
678 for (unsigned int i=1; i<roi-3; i++)
679 {
680 // Speed up (no leading edge)
681 if (diff[i]>=DoubleCandidateTHR)
682 continue;
683
684 //bool checkDouble = false;
685
686 // a single spike candidate
687 if (diff[i]<SingleCandidateTHR)
688 {
689 // check consistency with a single channel spike
690 if (diff[i+1] > -1.6*diff[i])
691 {
692 vec[i+1] = (src[i] + src[i+2]) / 2;
693
694 i += 2;
695
696 /*** NEW ***/
697 continue;
698 /*** NEW ***/
699 }
700 /*
701 else
702 {
703 // do nothing - not really a single spike,
704 // but check if it is a double
705 checkDouble = true;
706 }*/
707 }
708
709 // a double spike candidate
710 //if (diff[i]>DoubleCandidateTHR || checkDouble == 1)
711 {
712 // check the consistency with a double spike
713 if ((diff[i+1] > -DoubleCandidateTHR) &&
714 (diff[i+2] > -DoubleCandidateTHR))
715 {
716 vec[i+1] = (src[i+3] - src[i])/3 + src[i];
717 vec[i+2] = 2*(src[i+3] - src[i])/3 + src[i];
718
719 //vec[i] = (src[i-1] + src[i+2]) / 2.;
720 //vec[i+1] = (src[i-1] + src[i+2]) / 2.;
721
722 //do not care about the next sample it was the spike
723 i += 3;
724 }
725 }
726 }
727 }
728
729 static void SlidingAverage(float *const vec, const uint32_t roi, const uint16_t w)
730 {
731 if (w==0 || w>roi)
732 return;
733
734 for (float *pix=vec; pix<vec+1440*roi; pix += roi)
735 {
736 for (float *ptr=pix; ptr<pix+roi-w; ptr++)
737 {
738 for (float *p=ptr+1; p<ptr+w; p++)
739 *ptr += *p;
740 *ptr /= w;
741 }
742 }
743 }
744
745 std::pair<std::vector<double>,std::vector<double> > GetSampleStats() const
746 {
747 if (fNumEntries==0)
748 return make_pair(std::vector<double>(),std::vector<double>());
749
750 std::vector<double> mean(fSum.size());
751 std::vector<double> error(fSum.size());
752
753 std::vector<int64_t>::const_iterator it = fSum.begin();
754 std::vector<int64_t>::const_iterator i2 = fSum2.begin();
755 std::vector<double>::iterator im = mean.begin();
756 std::vector<double>::iterator ie = error.begin();
757
758 while (it!=fSum.end())
759 {
760 *im = /*cnt<fResult.size() ? fResult[cnt] :*/ double(*it)/fNumEntries;
761 *ie = sqrt(double(*i2*int64_t(fNumEntries) - *it * *it))/fNumEntries;
762
763 im++;
764 ie++;
765 it++;
766 i2++;
767 }
768
769
770 /*
771 valarray<double> ...
772
773 mean /= fNumEntries;
774 error = sqrt(error/fNumEntries - mean*mean);
775 */
776
777 return make_pair(mean, error);
778 }
779
780 void GetSampleStats(float *ptr, float scale) const
781 {
782 const size_t sz = fNumSamples*fNumChannels;
783
784 if (fNumEntries==0)
785 {
786 memset(ptr, 0, sizeof(float)*sz*2);
787 return;
788 }
789
790 std::vector<int64_t>::const_iterator it = fSum.begin();
791 std::vector<int64_t>::const_iterator i2 = fSum2.begin();
792
793 while (it!=fSum.end())
794 {
795 *ptr = scale*double(*it)/fNumEntries;
796 *(ptr+sz) = scale*sqrt(double(*i2*int64_t(fNumEntries) - *it * *it))/fNumEntries;
797
798 ptr++;
799 it++;
800 i2++;
801 }
802 }
803
804 static double GetPixelStats(float *ptr, const float *data, uint16_t roi)
805 {
806 if (roi==0)
807 return -1;
808
809 // Skip first 10 samples
810 const uint beg = roi>10 ? 10 : 0;
811 const uint end = roi-beg>5 ? roi-5 : roi;
812 const uint len = end-beg;
813
814 double max = 0;
815 double patch = 0;
816 for (uint i=0; i<1440; i++)
817 {
818 const float *vec = data+i*roi;
819
820 uint pos = beg;
821 double sum = vec[beg];
822 double sum2 = vec[beg]*vec[beg];
823
824 for (uint j=beg+1; j<end; j++)
825 {
826 sum += vec[j];
827 sum2 += vec[j]*vec[j];
828
829 if (vec[j]>vec[pos])
830 pos = j;
831 }
832 sum /= len;
833 sum2 /= len;
834
835 if (i%9!=8 && vec[pos]>0)
836 patch += vec[pos];
837
838 if (i%9==8)
839 {
840 patch /= 8;
841 if (patch > max)
842 max = patch;
843 patch = 0;
844 }
845
846 //if (i%9!=8 && vec[pos]>max)
847 // max = vec[pos];
848
849 *(ptr+0*1440+i) = sum;
850 *(ptr+1*1440+i) = sqrt(sum2 - sum * sum);
851 *(ptr+2*1440+i) = vec[pos];
852 *(ptr+3*1440+i) = pos;
853 }
854
855 return max;
856 }
857
858 static void GetPixelMax(float *max, const float *data, uint16_t roi, int32_t first, int32_t last)
859 {
860 if (roi==0 || first<0 || last<0 || first>=roi || last>=roi || last<first)
861 return;
862
863 for (int i=0; i<1440; i++)
864 {
865 const float *beg = data+i*roi+first;
866 const float *end = data+i*roi+last;
867
868 const float *pmax = beg;
869
870 for (const float *ptr=beg+1; ptr<=end; ptr++)
871 if (*ptr>*pmax)
872 pmax = ptr;
873
874 max[i] = *pmax;
875 }
876 }
877
878 const std::vector<int64_t> &GetSum() const { return fSum; }
879
880 uint64_t GetNumEntries() const { return fNumEntries; }
881};
882
883class DrsCalibrateTime
884{
885public:
886 uint64_t fNumEntries;
887
888 size_t fNumSamples;
889 size_t fNumChannels;
890
891 std::vector<std::pair<double, double>> fStat;
892
893public:
894 DrsCalibrateTime() : fNumEntries(0), fNumSamples(0), fNumChannels(0)
895 {
896 InitSize(160, 1024);
897 }
898
899 DrsCalibrateTime(const DrsCalibrateTime &p) : fNumEntries(p.fNumEntries), fNumSamples(p.fNumSamples), fNumChannels(p.fNumChannels), fStat(p.fStat)
900 {
901 }
902 virtual ~DrsCalibrateTime()
903 {
904 }
905
906 double Sum(uint32_t i) const { return fStat[i].first; }
907 double W(uint32_t i) const { return fStat[i].second; }
908
909 virtual void InitSize(uint16_t channels, uint16_t samples)
910 {
911 fNumChannels = channels;
912 fNumSamples = samples;
913
914 fNumEntries = 0;
915
916 fStat.clear();
917
918 fStat.resize(samples*channels);
919 }
920
921 void AddT(const float *val, const int16_t *start, signed char edge=0)
922 {
923 if (fNumSamples!=1024 || fNumChannels!=160)
924 return;
925
926 // Rising or falling edge detection has the advantage that
927 // we are much less sensitive to baseline shifts
928
929 for (size_t ch=0; ch<160; ch++)
930 {
931 const size_t tm = ch*9+8;
932
933 const int16_t spos = start[tm];
934 if (spos<0)
935 continue;
936
937 const size_t pos = ch*1024;
938
939 double p_prev = 0;
940 int32_t i_prev = -1;
941
942 for (size_t i=0; i<1024-1; i++)
943 {
944 const size_t rel = tm*1024 + i;
945
946 const float &v0 = val[rel]; //-avg;
947 const float &v1 = val[rel+1];//-avg;
948
949 // If edge is positive ignore all falling edges
950 if (edge>0 && v0>0)
951 continue;
952
953 // If edge is negative ignore all falling edges
954 if (edge<0 && v0<0)
955 continue;
956
957 // Check if there is a zero crossing
958 if ((v0<0 && v1<0) || (v0>0 && v1>0))
959 continue;
960
961 // Calculate the position p of the zero-crossing
962 // within the interval [rel, rel+1] relative to rel
963 // by linear interpolation.
964 const double p = v0==v1 ? 0.5 : v0/(v0-v1);
965
966 // If this was at least the second zero-crossing detected
967 if (i_prev>=0)
968 {
969 // Calculate the distance l between the
970 // current and the last zero-crossing
971 const double l = i+p - (i_prev+p_prev);
972
973 // By summation, the average length of each
974 // cell is calculated. For the first and last
975 // fraction of a cell, the fraction is applied
976 // as a weight.
977 const double w0 = 1-p_prev;
978 fStat[pos+(spos+i_prev)%1024].first += w0*l;
979 fStat[pos+(spos+i_prev)%1024].second += w0;
980
981 for (size_t k=i_prev+1; k<i; k++)
982 {
983 fStat[pos+(spos+k)%1024].first += l;
984 fStat[pos+(spos+k)%1024].second += 1;
985 }
986
987 const double w1 = p;
988 fStat[pos+(spos+i)%1024].first += w1*l;
989 fStat[pos+(spos+i)%1024].second += w1;
990 }
991
992 // Remember this zero-crossing position
993 p_prev = p;
994 i_prev = i;
995 }
996 }
997 fNumEntries++;
998 }
999
1000 void FillEmptyBins()
1001 {
1002 for (int ch=0; ch<160; ch++)
1003 {
1004 const auto beg = fStat.begin() + ch*1024;
1005 const auto end = beg + 1024;
1006
1007 double avg = 0;
1008 uint32_t num = 0;
1009 for (auto it=beg; it!=end; it++)
1010 {
1011 if (it->second<fNumEntries-0.5)
1012 continue;
1013
1014 avg += it->first / it->second;
1015 num++;
1016 }
1017 avg /= num;
1018
1019 for (auto it=beg; it!=end; it++)
1020 {
1021 if (it->second>=fNumEntries-0.5)
1022 continue;
1023
1024 // {
1025 // result[i+1].first = *is2;
1026 // result[i+1].second = *iw2;
1027 // }
1028 // else
1029 // {
1030 it->first = avg*fNumEntries;
1031 it->second = fNumEntries;
1032 // }
1033 }
1034 }
1035 }
1036
1037 DrsCalibrateTime GetComplete() const
1038 {
1039 DrsCalibrateTime rc(*this);
1040 rc.FillEmptyBins();
1041 return rc;
1042 }
1043
1044 void CalcResult()
1045 {
1046 for (int ch=0; ch<160; ch++)
1047 {
1048 const auto beg = fStat.begin() + ch*1024;
1049 const auto end = beg + 1024;
1050
1051 // First calculate the average length s of a single
1052 // zero-crossing interval in the whole range [0;1023]
1053 // (which is identical to the/ wavelength of the
1054 // calibration signal)
1055 double s = 0;
1056 double w = 0;
1057 for (auto it=beg; it!=end; it++)
1058 {
1059 s += it->first;
1060 w += it->second;
1061 }
1062 s /= w;
1063
1064 // Dividing the average length s of the zero-crossing
1065 // interval in the range [0;1023] by the average length
1066 // in the interval [0;n] yields the relative size of
1067 // the interval in the range [0;n].
1068 //
1069 // Example:
1070 // Average [0;1023]: 10.00 (global interval size in samples)
1071 // Average [0;512]: 8.00 (local interval size in samples)
1072 //
1073 // Globally, on average one interval is sampled by 10 samples.
1074 // In the sub-range [0;512] one interval is sampled on average
1075 // by 8 samples.
1076 // That means that the interval contains 64 periods, while
1077 // in the ideal case (each sample has the same length), it
1078 // should contain 51.2 periods.
1079 // So, the sampling position 512 corresponds to a time 640,
1080 // while in the ideal case with equally spaces samples,
1081 // it would correspond to a time 512.
1082 //
1083 // The offset (defined as 'ideal - real') is then calculated
1084 // as 512*(1-10/8) = -128, so that the time is calculated as
1085 // 'sampling position minus offset'
1086 //
1087 double sumw = 0;
1088 double sumv = 0;
1089 int n = 0;
1090
1091 // Sums about many values are numerically less stable than
1092 // just sums over less. So we do the exercise from both sides.
1093 // First from the left
1094 for (auto it=beg; it!=end-512; it++, n++)
1095 {
1096 const double valv = it->first;
1097 const double valw = it->second;
1098
1099 it->first = sumv>0 ? n*(1-s*sumw/sumv) : 0;
1100
1101 sumv += valv;
1102 sumw += valw;
1103 }
1104
1105 sumw = 0;
1106 sumv = 0;
1107 n = 1;
1108
1109 // Second from the right
1110 for (auto it=end-1; it!=beg-1+512; it--, n++)
1111 {
1112 const double valv = it->first;
1113 const double valw = it->second;
1114
1115 sumv += valv;
1116 sumw += valw;
1117
1118 it->first = sumv>0 ? n*(s*sumw/sumv-1) : 0;
1119 }
1120
1121 // A crosscheck has shown, that the values from the left
1122 // and right perfectly agree over the whole range. This means
1123 // the a calculation from just one side would be enough, but
1124 // doing it from both sides might still make the numerics
1125 // a bit more stable.
1126 }
1127 }
1128
1129 DrsCalibrateTime GetResult() const
1130 {
1131 DrsCalibrateTime rc(*this);
1132 rc.CalcResult();
1133 return rc;
1134 }
1135
1136 double Offset(uint32_t ch, double pos) const
1137 {
1138 const auto p = fStat.begin() + ch*1024;
1139
1140 const uint32_t f = floor(pos);
1141
1142 const double v0 = p[f].first;
1143 const double v1 = p[(f+1)%1024].first;
1144
1145 return v0 + fmod(pos, 1)*(v1-v0);
1146 }
1147
1148 double Calib(uint32_t ch, double pos) const
1149 {
1150 return pos-Offset(ch, pos);
1151 }
1152};
1153
1154struct DrsCalibration
1155{
1156 std::vector<int32_t> fOffset;
1157 std::vector<int64_t> fGain;
1158 std::vector<int64_t> fTrgOff;
1159
1160 uint64_t fNumOffset;
1161 uint64_t fNumGain;
1162 uint64_t fNumTrgOff;
1163
1164 uint32_t fStep;
1165 uint16_t fRoi; // Region of interest for trgoff
1166 uint16_t fNumTm; // Number of time marker channels in trgoff
1167
1168 std::string fDateObs;
1169 std::string fDateRunBeg[3];
1170 std::string fDateRunEnd[3];
1171 std::string fDateEnd;
1172
1173// uint16_t fDAC[8];
1174
1175 DrsCalibration() :
1176 fOffset(1440*1024, 0),
1177 fGain(1440*1024, 4096),
1178 fTrgOff (1600*1024, 0),
1179 fNumOffset(1),
1180 fNumGain(2000),
1181 fNumTrgOff(1),
1182 fStep(0),
1183 fDateObs("1970-01-01T00:00:00"),
1184 fDateEnd("1970-01-01T00:00:00")
1185 {
1186 for (int i=0; i<3; i++)
1187 {
1188 fDateRunBeg[i] = "1970-01-01T00:00:00";
1189 fDateRunEnd[i] = "1970-01-01T00:00:00";
1190 }
1191 }
1192
1193 DrsCalibration(const DrsCalibration &cpy) :
1194 fOffset(cpy.fOffset),
1195 fGain(cpy.fGain),
1196 fTrgOff(cpy.fTrgOff),
1197 fNumOffset(cpy.fNumOffset),
1198 fNumGain(cpy.fNumGain),
1199 fNumTrgOff(cpy.fNumTrgOff),
1200 fStep(cpy.fStep),
1201 fRoi(cpy.fRoi),
1202 fNumTm(cpy.fNumTm),
1203 fDateObs(cpy.fDateObs),
1204 fDateRunBeg(cpy.fDateRunBeg),
1205 fDateRunEnd(cpy.fDateRunEnd),
1206 fDateEnd(cpy.fDateEnd)
1207 {
1208 }
1209
1210 void Clear()
1211 {
1212 // Default gain:
1213 // 0.575*[45590]*2.5V / 2^16 = 0.99999 V
1214 fOffset.assign(1440*1024, 0);
1215 fGain.assign (1440*1024, 4096);
1216 fTrgOff.assign(1600*1024, 0);
1217
1218 fNumOffset = 1;
1219 fNumGain = 2000;
1220 fNumTrgOff = 1;
1221
1222 fStep = 0;
1223
1224 fDateObs = "1970-01-01T00:00:00";
1225 fDateEnd = "1970-01-01T00:00:00";
1226
1227 for (int i=0; i<3; i++)
1228 {
1229 fDateRunBeg[i] = "1970-01-01T00:00:00";
1230 fDateRunEnd[i] = "1970-01-01T00:00:00";
1231 }
1232 }
1233
1234 std::string ReadFitsImp(const std::string &str, std::vector<float> &vec)
1235 {
1236#ifndef __MARS__
1237 std::fits file(str);
1238#else
1239 fits file(str);
1240#endif
1241 if (!file)
1242 {
1243 std::ostringstream msg;
1244 msg << "Could not open file '" << str << "': " << strerror(errno);
1245 return msg.str();
1246 }
1247
1248 if (file.GetStr("TELESCOP")!="FACT")
1249 {
1250 std::ostringstream msg;
1251 msg << "Reading '" << str << "' failed: Not a valid FACT file (TELESCOP not FACT in header)";
1252 return msg.str();
1253 }
1254
1255 if (!file.HasKey("STEP"))
1256 {
1257 std::ostringstream msg;
1258 msg << "Reading '" << str << "' failed: Is not a DRS calib file (STEP not found in header)";
1259 return msg.str();
1260 }
1261
1262 if (file.GetNumRows()!=1)
1263 {
1264 std::ostringstream msg;
1265 msg << "Reading '" << str << "' failed: Number of rows in table is not 1.";
1266 return msg.str();
1267 }
1268
1269 fStep = file.GetUInt("STEP");
1270 fNumOffset = file.GetUInt("NBOFFSET");
1271 fNumGain = file.GetUInt("NBGAIN");
1272 fNumTrgOff = file.GetUInt("NBTRGOFF");
1273 fRoi = file.GetUInt("NROI");
1274 fNumTm = file.HasKey("NTM") ? file.GetUInt("NTM") : 0;
1275
1276 if (file.HasKey("DATE-OBS"))
1277 fDateObs = file.GetStr("DATE-OBS");
1278 if (file.HasKey("DATE-END"))
1279 fDateEnd = file.GetStr("DATE-END");
1280
1281 if (file.HasKey("RUN0-BEG"))
1282 fDateRunBeg[0]= file.GetStr("RUN0-BEG");
1283 if (file.HasKey("RUN1-BEG"))
1284 fDateRunBeg[1]= file.GetStr("RUN1-BEG");
1285 if (file.HasKey("RUN2-BEG"))
1286 fDateRunBeg[2]= file.GetStr("RUN2-BEG");
1287 if (file.HasKey("RUN0-END"))
1288 fDateRunEnd[0]= file.GetStr("RUN0-END");
1289 if (file.HasKey("RUN1-END"))
1290 fDateRunEnd[1]= file.GetStr("RUN1-END");
1291 if (file.HasKey("RUN2-END"))
1292 fDateRunEnd[2]= file.GetStr("RUN2-END");
1293/*
1294 fDAC[0] = file.GetUInt("DAC_A");
1295 fDAC[1] = file.GetUInt("DAC_B");
1296 fDAC[4] = file.GetUInt("DAC_C");
1297*/
1298 vec.resize(1440*1024*4 + (1440+fNumTm)*fRoi*2 + 4);
1299
1300 float *base = vec.data();
1301
1302 reinterpret_cast<uint32_t*>(base)[0] = fRoi;
1303
1304 file.SetPtrAddress("RunNumberBaseline", base+1, 1);
1305 file.SetPtrAddress("RunNumberGain", base+2, 1);
1306 file.SetPtrAddress("RunNumberTriggerOffset", base+3, 1);
1307 file.SetPtrAddress("BaselineMean", base+4+0*1024*1440, 1024*1440);
1308 file.SetPtrAddress("BaselineRms", base+4+1*1024*1440, 1024*1440);
1309 file.SetPtrAddress("GainMean", base+4+2*1024*1440, 1024*1440);
1310 file.SetPtrAddress("GainRms", base+4+3*1024*1440, 1024*1440);
1311 file.SetPtrAddress("TriggerOffsetMean", base+4+4*1024*1440, fRoi*1440);
1312 file.SetPtrAddress("TriggerOffsetRms", base+4+4*1024*1440+fRoi*1440, fRoi*1440);
1313 if (fNumTm>0)
1314 {
1315 file.SetPtrAddress("TriggerOffsetTMMean", base+4+4*1024*1440+ 2*fRoi*1440, fRoi*fNumTm);
1316 file.SetPtrAddress("TriggerOffsetTMRms", base+4+4*1024*1440+ 2*fRoi*1440+ fRoi*fNumTm, fRoi*fNumTm);
1317 }
1318
1319 if (!file.GetNextRow())
1320 {
1321 std::ostringstream msg;
1322 msg << "Reading data from " << str << " failed.";
1323 return msg.str();
1324 }
1325/*
1326 fDAC[2] = fDAC[1];
1327 fDAC[4] = fDAC[1];
1328
1329 fDAC[5] = fDAC[4];
1330 fDAC[6] = fDAC[4];
1331 fDAC[7] = fDAC[4];
1332*/
1333 fOffset.resize(1024*1440);
1334 fGain.resize(1024*1440);
1335
1336 fTrgOff.resize(fRoi*(1440+fNumTm));
1337
1338 // Convert back to ADC counts: 256/125 = 4096/2000
1339 // Convert back to sum (mean * num_entries)
1340 for (int i=0; i<1024*1440; i++)
1341 {
1342 fOffset[i] = fNumOffset *256*base[i+1024*1440*0+4]/125;
1343 fGain[i] = fNumOffset*fNumGain*256*base[i+1024*1440*2+4]/125;
1344 }
1345
1346 for (int i=0; i<fRoi*1440; i++)
1347 fTrgOff[i] = fNumOffset*fNumTrgOff*256*base[i+1024*1440*4+4]/125;
1348
1349 for (int i=0; i<fRoi*fNumTm; i++)
1350 fTrgOff[i+1440*fRoi] = fNumOffset*fNumTrgOff*256*base[i+1024*1440*4+2*fRoi*1440+4]/125;
1351
1352
1353 // DAC: 0..2.5V == 0..65535
1354 // V-mV: 1000
1355 //fNumGain *= 2500*50000;
1356 //for (int i=0; i<1024*1440; i++)
1357 // fGain[i] *= 65536;
1358 if (fStep==0)
1359 {
1360 for (int i=0; i<1024*1440; i++)
1361 fGain[i] = fNumOffset*4096;
1362 }
1363 else
1364 {
1365 fNumGain *= 1953125;
1366 for (int i=0; i<1024*1440; i++)
1367 fGain[i] *= 1024;
1368 }
1369
1370 // Now mark the stored DRS data as "officially valid"
1371 // However, this is not thread safe. It only ensures that
1372 // this data is not used before it is completely and correctly
1373 // read.
1374 fStep++;
1375
1376 return std::string();
1377 }
1378
1379 std::string WriteFitsImp(const std::string &filename, const std::vector<float> &vec) const
1380 {
1381 const size_t n = 1440*1024*4 + 1440*fRoi*2 + fNumTm*fRoi*2 + 3;
1382
1383#ifndef __MARS__
1384 std::ofits file(filename.c_str());
1385#else
1386 ofits file(filename.c_str());
1387#endif
1388 if (!file)
1389 {
1390 std::ostringstream msg;
1391 msg << "Could not open file '" << filename << "': " << strerror(errno);
1392 return msg.str();
1393 }
1394
1395 file.AddColumnInt("RunNumberBaseline");
1396 file.AddColumnInt("RunNumberGain");
1397 file.AddColumnInt("RunNumberTriggerOffset");
1398
1399 file.AddColumnFloat(1024*1440, "BaselineMean", "mV");
1400 file.AddColumnFloat(1024*1440, "BaselineRms", "mV");
1401 file.AddColumnFloat(1024*1440, "GainMean", "mV");
1402 file.AddColumnFloat(1024*1440, "GainRms", "mV");
1403 file.AddColumnFloat(fRoi*1440, "TriggerOffsetMean", "mV");
1404 file.AddColumnFloat(fRoi*1440, "TriggerOffsetRms", "mV");
1405 file.AddColumnFloat(fRoi*fNumTm, "TriggerOffsetTMMean", "mV");
1406 file.AddColumnFloat(fRoi*fNumTm, "TriggerOffsetTMRms", "mV");
1407
1408#ifdef __MARS__
1409 const MTime now(-1);
1410 file.SetStr( "TELESCOP", "FACT", "Telescope that acquired this data");
1411 file.SetStr( "PACKAGE", "MARS", "Package name");
1412 file.SetStr( "VERSION", "1.0", "Package description");
1413 //file.SetStr( "CREATOR", "root", "Program that wrote this file");
1414 file.SetFloat("EXTREL", 1.0, "Release Number");
1415 file.SetStr( "COMPILED", __DATE__" "__TIME__, "Compile time");
1416 //file.SetStr( "REVISION", REVISION, "SVN revision");
1417 file.SetStr( "ORIGIN", "FACT", "Institution that wrote the file");
1418 file.SetStr( "DATE", now.GetStringFmt("%Y-%m-%dT%H:%M:%S").Data(), "File creation date");
1419 file.SetInt( "NIGHT", now.GetNightAsInt(), "Night as int");
1420 file.SetStr( "TIMESYS", "UTC", "Time system");
1421 file.SetStr( "TIMEUNIT", "d", "Time given in days w.r.t. to MJDREF");
1422 file.SetInt( "MJDREF", 40587, "MJD to UNIX time (seconds since 1970/1/1)");
1423#else
1424 DataWriteFits2::WriteDefaultKeys(file);
1425#endif
1426 file.SetStr("DATE-OBS", fDateObs, "First event of whole DRS calibration");
1427 file.SetStr("DATE-END", fDateEnd, "Last event of whole DRS calibration");
1428 file.SetStr("RUN0-BEG", fDateRunBeg[0], "First event of run 0");
1429 file.SetStr("RUN1-BEG", fDateRunBeg[1], "First event of run 1");
1430 file.SetStr("RUN2-BEG", fDateRunBeg[2], "First event of run 2");
1431 file.SetStr("RUN0-END", fDateRunEnd[0], "Last event of run 0");
1432 file.SetStr("RUN1-END", fDateRunEnd[1], "Last event of run 1");
1433 file.SetStr("RUN2-END", fDateRunEnd[2], "Last event of run 2");
1434
1435 file.SetInt("STEP", fStep, "");
1436
1437 file.SetInt("ADCRANGE", 2000, "Dynamic range of the ADC in mV");
1438 file.SetInt("DACRANGE", 2500, "Dynamic range of the DAC in mV");
1439 file.SetInt("ADC", 12, "Resolution of ADC in bits");
1440 file.SetInt("DAC", 16, "Resolution of DAC in bits");
1441 file.SetInt("NPIX", 1440, "Number of channels in the camera");
1442 file.SetInt("NTM", fNumTm, "Number of time marker channels");
1443 file.SetInt("NROI", fRoi, "Region of interest");
1444
1445 file.SetInt("NBOFFSET", fNumOffset, "Num of entries for offset calibration");
1446 file.SetInt("NBGAIN", fNumGain/1953125, "Num of entries for gain calibration");
1447 file.SetInt("NBTRGOFF", fNumTrgOff, "Num of entries for trigger offset calibration");
1448
1449 // file.WriteKeyNT("DAC_A", fData.fDAC[0], "Level of DAC 0 in DAC counts") ||
1450 // file.WriteKeyNT("DAC_B", fData.fDAC[1], "Leval of DAC 1-3 in DAC counts") ||
1451 // file.WriteKeyNT("DAC_C", fData.fDAC[4], "Leval of DAC 4-7 in DAC counts") ||
1452
1453 file.WriteTableHeader("DrsCalibration");
1454
1455 if (!file.WriteRow(vec.data()+1, n*sizeof(float)))
1456 {
1457 std::ostringstream msg;
1458 msg << "Writing data to " << filename << " failed.";
1459 return msg.str();
1460 }
1461
1462 return std::string();
1463 }
1464
1465
1466 std::string ReadFitsImp(const std::string &str)
1467 {
1468 std::vector<float> vec;
1469 return ReadFitsImp(str, vec);
1470 }
1471
1472 bool IsValid() { return fStep>2; }
1473
1474 bool Apply(float *vec, const int16_t *val, const int16_t *start, uint32_t roi)
1475 {
1476 if (roi!=fRoi)
1477 {
1478 for (size_t ch=0; ch<1440; ch++)
1479 {
1480 const size_t pos = ch*roi;
1481 const size_t drs = ch*1024;
1482
1483 DrsCalibrate::ApplyCh(vec+pos, val+pos, start[ch], roi,
1484 fOffset.data()+drs, fNumOffset,
1485 fGain.data() +drs, fNumGain);
1486 }
1487
1488 return false;
1489 }
1490
1491 for (size_t ch=0; ch<1440; ch++)
1492 {
1493 const size_t pos = ch*fRoi;
1494 const size_t drs = ch*1024;
1495
1496 DrsCalibrate::ApplyCh(vec+pos, val+pos, start[ch], roi,
1497 fOffset.data()+drs, fNumOffset,
1498 fGain.data() +drs, fNumGain,
1499 fTrgOff.data()+pos, fNumTrgOff);
1500 }
1501
1502 for (size_t ch=0; ch<fNumTm; ch++)
1503 {
1504 const size_t pos = (ch+1440)*fRoi;
1505 const size_t drs = (ch*9+8)*1024;
1506
1507 DrsCalibrate::ApplyCh(vec+pos, val+pos, start[ch], roi,
1508 fOffset.data()+drs, fNumOffset,
1509 fGain.data() +drs, fNumGain,
1510 fTrgOff.data()+pos, fNumTrgOff);
1511 }
1512
1513 return true;
1514 }
1515};
1516
1517#endif
Note: See TracBrowser for help on using the repository browser.