| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Wolfgang Wittek,  July 2003      <mailto:wittek@mppmu.mpg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2000-2003 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | // MHFindSignificance | 
|---|
| 28 | // | 
|---|
| 29 | // determines the significance of a gamma signal in an |alpha| plot | 
|---|
| 30 | // | 
|---|
| 31 | // | 
|---|
| 32 | // Input : TH1 histogram of |alpha| : with 0 < |alpha| < 90 degrees | 
|---|
| 33 | //         alphamin, alphamax :     defining the background region | 
|---|
| 34 | //         alphasig           :     defining the signal region for which | 
|---|
| 35 | //                                  the significance is calculated | 
|---|
| 36 | //         degree : the degree of the polynomial to be fitted to the background | 
|---|
| 37 | //                  ( a0 + a1*x + a2*x**2 + a3*x**3 + ...) | 
|---|
| 38 | // | 
|---|
| 39 | // Output : | 
|---|
| 40 | // | 
|---|
| 41 | //   - polynomial which describes the background in the background region | 
|---|
| 42 | //   - the number of events in the signal region (Non) | 
|---|
| 43 | //     the number of background events in the signal region (Nbg) | 
|---|
| 44 | //   - the number of excess events in the signal region (Nex = Non - Nbg) | 
|---|
| 45 | //   - thew effective number of background events (Noff), and gamma : | 
|---|
| 46 | //     Nbg = gamma * Noff | 
|---|
| 47 | //   - the significance of the gamma signal according to Li & Ma | 
|---|
| 48 | // | 
|---|
| 49 | // | 
|---|
| 50 | // call member function 'FindSigma' | 
|---|
| 51 | //      to fit the background and to determine the significance | 
|---|
| 52 | // | 
|---|
| 53 | // call the member function 'SigmaVsAlpha' | 
|---|
| 54 | //      to determine the significance as a function of alphasig | 
|---|
| 55 | // | 
|---|
| 56 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
| 57 | #include "MHFindSignificance.h" | 
|---|
| 58 |  | 
|---|
| 59 | #include <fstream> | 
|---|
| 60 | #include <math.h> | 
|---|
| 61 |  | 
|---|
| 62 | #include <TArrayD.h> | 
|---|
| 63 | #include <TArrayI.h> | 
|---|
| 64 | #include <TH1.h> | 
|---|
| 65 | #include <TF1.h> | 
|---|
| 66 | #include <TCanvas.h> | 
|---|
| 67 | #include <TFitter.h> | 
|---|
| 68 | #include <TMinuit.h> | 
|---|
| 69 | #include <TPaveText.h> | 
|---|
| 70 | #include <TStyle.h> | 
|---|
| 71 |  | 
|---|
| 72 | #include "MLog.h" | 
|---|
| 73 | #include "MLogManip.h" | 
|---|
| 74 | #include "MMinuitInterface.h" | 
|---|
| 75 |  | 
|---|
| 76 |  | 
|---|
| 77 | ClassImp(MHFindSignificance); | 
|---|
| 78 |  | 
|---|
| 79 | using namespace std; | 
|---|
| 80 |  | 
|---|
| 81 | const TString MHFindSignificance::gsDefName  = "MHFindSignificance"; | 
|---|
| 82 | const TString MHFindSignificance::gsDefTitle = "Find Significance in alpha plot"; | 
|---|
| 83 |  | 
|---|
| 84 |  | 
|---|
| 85 |  | 
|---|
| 86 | // -------------------------------------------------------------------------- | 
|---|
| 87 | // | 
|---|
| 88 | // fcnpoly | 
|---|
| 89 | // | 
|---|
| 90 | // calculates the chi2 for the fit of the polynomial function 'poly' | 
|---|
| 91 | // to the histogram 'fhist' | 
|---|
| 92 | // | 
|---|
| 93 | // it is called by CallMinuit() (which is called in FitPolynomial()) | 
|---|
| 94 | // | 
|---|
| 95 | // bins of fhist with huge errors are ignored in the calculation of the chi2 | 
|---|
| 96 | // (the huge errors were set in 'FitPolynomial()') | 
|---|
| 97 | // | 
|---|
| 98 |  | 
|---|
| 99 | static void fcnpoly(Int_t &npar, Double_t *gin, Double_t &f, | 
|---|
| 100 | Double_t *par, Int_t iflag) | 
|---|
| 101 | { | 
|---|
| 102 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit(); | 
|---|
| 103 | TF1 *fpoly = fhist->GetFunction("Poly"); | 
|---|
| 104 |  | 
|---|
| 105 |  | 
|---|
| 106 | //------------------------------------------- | 
|---|
| 107 |  | 
|---|
| 108 | Double_t chi2 = 0.0; | 
|---|
| 109 |  | 
|---|
| 110 | Int_t nbins = fhist->GetNbinsX(); | 
|---|
| 111 | Int_t mbins = 0; | 
|---|
| 112 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 113 | { | 
|---|
| 114 | Double_t content = fhist->GetBinContent(i); | 
|---|
| 115 | Double_t error   = fhist->GetBinError(i); | 
|---|
| 116 | Double_t center  = fhist->GetBinCenter(i); | 
|---|
| 117 |  | 
|---|
| 118 | //----------------------------- | 
|---|
| 119 | // ignore unwanted points | 
|---|
| 120 | if (error > 1.e19) | 
|---|
| 121 | continue; | 
|---|
| 122 |  | 
|---|
| 123 | if (content <= 0.0) | 
|---|
| 124 | { | 
|---|
| 125 | gLog << "fcnpoly : bin with zero content; i, content, error = " | 
|---|
| 126 | << i << ",  " << content << ",  " << error << endl; | 
|---|
| 127 | continue; | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | if (error <= 0.0) | 
|---|
| 131 | { | 
|---|
| 132 | gLog << "fcnpoly : bin with zero error; i, content, error = " | 
|---|
| 133 | << i << ",  " << content << ",  " << error << endl; | 
|---|
| 134 | continue; | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | //----------------------------- | 
|---|
| 138 | mbins++; | 
|---|
| 139 |  | 
|---|
| 140 | Double_t fu; | 
|---|
| 141 | fu = fpoly->EvalPar(¢er, par); | 
|---|
| 142 |  | 
|---|
| 143 | // the fitted function must not be negative | 
|---|
| 144 | if (fu <= 0.0) | 
|---|
| 145 | { | 
|---|
| 146 | chi2 = 1.e10; | 
|---|
| 147 | break; | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | Double_t temp = (content - fu) / error; | 
|---|
| 151 | chi2 += temp*temp; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | //------------------------------------------- | 
|---|
| 155 |  | 
|---|
| 156 | f = chi2; | 
|---|
| 157 |  | 
|---|
| 158 | //------------------------------------------- | 
|---|
| 159 | // final calculations | 
|---|
| 160 | //if (iflag == 3) | 
|---|
| 161 | //{ | 
|---|
| 162 | //} | 
|---|
| 163 |  | 
|---|
| 164 | //------------------------------------------------------------- | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 |  | 
|---|
| 168 | // -------------------------------------------------------------------------- | 
|---|
| 169 | // | 
|---|
| 170 | // fcnpolygauss | 
|---|
| 171 | // | 
|---|
| 172 | // calculates the chi2 for the fit of the (polynomial+Gauss) function | 
|---|
| 173 | // 'PolyGauss' to the histogram 'fhist' | 
|---|
| 174 | // | 
|---|
| 175 | // it is called by CallMinuit() (which is called in FitGaussPoly()) | 
|---|
| 176 | // | 
|---|
| 177 | // bins of fhist with huge errors are ignored in the calculation of the chi2 | 
|---|
| 178 | // (the huge errors were set in 'FitGaussPoly()') | 
|---|
| 179 | // | 
|---|
| 180 |  | 
|---|
| 181 | static void fcnpolygauss(Int_t &npar, Double_t *gin, Double_t &f, | 
|---|
| 182 | Double_t *par, Int_t iflag) | 
|---|
| 183 | { | 
|---|
| 184 | TH1 *fhist = (TH1*)gMinuit->GetObjectFit(); | 
|---|
| 185 | TF1 *fpolygauss = fhist->GetFunction("PolyGauss"); | 
|---|
| 186 |  | 
|---|
| 187 |  | 
|---|
| 188 | //------------------------------------------- | 
|---|
| 189 |  | 
|---|
| 190 | Double_t chi2 = 0.0; | 
|---|
| 191 |  | 
|---|
| 192 | Int_t nbins = fhist->GetNbinsX(); | 
|---|
| 193 | Int_t mbins = 0; | 
|---|
| 194 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 195 | { | 
|---|
| 196 | Double_t content = fhist->GetBinContent(i); | 
|---|
| 197 | Double_t error   = fhist->GetBinError(i); | 
|---|
| 198 | Double_t center  = fhist->GetBinCenter(i); | 
|---|
| 199 |  | 
|---|
| 200 | //----------------------------- | 
|---|
| 201 | // ignore unwanted points | 
|---|
| 202 | if (error > 1.e19) | 
|---|
| 203 | continue; | 
|---|
| 204 |  | 
|---|
| 205 | if (content <= 0.0) | 
|---|
| 206 | { | 
|---|
| 207 | gLog << "fcnpolygauss : bin with zero content; i, content, error = " | 
|---|
| 208 | << i << ",  " << content << ",  " << error << endl; | 
|---|
| 209 | continue; | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | if (error <= 0.0) | 
|---|
| 213 | { | 
|---|
| 214 | gLog << "fcnpolygauss : bin with zero error; i, content, error = " | 
|---|
| 215 | << i << ",  " << content << ",  " << error << endl; | 
|---|
| 216 | continue; | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | //----------------------------- | 
|---|
| 220 | mbins++; | 
|---|
| 221 |  | 
|---|
| 222 | Double_t fu; | 
|---|
| 223 | fu = fpolygauss->EvalPar(¢er, par); | 
|---|
| 224 |  | 
|---|
| 225 | // the fitted function must not be negative | 
|---|
| 226 | if (fu <= 0.0) | 
|---|
| 227 | { | 
|---|
| 228 | chi2 = 1.e10; | 
|---|
| 229 | break; | 
|---|
| 230 | } | 
|---|
| 231 |  | 
|---|
| 232 | Double_t temp = (content - fu) / error; | 
|---|
| 233 | chi2 += temp*temp; | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | //------------------------------------------- | 
|---|
| 237 |  | 
|---|
| 238 | f = chi2; | 
|---|
| 239 |  | 
|---|
| 240 | //------------------------------------------- | 
|---|
| 241 | // final calculations | 
|---|
| 242 | //if (iflag == 3) | 
|---|
| 243 | //{ | 
|---|
| 244 | //} | 
|---|
| 245 |  | 
|---|
| 246 | //------------------------------------------------------------- | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 |  | 
|---|
| 250 |  | 
|---|
| 251 | // -------------------------------------------------------------------------- | 
|---|
| 252 | // | 
|---|
| 253 | //  Constructor | 
|---|
| 254 | // | 
|---|
| 255 | MHFindSignificance::MHFindSignificance(const char *name, const char *title) | 
|---|
| 256 | { | 
|---|
| 257 | fName  = name  ? name  : gsDefName.Data(); | 
|---|
| 258 | fTitle = title ? title : gsDefTitle.Data(); | 
|---|
| 259 |  | 
|---|
| 260 | fSigVsAlpha = NULL; | 
|---|
| 261 |  | 
|---|
| 262 | fPoly   = NULL; | 
|---|
| 263 | fGPoly  = NULL; | 
|---|
| 264 | fGBackg = NULL; | 
|---|
| 265 |  | 
|---|
| 266 | fHist     = NULL; | 
|---|
| 267 | fHistOrig = NULL; | 
|---|
| 268 |  | 
|---|
| 269 | // allow rebinning of the alpha plot | 
|---|
| 270 | fRebin = kTRUE; | 
|---|
| 271 |  | 
|---|
| 272 | // allow reducing the degree of the polynomial | 
|---|
| 273 | fReduceDegree = kTRUE; | 
|---|
| 274 |  | 
|---|
| 275 | fCanvas = NULL; | 
|---|
| 276 | } | 
|---|
| 277 |  | 
|---|
| 278 | // -------------------------------------------------------------------------- | 
|---|
| 279 | // | 
|---|
| 280 | //  Destructor. | 
|---|
| 281 | // | 
|---|
| 282 | // =====>  it is not clear why one obtains sometimes a segmentation violation | 
|---|
| 283 | //         when the destructor is active     <======================= | 
|---|
| 284 | // | 
|---|
| 285 | // therefore the 'return'statement | 
|---|
| 286 | // | 
|---|
| 287 |  | 
|---|
| 288 | MHFindSignificance::~MHFindSignificance() | 
|---|
| 289 | { | 
|---|
| 290 | return; | 
|---|
| 291 |  | 
|---|
| 292 | *fLog << "destructor of MHFindSignificance is called" << endl; | 
|---|
| 293 |  | 
|---|
| 294 | //delete fHist; | 
|---|
| 295 |  | 
|---|
| 296 | delete fSigVsAlpha; | 
|---|
| 297 | delete fPoly; | 
|---|
| 298 | delete fGPoly; | 
|---|
| 299 | delete fGBackg; | 
|---|
| 300 | //delete fCanvas; | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | // -------------------------------------------------------------------------- | 
|---|
| 304 | // | 
|---|
| 305 | //  Set flag fRebin | 
|---|
| 306 | // | 
|---|
| 307 | //  if flag is kTRUE rebinning of the alpha plot is allowed | 
|---|
| 308 | // | 
|---|
| 309 | // | 
|---|
| 310 | void MHFindSignificance::SetRebin(Bool_t b) | 
|---|
| 311 | { | 
|---|
| 312 | fRebin = b; | 
|---|
| 313 |  | 
|---|
| 314 | *fLog << "MHFindSignificance::SetRebin; flag fRebin set to " | 
|---|
| 315 | << (b? "kTRUE" : "kFALSE") << endl; | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | // -------------------------------------------------------------------------- | 
|---|
| 319 | // | 
|---|
| 320 | //  Set flag fReduceDegree | 
|---|
| 321 | // | 
|---|
| 322 | //  if flag is kTRUE reducing of the degree of the polynomial is allowed | 
|---|
| 323 | // | 
|---|
| 324 | // | 
|---|
| 325 | void MHFindSignificance::SetReduceDegree(Bool_t b) | 
|---|
| 326 | { | 
|---|
| 327 | fReduceDegree = b; | 
|---|
| 328 |  | 
|---|
| 329 | *fLog << "MHFindSignificance::SetReduceDegree; flag fReduceDegree set to " | 
|---|
| 330 | << (b? "kTRUE" : "kFALSE") << endl; | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | // -------------------------------------------------------------------------- | 
|---|
| 334 | // | 
|---|
| 335 | //  FindSigma | 
|---|
| 336 | // | 
|---|
| 337 | //  calls FitPolynomial     to fit the background in the background region | 
|---|
| 338 | //  calls DetExcess         to determine the number of excess events | 
|---|
| 339 | //                          using an extrapolation of the polynomial | 
|---|
| 340 | //                          into the signal region | 
|---|
| 341 | //  calls SigmaLiMa         to determine the significance of the gamma signal | 
|---|
| 342 | //                          in the range |alpha| < alphasig | 
|---|
| 343 | //  calls FitGaussPoly      to fit a (polynomial+Gauss) function in the | 
|---|
| 344 | //                          whole |alpha| region | 
|---|
| 345 | // | 
|---|
| 346 | // | 
|---|
| 347 | Bool_t MHFindSignificance::FindSigma(TH1 *fhist,  Double_t alphamin, | 
|---|
| 348 | Double_t alphamax, Int_t degree, Double_t alphasig, | 
|---|
| 349 | Bool_t drawpoly,   Bool_t fitgauss, Bool_t print) | 
|---|
| 350 | { | 
|---|
| 351 | //*fLog << "MHFindSignificance::FindSigma;" << endl; | 
|---|
| 352 |  | 
|---|
| 353 | fHistOrig = fhist; | 
|---|
| 354 |  | 
|---|
| 355 | fHist = (TH1*)fHistOrig->Clone(); | 
|---|
| 356 | fHist->SetName(fhist->GetName()); | 
|---|
| 357 | if ( !fHist ) | 
|---|
| 358 | { | 
|---|
| 359 | *fLog << "MHFindSignificance::FindSigma; Clone of histogram could not be generated" | 
|---|
| 360 | << endl; | 
|---|
| 361 | return kFALSE; | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | fHist->Sumw2(); | 
|---|
| 365 | //fHist->SetNameTitle("Alpha", "alpha plot"); | 
|---|
| 366 | fHist->SetXTitle("|alpha|  [\\circ]"); | 
|---|
| 367 | fHist->SetYTitle("Counts"); | 
|---|
| 368 | fHist->UseCurrentStyle(); | 
|---|
| 369 |  | 
|---|
| 370 | fAlphamin = alphamin; | 
|---|
| 371 | fAlphamax = alphamax; | 
|---|
| 372 | fAlphammm = (alphamin+alphamax)/2.0; | 
|---|
| 373 | fDegree   = degree; | 
|---|
| 374 | fAlphasig = alphasig; | 
|---|
| 375 |  | 
|---|
| 376 | fDraw     = drawpoly; | 
|---|
| 377 | fFitGauss = fitgauss; | 
|---|
| 378 |  | 
|---|
| 379 |  | 
|---|
| 380 | //-------------------------------------------- | 
|---|
| 381 | // fit a polynomial in the background region | 
|---|
| 382 |  | 
|---|
| 383 | //*fLog << "MHFindSignificance::FindSigma;  calling FitPolynomial()" << endl; | 
|---|
| 384 | if ( !FitPolynomial() ) | 
|---|
| 385 | { | 
|---|
| 386 | *fLog << "MHFindSignificance::FindSigma; FitPolynomial failed" | 
|---|
| 387 | << endl; | 
|---|
| 388 | return kFALSE; | 
|---|
| 389 | } | 
|---|
| 390 |  | 
|---|
| 391 |  | 
|---|
| 392 | //-------------------------------------------- | 
|---|
| 393 | // calculate the number of excess events in the signal region | 
|---|
| 394 |  | 
|---|
| 395 | //*fLog << "MHFindSignificance::FindSigma;  calling DetExcess()" << endl; | 
|---|
| 396 | if ( !DetExcess() ) | 
|---|
| 397 | { | 
|---|
| 398 | *fLog << "MHFindSignificance::FindSigma; DetExcess failed" | 
|---|
| 399 | << endl; | 
|---|
| 400 | return kFALSE; | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 |  | 
|---|
| 404 | //-------------------------------------------- | 
|---|
| 405 | // calculate the significance of the excess | 
|---|
| 406 |  | 
|---|
| 407 | //*fLog << "MHFindSignificance::FindSigma;  calling SigmaLiMa()" << endl; | 
|---|
| 408 | Double_t siglima = 0.0; | 
|---|
| 409 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) ) | 
|---|
| 410 | { | 
|---|
| 411 | *fLog << "MHFindSignificance::FindSigma; SigmaLiMa failed" | 
|---|
| 412 | << endl; | 
|---|
| 413 | return kFALSE; | 
|---|
| 414 | } | 
|---|
| 415 | fSigLiMa = siglima; | 
|---|
| 416 |  | 
|---|
| 417 | //-------------------------------------------- | 
|---|
| 418 | // calculate the error of the number of excess events | 
|---|
| 419 |  | 
|---|
| 420 | fdNex = fNex / fSigLiMa; | 
|---|
| 421 |  | 
|---|
| 422 |  | 
|---|
| 423 | //-------------------------------------------- | 
|---|
| 424 |  | 
|---|
| 425 | //*fLog << "MHFindSignificance::FindSigma;  calling PrintPoly()" << endl; | 
|---|
| 426 | if (print) | 
|---|
| 427 | PrintPoly(); | 
|---|
| 428 |  | 
|---|
| 429 |  | 
|---|
| 430 | //-------------------------------------------- | 
|---|
| 431 | // fit a (polynomial + Gauss) function | 
|---|
| 432 |  | 
|---|
| 433 | if (fFitGauss) | 
|---|
| 434 | { | 
|---|
| 435 | //-------------------------------------------------- | 
|---|
| 436 | // delete objects from this fit | 
|---|
| 437 | // in order to have independent starting conditions for the next fit | 
|---|
| 438 |  | 
|---|
| 439 | delete gMinuit; | 
|---|
| 440 | gMinuit = NULL; | 
|---|
| 441 | //-------------------------------------------------- | 
|---|
| 442 |  | 
|---|
| 443 | //*fLog << "MHFindSignificance::FindSigma;  calling FitGaussPoly()" | 
|---|
| 444 | //      << endl; | 
|---|
| 445 | if ( !FitGaussPoly() ) | 
|---|
| 446 | { | 
|---|
| 447 | *fLog << "MHFindSignificance::FindSigma; FitGaussPoly failed" | 
|---|
| 448 | << endl; | 
|---|
| 449 | return kFALSE; | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | if (print) | 
|---|
| 453 | { | 
|---|
| 454 | //*fLog << "MHFindSignificance::FindSigma;  calling PrintPolyGauss()" | 
|---|
| 455 | //      << endl; | 
|---|
| 456 | PrintPolyGauss(); | 
|---|
| 457 | } | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | //-------------------------------------------------- | 
|---|
| 461 | // draw the histogram if requested | 
|---|
| 462 |  | 
|---|
| 463 | if (fDraw) | 
|---|
| 464 | { | 
|---|
| 465 | //*fLog << "MHFindSignificance::FindSigma;  calling DrawFit()" << endl; | 
|---|
| 466 | if ( !DrawFit() ) | 
|---|
| 467 | { | 
|---|
| 468 | *fLog << "MHFindSignificance::FindSigma; DrawFit failed" | 
|---|
| 469 | << endl; | 
|---|
| 470 | return kFALSE; | 
|---|
| 471 | } | 
|---|
| 472 | } | 
|---|
| 473 |  | 
|---|
| 474 |  | 
|---|
| 475 | //-------------------------------------------------- | 
|---|
| 476 | // delete objects from this fit | 
|---|
| 477 | // in order to have independent starting conditions for the next fit | 
|---|
| 478 |  | 
|---|
| 479 | delete gMinuit; | 
|---|
| 480 | gMinuit = NULL; | 
|---|
| 481 | //-------------------------------------------------- | 
|---|
| 482 |  | 
|---|
| 483 | return kTRUE; | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | // -------------------------------------------------------------------------- | 
|---|
| 487 | // | 
|---|
| 488 | //  SigmaVsAlpha  (like FindSigma. However, alphasig is scanned and | 
|---|
| 489 | //                 the significance is plotted versus alphasig) | 
|---|
| 490 | // | 
|---|
| 491 | //  calls FitPolynomial     to fit the background in the background region | 
|---|
| 492 | // | 
|---|
| 493 | //  scan alphasig; for a given alphasig : | 
|---|
| 494 | //       calls DetExcess    to determine the number of excess events | 
|---|
| 495 | //       calls SigmaLiMa    to determine the significance of the gamma signal | 
|---|
| 496 | //                          in the range fAlphalow < |alpha| < alphasig | 
|---|
| 497 | // | 
|---|
| 498 |  | 
|---|
| 499 | Bool_t MHFindSignificance::SigmaVsAlpha(TH1 *fhist,  Double_t alphamin, | 
|---|
| 500 | Double_t alphamax, Int_t degree, Bool_t print) | 
|---|
| 501 | { | 
|---|
| 502 | //*fLog << "MHFindSignificance::SigmaVsAlpha;" << endl; | 
|---|
| 503 |  | 
|---|
| 504 | fHistOrig = fhist; | 
|---|
| 505 |  | 
|---|
| 506 | fHist = (TH1*)fHistOrig->Clone(); | 
|---|
| 507 | fHist->SetName(fhist->GetName()); | 
|---|
| 508 | fHist->Sumw2(); | 
|---|
| 509 | //fHist->SetNameTitle("alpha", "alpha plot"); | 
|---|
| 510 | fHist->SetXTitle("|alpha|  [\\circ]"); | 
|---|
| 511 | fHist->SetYTitle("Counts"); | 
|---|
| 512 | fHist->UseCurrentStyle(); | 
|---|
| 513 |  | 
|---|
| 514 | fAlphamin = alphamin; | 
|---|
| 515 | fAlphamax = alphamax; | 
|---|
| 516 | fAlphammm = (alphamin+alphamax)/2.0; | 
|---|
| 517 | fDegree   = degree; | 
|---|
| 518 |  | 
|---|
| 519 |  | 
|---|
| 520 | //-------------------------------------------- | 
|---|
| 521 | // fit a polynomial in the background region | 
|---|
| 522 |  | 
|---|
| 523 | //*fLog << "MHFindSignificance::SigmaVsAlpha  calling FitPolynomial()" | 
|---|
| 524 | //      << endl; | 
|---|
| 525 | if ( !FitPolynomial() ) | 
|---|
| 526 | { | 
|---|
| 527 | *fLog << "MHFindSignificance::SigmaVsAlpha;  FitPolynomial() failed" | 
|---|
| 528 | << endl; | 
|---|
| 529 | return kFALSE; | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 |  | 
|---|
| 533 | //-------------------------------------------- | 
|---|
| 534 | // loop over different signal regions | 
|---|
| 535 |  | 
|---|
| 536 | Int_t    nsteps    =  15; | 
|---|
| 537 |  | 
|---|
| 538 | fSigVsAlpha = new TH1D("SigVsAlpha","Sigma vs Alpha", nsteps, 0.0, alphamin); | 
|---|
| 539 | fSigVsAlpha->SetXTitle("upper edge of signal region in |alpha|  [\\circ]"); | 
|---|
| 540 | fSigVsAlpha->SetYTitle("Significance of gamma signal"); | 
|---|
| 541 |  | 
|---|
| 542 | for (Int_t i=1; i<=nsteps; i++) | 
|---|
| 543 | { | 
|---|
| 544 | fAlphasig = fSigVsAlpha->GetBinCenter(i); | 
|---|
| 545 |  | 
|---|
| 546 | if ( !DetExcess() ) | 
|---|
| 547 | { | 
|---|
| 548 | *fLog << "MHFindSignificance::SigmaVsAlpha;  DetExcess() failed" << endl; | 
|---|
| 549 | continue; | 
|---|
| 550 | } | 
|---|
| 551 |  | 
|---|
| 552 | Double_t siglima = 0.0; | 
|---|
| 553 | if ( !SigmaLiMa(fNon, fNoff, fGamma, &siglima) ) | 
|---|
| 554 | { | 
|---|
| 555 | *fLog << "MHFindSignificance::SigmaVsAlpha;  SigmaLiMa() failed" << endl; | 
|---|
| 556 | continue; | 
|---|
| 557 | } | 
|---|
| 558 |  | 
|---|
| 559 | fdNex = fNex / siglima; | 
|---|
| 560 | fSigVsAlpha->SetBinContent(i, siglima); | 
|---|
| 561 |  | 
|---|
| 562 | if (print) | 
|---|
| 563 | PrintPoly(); | 
|---|
| 564 | } | 
|---|
| 565 |  | 
|---|
| 566 | //-------------------------------------------- | 
|---|
| 567 | // plot significance versus alphasig | 
|---|
| 568 |  | 
|---|
| 569 | TCanvas *ccc = new TCanvas("SigVsAlpha", "Sigma vs Alpha", 600, 600); | 
|---|
| 570 |  | 
|---|
| 571 | gROOT->SetSelectedPad(NULL); | 
|---|
| 572 | gStyle->SetPadLeftMargin(0.05); | 
|---|
| 573 |  | 
|---|
| 574 | ccc->cd(); | 
|---|
| 575 | fSigVsAlpha->DrawCopy(); | 
|---|
| 576 |  | 
|---|
| 577 | ccc->Modified(); | 
|---|
| 578 | ccc->Update(); | 
|---|
| 579 |  | 
|---|
| 580 | return kTRUE; | 
|---|
| 581 | } | 
|---|
| 582 |  | 
|---|
| 583 | // -------------------------------------------------------------------------- | 
|---|
| 584 | // | 
|---|
| 585 | //  FitPolynomial | 
|---|
| 586 | // | 
|---|
| 587 | //  - create a clone 'fHist' of the |alpha| distribution 'fHistOrig' | 
|---|
| 588 | //  - fit a polynomial of degree 'fDegree' to the alpha distribution | 
|---|
| 589 | //    'fHist' in the region alphamin < |alpha| < alphamax | 
|---|
| 590 | // | 
|---|
| 591 | //  in pathological cases the histogram is rebinned before fitting | 
|---|
| 592 | //     (this is done only if fRebin is kTRUE) | 
|---|
| 593 | // | 
|---|
| 594 | //  if the highest coefficient of the polynomial is compatible with zero | 
|---|
| 595 | //     the fit is repeated with a polynomial of lower degree | 
|---|
| 596 | //     (this is done only if fReduceDegree is kTRUE) | 
|---|
| 597 | // | 
|---|
| 598 | // | 
|---|
| 599 | Bool_t MHFindSignificance::FitPolynomial() | 
|---|
| 600 | { | 
|---|
| 601 | //-------------------------------------------------- | 
|---|
| 602 | // check the histogram : | 
|---|
| 603 | //       - calculate initial values of the parameters | 
|---|
| 604 | //       - check for bins with zero entries | 
|---|
| 605 | //       - set minimum errors | 
|---|
| 606 | //       - save the original errors | 
|---|
| 607 | //       - set errors huge outside the fit range | 
|---|
| 608 | //         (in 'fcnpoly' points with huge errors will be ignored) | 
|---|
| 609 |  | 
|---|
| 610 |  | 
|---|
| 611 | Double_t dummy = 1.e20; | 
|---|
| 612 |  | 
|---|
| 613 | Double_t mean; | 
|---|
| 614 | Double_t rms; | 
|---|
| 615 | Double_t nclose; | 
|---|
| 616 | Double_t nfar; | 
|---|
| 617 | Double_t a2init = 0.0; | 
|---|
| 618 | TArrayD  saveError; | 
|---|
| 619 |  | 
|---|
| 620 | Int_t nbins; | 
|---|
| 621 | Int_t nrebin = 1; | 
|---|
| 622 |  | 
|---|
| 623 | //----------------   start while loop for rebinning   ----------------- | 
|---|
| 624 | while(1) | 
|---|
| 625 | { | 
|---|
| 626 |  | 
|---|
| 627 | fNzero   = 0; | 
|---|
| 628 | fMbins   = 0; | 
|---|
| 629 | fMlow    = 0; | 
|---|
| 630 | fNbgtot  = 0.0; | 
|---|
| 631 |  | 
|---|
| 632 | fAlphami =  10000.0; | 
|---|
| 633 | fAlphamm =  10000.0; | 
|---|
| 634 | fAlphama = -10000.0; | 
|---|
| 635 |  | 
|---|
| 636 | mean   = 0.0; | 
|---|
| 637 | rms    = 0.0; | 
|---|
| 638 | nclose = 0.0; | 
|---|
| 639 | nfar   = 0.0; | 
|---|
| 640 |  | 
|---|
| 641 | nbins = fHist->GetNbinsX(); | 
|---|
| 642 | saveError.Set(nbins); | 
|---|
| 643 |  | 
|---|
| 644 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 645 | { | 
|---|
| 646 | saveError[i-1] = fHist->GetBinError(i); | 
|---|
| 647 |  | 
|---|
| 648 | // bin should be completely contained in the fit range | 
|---|
| 649 | // (fAlphamin, fAlphamax) | 
|---|
| 650 | Double_t  xlo = fHist->GetBinLowEdge(i); | 
|---|
| 651 | Double_t  xup = fHist->GetBinLowEdge(i+1); | 
|---|
| 652 |  | 
|---|
| 653 | if ( xlo >= fAlphamin-fEps  &&  xlo <= fAlphamax+fEps  && | 
|---|
| 654 | xup >= fAlphamin-fEps  &&  xup <= fAlphamax+fEps     ) | 
|---|
| 655 | { | 
|---|
| 656 | fMbins++; | 
|---|
| 657 |  | 
|---|
| 658 | if ( xlo < fAlphami ) | 
|---|
| 659 | fAlphami = xlo; | 
|---|
| 660 |  | 
|---|
| 661 | if ( xup > fAlphama ) | 
|---|
| 662 | fAlphama = xup; | 
|---|
| 663 |  | 
|---|
| 664 | Double_t content = fHist->GetBinContent(i); | 
|---|
| 665 | fNbgtot += content; | 
|---|
| 666 |  | 
|---|
| 667 | mean += content; | 
|---|
| 668 | rms  += content*content; | 
|---|
| 669 |  | 
|---|
| 670 | // count events in low-alpha and high-alpha region | 
|---|
| 671 | if ( xlo >= fAlphammm-fEps  &&  xup >= fAlphammm-fEps) | 
|---|
| 672 | { | 
|---|
| 673 | nfar   += content; | 
|---|
| 674 | if ( xlo < fAlphamm ) | 
|---|
| 675 | fAlphamm = xlo; | 
|---|
| 676 | if ( xup < fAlphamm ) | 
|---|
| 677 | fAlphamm = xup; | 
|---|
| 678 | } | 
|---|
| 679 | else | 
|---|
| 680 | { | 
|---|
| 681 | nclose += content; | 
|---|
| 682 | if ( xlo > fAlphamm ) | 
|---|
| 683 | fAlphamm = xlo; | 
|---|
| 684 | if ( xup > fAlphamm ) | 
|---|
| 685 | fAlphamm = xup; | 
|---|
| 686 | } | 
|---|
| 687 |  | 
|---|
| 688 | // count bins with zero entry | 
|---|
| 689 | if (content <= 0.0) | 
|---|
| 690 | fNzero++; | 
|---|
| 691 |  | 
|---|
| 692 | // set minimum error | 
|---|
| 693 | if (content < 9.0) | 
|---|
| 694 | { | 
|---|
| 695 | fMlow += 1; | 
|---|
| 696 | fHist->SetBinError(i, 3.0); | 
|---|
| 697 | } | 
|---|
| 698 |  | 
|---|
| 699 | //*fLog << "Take : i, content, error = " << i << ",  " | 
|---|
| 700 | //      << fHist->GetBinContent(i) << ",  " | 
|---|
| 701 | //      << fHist->GetBinError(i)   << endl; | 
|---|
| 702 |  | 
|---|
| 703 | continue; | 
|---|
| 704 | } | 
|---|
| 705 | // bin is not completely contained in the fit range : set error huge | 
|---|
| 706 |  | 
|---|
| 707 | fHist->SetBinError(i, dummy); | 
|---|
| 708 |  | 
|---|
| 709 | //*fLog << "Omit : i, content, error = " << i << ",  " | 
|---|
| 710 | //      << fHist->GetBinContent(i) << ",  " << fHist->GetBinError(i) | 
|---|
| 711 | //      << endl; | 
|---|
| 712 |  | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 | // mean of entries/bin in the fit range | 
|---|
| 716 | if (fMbins > 0) | 
|---|
| 717 | { | 
|---|
| 718 | mean /= ((Double_t) fMbins); | 
|---|
| 719 | rms  /= ((Double_t) fMbins); | 
|---|
| 720 | } | 
|---|
| 721 |  | 
|---|
| 722 | rms = sqrt( rms - mean*mean ); | 
|---|
| 723 |  | 
|---|
| 724 | // if there are no events in the background region | 
|---|
| 725 | //    there is no reason for rebinning | 
|---|
| 726 | //    and this is the condition for assuming a constant background (= 0) | 
|---|
| 727 | if (mean <= 0.0) | 
|---|
| 728 | break; | 
|---|
| 729 |  | 
|---|
| 730 | Double_t helpmi = fAlphami*fAlphami*fAlphami; | 
|---|
| 731 | Double_t helpmm = fAlphamm*fAlphamm*fAlphamm; | 
|---|
| 732 | Double_t helpma = fAlphama*fAlphama*fAlphama; | 
|---|
| 733 | Double_t help   =   (helpma-helpmm) * (fAlphamm-fAlphami) | 
|---|
| 734 | - (helpmm-helpmi) * (fAlphama-fAlphamm); | 
|---|
| 735 | if (help != 0.0) | 
|---|
| 736 | a2init =  ( (fAlphamm-fAlphami)*nfar - (fAlphama-fAlphamm)*nclose ) | 
|---|
| 737 | * 1.5 * fHist->GetBinWidth(1) / help; | 
|---|
| 738 | else | 
|---|
| 739 | a2init = 0.0; | 
|---|
| 740 |  | 
|---|
| 741 |  | 
|---|
| 742 | //-------------------------------------------- | 
|---|
| 743 | // rebin the histogram | 
|---|
| 744 | //   - if a bin has no entries | 
|---|
| 745 | //   - or if there are too many bins with too few entries | 
|---|
| 746 | //   - or if the new bin width would exceed half the size of the | 
|---|
| 747 | //     signal region | 
|---|
| 748 |  | 
|---|
| 749 | if ( !fRebin  || | 
|---|
| 750 | ( fNzero <= 0 && (Double_t)fMlow<0.05*(Double_t)fMbins )  || | 
|---|
| 751 | (Double_t)(nrebin+1)/(Double_t)nrebin * fHist->GetBinWidth(1) | 
|---|
| 752 | > fAlphasig/2.0 ) | 
|---|
| 753 | { | 
|---|
| 754 | //*fLog << "before break" << endl; | 
|---|
| 755 | break; | 
|---|
| 756 | } | 
|---|
| 757 |  | 
|---|
| 758 | nrebin += 1; | 
|---|
| 759 | TString histname = fHist->GetName(); | 
|---|
| 760 | delete fHist; | 
|---|
| 761 | fHist = NULL; | 
|---|
| 762 |  | 
|---|
| 763 | *fLog << "MHFindSignificance::FitPolynomial; rebin the |alpha| plot, grouping " | 
|---|
| 764 | << nrebin << " bins together" << endl; | 
|---|
| 765 |  | 
|---|
| 766 | // TH1::Rebin doesn't work properly | 
|---|
| 767 | //fHist = fHistOrig->Rebin(nrebin, "Rebinned"); | 
|---|
| 768 | // use private routine RebinHistogram() | 
|---|
| 769 | fHist = new TH1F; | 
|---|
| 770 | fHist->Sumw2(); | 
|---|
| 771 | fHist->SetNameTitle(histname, histname); | 
|---|
| 772 | fHist->UseCurrentStyle(); | 
|---|
| 773 |  | 
|---|
| 774 | // do rebinning such that x0 remains a lower bin edge | 
|---|
| 775 | Double_t x0 = 0.0; | 
|---|
| 776 | if ( !RebinHistogram(x0, nrebin) ) | 
|---|
| 777 | { | 
|---|
| 778 | *fLog << "MHFindSignificance::FitPolynomial; RebinHistgram() failed" | 
|---|
| 779 | << endl; | 
|---|
| 780 | return kFALSE; | 
|---|
| 781 | } | 
|---|
| 782 |  | 
|---|
| 783 | fHist->SetXTitle("|alpha|  [\\circ]"); | 
|---|
| 784 | fHist->SetYTitle("Counts"); | 
|---|
| 785 |  | 
|---|
| 786 | } | 
|---|
| 787 | //----------------   end of while loop for rebinning   ----------------- | 
|---|
| 788 |  | 
|---|
| 789 |  | 
|---|
| 790 | // if there are still too many bins with too few entries don't fit | 
|---|
| 791 | // and assume a constant background | 
|---|
| 792 |  | 
|---|
| 793 | fConstantBackg = kFALSE; | 
|---|
| 794 | if ( fNzero > 0  ||  (Double_t)fMlow>0.05*(Double_t)fMbins ) | 
|---|
| 795 | { | 
|---|
| 796 | *fLog << "MHFindSignificance::FitPolynomial; polynomial fit not possible,  fNzero, fMlow, fMbins = " | 
|---|
| 797 | << fNzero << ",  " << fMlow << ",  " << fMbins << endl; | 
|---|
| 798 | *fLog << "                    assume a constant background" << endl; | 
|---|
| 799 |  | 
|---|
| 800 | fConstantBackg = kTRUE; | 
|---|
| 801 | fDegree        = 0; | 
|---|
| 802 |  | 
|---|
| 803 | TString funcname = "Poly"; | 
|---|
| 804 | Double_t xmin =   0.0; | 
|---|
| 805 | Double_t xmax =  90.0; | 
|---|
| 806 |  | 
|---|
| 807 | TString formula = "[0]"; | 
|---|
| 808 |  | 
|---|
| 809 | fPoly = new TF1(funcname, formula, xmin, xmax); | 
|---|
| 810 | TList *funclist = fHist->GetListOfFunctions(); | 
|---|
| 811 | funclist->Add(fPoly); | 
|---|
| 812 |  | 
|---|
| 813 | //-------------------- | 
|---|
| 814 | Int_t nparfree = 1; | 
|---|
| 815 | fChisq         = 0.0; | 
|---|
| 816 | fNdf           = fMbins - nparfree; | 
|---|
| 817 | fProb          = 0.0; | 
|---|
| 818 | fIstat         = 0; | 
|---|
| 819 |  | 
|---|
| 820 | fValues.Set(1); | 
|---|
| 821 | fErrors.Set(1); | 
|---|
| 822 |  | 
|---|
| 823 | Double_t val, err; | 
|---|
| 824 | val = mean; | 
|---|
| 825 | err = sqrt( mean / (Double_t)fMbins ); | 
|---|
| 826 |  | 
|---|
| 827 | fPoly->SetParameter(0, val); | 
|---|
| 828 | fPoly->SetParError (0, err); | 
|---|
| 829 |  | 
|---|
| 830 | fValues[0] = val; | 
|---|
| 831 | fErrors[0] = err; | 
|---|
| 832 |  | 
|---|
| 833 | fEma[0][0]  = err*err; | 
|---|
| 834 | fCorr[0][0] = 1.0; | 
|---|
| 835 | //-------------------- | 
|---|
| 836 |  | 
|---|
| 837 | //-------------------------------------------------- | 
|---|
| 838 | // reset the errors of the points in the histogram | 
|---|
| 839 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 840 | { | 
|---|
| 841 | fHist->SetBinError(i, saveError[i-1]); | 
|---|
| 842 | } | 
|---|
| 843 |  | 
|---|
| 844 |  | 
|---|
| 845 | return kTRUE; | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 |  | 
|---|
| 849 | //===========   start loop for reducing the degree   ================== | 
|---|
| 850 | //              of the polynomial | 
|---|
| 851 | while (1) | 
|---|
| 852 | { | 
|---|
| 853 | //-------------------------------------------------- | 
|---|
| 854 | // prepare fit of a polynomial :   (a0 + a1*x + a2*x**2 + a3*x**3 + ...) | 
|---|
| 855 |  | 
|---|
| 856 | TString funcname = "Poly"; | 
|---|
| 857 | Double_t xmin =   0.0; | 
|---|
| 858 | Double_t xmax =  90.0; | 
|---|
| 859 |  | 
|---|
| 860 | TString formula = "[0]"; | 
|---|
| 861 | TString bra1     = "+["; | 
|---|
| 862 | TString bra2     =    "]"; | 
|---|
| 863 | TString xpower   = "*x"; | 
|---|
| 864 | TString newpower = "*x"; | 
|---|
| 865 | for (Int_t i=1; i<=fDegree; i++) | 
|---|
| 866 | { | 
|---|
| 867 | formula += bra1; | 
|---|
| 868 | formula += i; | 
|---|
| 869 | formula += bra2; | 
|---|
| 870 | formula += xpower; | 
|---|
| 871 |  | 
|---|
| 872 | xpower += newpower; | 
|---|
| 873 | } | 
|---|
| 874 |  | 
|---|
| 875 | //*fLog << "FitPolynomial : formula = " << formula << endl; | 
|---|
| 876 |  | 
|---|
| 877 | fPoly = new TF1(funcname, formula, xmin, xmax); | 
|---|
| 878 | TList *funclist = fHist->GetListOfFunctions(); | 
|---|
| 879 | funclist->Add(fPoly); | 
|---|
| 880 |  | 
|---|
| 881 | //------------------------ | 
|---|
| 882 | // attention : the dimensions must agree with those in CallMinuit() | 
|---|
| 883 | const UInt_t npar = fDegree+1; | 
|---|
| 884 |  | 
|---|
| 885 | TString parname[npar]; | 
|---|
| 886 | TArrayD vinit(npar); | 
|---|
| 887 | TArrayD  step(npar); | 
|---|
| 888 | TArrayD limlo(npar); | 
|---|
| 889 | TArrayD limup(npar); | 
|---|
| 890 | TArrayI   fix(npar); | 
|---|
| 891 |  | 
|---|
| 892 | vinit[0] =   mean; | 
|---|
| 893 | vinit[2] = a2init; | 
|---|
| 894 |  | 
|---|
| 895 | for (UInt_t j=0; j<npar; j++) | 
|---|
| 896 | { | 
|---|
| 897 | parname[j]  = "p"; | 
|---|
| 898 | parname[j] += j+1; | 
|---|
| 899 |  | 
|---|
| 900 | step[j] = vinit[j] != 0.0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001; | 
|---|
| 901 | } | 
|---|
| 902 |  | 
|---|
| 903 | // limit the first coefficient of the polynomial to positive values | 
|---|
| 904 | // because the background must not be negative | 
|---|
| 905 | limup[0] = fHist->GetEntries(); | 
|---|
| 906 |  | 
|---|
| 907 | // use the subsequernt loop if you want to apply the | 
|---|
| 908 | // constraint : uneven derivatives (at alpha=0) = zero | 
|---|
| 909 | for (UInt_t j=1; j<npar; j+=2) | 
|---|
| 910 | { | 
|---|
| 911 | vinit[j] = 0; | 
|---|
| 912 | step[j]  = 0; | 
|---|
| 913 | fix[j]   = 1; | 
|---|
| 914 | } | 
|---|
| 915 |  | 
|---|
| 916 | //*fLog << "FitPolynomial : before CallMinuit()" << endl; | 
|---|
| 917 |  | 
|---|
| 918 | MMinuitInterface inter; | 
|---|
| 919 | const Bool_t rc = inter.CallMinuit(fcnpoly, parname, vinit, step, | 
|---|
| 920 | limlo, limup, fix, fHist, "Migrad", | 
|---|
| 921 | kFALSE); | 
|---|
| 922 |  | 
|---|
| 923 | //*fLog << "FitPolynomial : after CallMinuit()" << endl; | 
|---|
| 924 |  | 
|---|
| 925 | if (rc != 0) | 
|---|
| 926 | { | 
|---|
| 927 | //  *fLog << "MHFindSignificance::FitPolynomial; polynomial fit failed" | 
|---|
| 928 | //        << endl; | 
|---|
| 929 | //  return kFALSE; | 
|---|
| 930 | } | 
|---|
| 931 |  | 
|---|
| 932 |  | 
|---|
| 933 | //------------------- | 
|---|
| 934 | // get status of minimization | 
|---|
| 935 | Double_t fmin   = 0; | 
|---|
| 936 | Double_t fedm   = 0; | 
|---|
| 937 | Double_t errdef = 0; | 
|---|
| 938 | Int_t    npari  = 0; | 
|---|
| 939 | Int_t    nparx  = 0; | 
|---|
| 940 |  | 
|---|
| 941 | if (gMinuit) | 
|---|
| 942 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fIstat); | 
|---|
| 943 |  | 
|---|
| 944 | *fLog << "MHFindSignificance::FitPolynomial; fmin, fedm, errdef, npari, nparx, fIstat = " | 
|---|
| 945 | << fmin << ",  " << fedm << ",  " << errdef << ",  " << npari | 
|---|
| 946 | << ",  " << nparx << ",  " << fIstat << endl; | 
|---|
| 947 |  | 
|---|
| 948 |  | 
|---|
| 949 | //------------------- | 
|---|
| 950 | // store the results | 
|---|
| 951 |  | 
|---|
| 952 | Int_t nparfree = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0; | 
|---|
| 953 | fChisq         = fmin; | 
|---|
| 954 | fNdf           = fMbins - nparfree; | 
|---|
| 955 | fProb          = TMath::Prob(fChisq, fNdf); | 
|---|
| 956 |  | 
|---|
| 957 |  | 
|---|
| 958 | // get fitted parameter values and errors | 
|---|
| 959 | fValues.Set(npar); | 
|---|
| 960 | fErrors.Set(npar); | 
|---|
| 961 |  | 
|---|
| 962 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 963 | { | 
|---|
| 964 | Double_t val, err; | 
|---|
| 965 | if (gMinuit) | 
|---|
| 966 | gMinuit->GetParameter(j, val, err); | 
|---|
| 967 |  | 
|---|
| 968 | fPoly->SetParameter(j, val); | 
|---|
| 969 | fPoly->SetParError(j, err); | 
|---|
| 970 |  | 
|---|
| 971 | fValues[j] = val; | 
|---|
| 972 | fErrors[j] = err; | 
|---|
| 973 | } | 
|---|
| 974 |  | 
|---|
| 975 |  | 
|---|
| 976 | //-------------------------------------------------- | 
|---|
| 977 | // if the highest coefficient (j0) of the polynomial | 
|---|
| 978 | // is consistent with zero reduce the degree of the polynomial | 
|---|
| 979 |  | 
|---|
| 980 | Int_t j0 = 0; | 
|---|
| 981 | for (Int_t j=fDegree; j>1; j--) | 
|---|
| 982 | { | 
|---|
| 983 | // ignore fixed parameters | 
|---|
| 984 | if (fErrors[j] == 0) | 
|---|
| 985 | continue; | 
|---|
| 986 |  | 
|---|
| 987 | // this is the highest coefficient | 
|---|
| 988 | j0 = j; | 
|---|
| 989 | break; | 
|---|
| 990 | } | 
|---|
| 991 |  | 
|---|
| 992 | if (!fReduceDegree || j0==0 || TMath::Abs(fValues[j0]) > fErrors[j0]) | 
|---|
| 993 | break; | 
|---|
| 994 |  | 
|---|
| 995 | // reduce the degree of the polynomial | 
|---|
| 996 | *fLog << "MHFindSignificance::FitPolynomial; reduce the degree of the polynomial from " | 
|---|
| 997 | << fDegree << " to " << (j0-2) << endl; | 
|---|
| 998 | fDegree = j0 - 2; | 
|---|
| 999 |  | 
|---|
| 1000 | funclist->Remove(fPoly); | 
|---|
| 1001 | //if (fPoly) | 
|---|
| 1002 | delete fPoly; | 
|---|
| 1003 | fPoly = NULL; | 
|---|
| 1004 |  | 
|---|
| 1005 | // delete the Minuit object in order to have independent starting | 
|---|
| 1006 | // conditions for the next minimization | 
|---|
| 1007 | //if (gMinuit) | 
|---|
| 1008 | delete gMinuit; | 
|---|
| 1009 | gMinuit = NULL; | 
|---|
| 1010 | } | 
|---|
| 1011 | //===========   end of loop for reducing the degree   ================== | 
|---|
| 1012 | //              of the polynomial | 
|---|
| 1013 |  | 
|---|
| 1014 |  | 
|---|
| 1015 | //-------------------------------------------------- | 
|---|
| 1016 | // get the error matrix of the fitted parameters | 
|---|
| 1017 |  | 
|---|
| 1018 |  | 
|---|
| 1019 | if (fIstat >= 1) | 
|---|
| 1020 | { | 
|---|
| 1021 | // error matrix was calculated | 
|---|
| 1022 | if (gMinuit) | 
|---|
| 1023 | gMinuit->mnemat(&fEmat[0][0], fNdim); | 
|---|
| 1024 |  | 
|---|
| 1025 | // copy covariance matrix into a matrix which includes also the fixed | 
|---|
| 1026 | // parameters | 
|---|
| 1027 | TString  name; | 
|---|
| 1028 | Double_t bnd1, bnd2, val, err; | 
|---|
| 1029 | Int_t    jvarbl; | 
|---|
| 1030 | Int_t    kvarbl; | 
|---|
| 1031 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1032 | { | 
|---|
| 1033 | if (gMinuit) | 
|---|
| 1034 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl); | 
|---|
| 1035 |  | 
|---|
| 1036 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1037 | { | 
|---|
| 1038 | if (gMinuit) | 
|---|
| 1039 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl); | 
|---|
| 1040 |  | 
|---|
| 1041 | fEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fEmat[jvarbl-1][kvarbl-1]; | 
|---|
| 1042 | } | 
|---|
| 1043 | } | 
|---|
| 1044 | } | 
|---|
| 1045 | else | 
|---|
| 1046 | { | 
|---|
| 1047 | // error matrix was not calculated, construct it | 
|---|
| 1048 | *fLog << "MHFindSignificance::FitPolynomial; error matrix not defined" | 
|---|
| 1049 | << endl; | 
|---|
| 1050 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1051 | { | 
|---|
| 1052 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1053 | fEma[j][k] = 0; | 
|---|
| 1054 |  | 
|---|
| 1055 | fEma[j][j] = fErrors[j]*fErrors[j]; | 
|---|
| 1056 | } | 
|---|
| 1057 | } | 
|---|
| 1058 |  | 
|---|
| 1059 |  | 
|---|
| 1060 | //-------------------------------------------------- | 
|---|
| 1061 | // calculate correlation matrix | 
|---|
| 1062 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1063 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1064 | { | 
|---|
| 1065 | const Double_t sq = fEma[j][j]*fEma[k][k]; | 
|---|
| 1066 | fCorr[j][k] = sq==0 ? 0 : fEma[j][k] / TMath::Sqrt(fEma[j][j]*fEma[k][k]); | 
|---|
| 1067 | } | 
|---|
| 1068 |  | 
|---|
| 1069 |  | 
|---|
| 1070 | //-------------------------------------------------- | 
|---|
| 1071 | // reset the errors of the points in the histogram | 
|---|
| 1072 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 1073 | fHist->SetBinError(i, saveError[i-1]); | 
|---|
| 1074 |  | 
|---|
| 1075 |  | 
|---|
| 1076 | return kTRUE; | 
|---|
| 1077 | } | 
|---|
| 1078 |  | 
|---|
| 1079 | // -------------------------------------------------------------------------- | 
|---|
| 1080 | // | 
|---|
| 1081 | // ReBinHistogram | 
|---|
| 1082 | // | 
|---|
| 1083 | // rebin the histogram 'fHistOrig' by grouping 'nrebin' bins together | 
|---|
| 1084 | // put the result into the histogram 'fHist' | 
|---|
| 1085 | // the rebinning is made such that 'x0' remains a lower bound of a bin | 
|---|
| 1086 | // | 
|---|
| 1087 |  | 
|---|
| 1088 | Bool_t MHFindSignificance::RebinHistogram(Double_t x0, Int_t nrebin) | 
|---|
| 1089 | { | 
|---|
| 1090 | //----------------------------------------- | 
|---|
| 1091 | // search bin i0 which has x0 as lower edge | 
|---|
| 1092 |  | 
|---|
| 1093 | Int_t i0 = -1; | 
|---|
| 1094 | Int_t nbold = fHistOrig->GetNbinsX(); | 
|---|
| 1095 | for (Int_t i=1; i<=nbold; i++) | 
|---|
| 1096 | { | 
|---|
| 1097 | if (TMath::Abs(fHistOrig->GetBinLowEdge(i) - x0) < 1.e-4 ) | 
|---|
| 1098 | { | 
|---|
| 1099 | i0 = i; | 
|---|
| 1100 | break; | 
|---|
| 1101 | } | 
|---|
| 1102 | } | 
|---|
| 1103 |  | 
|---|
| 1104 | if (i0 == -1) | 
|---|
| 1105 | { | 
|---|
| 1106 | i0 = 1; | 
|---|
| 1107 | *fLog << "MHFindsignificance::Rebin; no bin found with " << x0 | 
|---|
| 1108 | << " as lower edge,  start rebinning with bin 1" << endl; | 
|---|
| 1109 | } | 
|---|
| 1110 |  | 
|---|
| 1111 | Int_t istart = i0 - nrebin * ( (i0-1)/nrebin ); | 
|---|
| 1112 |  | 
|---|
| 1113 | //----------------------------------------- | 
|---|
| 1114 | // get new bin edges | 
|---|
| 1115 |  | 
|---|
| 1116 | const Int_t    nbnew = (nbold-istart+1) / nrebin; | 
|---|
| 1117 | const Double_t xmin  = fHistOrig->GetBinLowEdge(istart); | 
|---|
| 1118 | const Double_t xmax  = xmin + (Double_t)nbnew * nrebin * fHistOrig->GetBinWidth(1); | 
|---|
| 1119 | fHist->SetBins(nbnew, xmin, xmax); | 
|---|
| 1120 |  | 
|---|
| 1121 | *fLog << "MHFindSignificance::ReBin; x0, i0, nbold, nbnew, xmin, xmax = " | 
|---|
| 1122 | << x0 << ",  " << i0 << ",  " << nbold << ",  " << nbnew << ",  " | 
|---|
| 1123 | << xmin << ",  " << xmax << endl; | 
|---|
| 1124 |  | 
|---|
| 1125 | //----------------------------------------- | 
|---|
| 1126 | // get new bin entries | 
|---|
| 1127 |  | 
|---|
| 1128 | for (Int_t i=1; i<=nbnew; i++) | 
|---|
| 1129 | { | 
|---|
| 1130 | Int_t j = nrebin*(i-1) + istart; | 
|---|
| 1131 |  | 
|---|
| 1132 | Double_t content = 0; | 
|---|
| 1133 | Double_t error2  = 0; | 
|---|
| 1134 | for (Int_t k=0; k<nrebin; k++) | 
|---|
| 1135 | { | 
|---|
| 1136 | content += fHistOrig->GetBinContent(j+k); | 
|---|
| 1137 | error2  += fHistOrig->GetBinError(j+k) * fHistOrig->GetBinError(j+k); | 
|---|
| 1138 | } | 
|---|
| 1139 | fHist->SetBinContent(i, content); | 
|---|
| 1140 | fHist->SetBinError  (i, sqrt(error2)); | 
|---|
| 1141 | } | 
|---|
| 1142 | fHist->SetEntries( fHistOrig->GetEntries() ); | 
|---|
| 1143 |  | 
|---|
| 1144 | return kTRUE; | 
|---|
| 1145 | } | 
|---|
| 1146 |  | 
|---|
| 1147 | // -------------------------------------------------------------------------- | 
|---|
| 1148 | // | 
|---|
| 1149 | //  FitGaussPoly | 
|---|
| 1150 | // | 
|---|
| 1151 | //  fits a (Gauss + polynomial function) to the alpha distribution 'fhist' | 
|---|
| 1152 | // | 
|---|
| 1153 | // | 
|---|
| 1154 | Bool_t MHFindSignificance::FitGaussPoly() | 
|---|
| 1155 | { | 
|---|
| 1156 | *fLog << "Entry FitGaussPoly" << endl; | 
|---|
| 1157 |  | 
|---|
| 1158 | //-------------------------------------------------- | 
|---|
| 1159 | // check the histogram : | 
|---|
| 1160 | //       - calculate initial values of the parameters | 
|---|
| 1161 | //       - check for bins with zero entries | 
|---|
| 1162 | //       - set minimum errors | 
|---|
| 1163 | //       - save the original errors | 
|---|
| 1164 | //       - set errors huge outside the fit range | 
|---|
| 1165 | //         (in 'fcnpoly' points with huge errors will be ignored) | 
|---|
| 1166 |  | 
|---|
| 1167 |  | 
|---|
| 1168 | Double_t dummy = 1.e20; | 
|---|
| 1169 |  | 
|---|
| 1170 | fGNzero   = 0; | 
|---|
| 1171 | fGMbins   = 0; | 
|---|
| 1172 |  | 
|---|
| 1173 | //------------------------------------------ | 
|---|
| 1174 | // if a constant background has been assumed (due to low statistics) | 
|---|
| 1175 | // fit only in the signal region | 
|---|
| 1176 | if ( !fConstantBackg ) | 
|---|
| 1177 | { | 
|---|
| 1178 | fAlphalow = 0.0; | 
|---|
| 1179 | fAlphahig = fAlphamax; | 
|---|
| 1180 | } | 
|---|
| 1181 | else | 
|---|
| 1182 | { | 
|---|
| 1183 | fAlphalow = 0.0; | 
|---|
| 1184 | fAlphahig = 2.0*fAlphasig>25.0 ? 25.0 : 2.0*fAlphasig; | 
|---|
| 1185 | } | 
|---|
| 1186 | //------------------------------------------ | 
|---|
| 1187 |  | 
|---|
| 1188 |  | 
|---|
| 1189 | fAlphalo =  10000.0; | 
|---|
| 1190 | fAlphahi = -10000.0; | 
|---|
| 1191 |  | 
|---|
| 1192 |  | 
|---|
| 1193 | Int_t nbins = fHist->GetNbinsX(); | 
|---|
| 1194 | TArrayD saveError(nbins); | 
|---|
| 1195 |  | 
|---|
| 1196 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 1197 | { | 
|---|
| 1198 | saveError[i-1] = fHist->GetBinError(i); | 
|---|
| 1199 |  | 
|---|
| 1200 | // bin should be completely contained in the fit range | 
|---|
| 1201 | // (fAlphalow, fAlphahig) | 
|---|
| 1202 | Double_t  xlo = fHist->GetBinLowEdge(i); | 
|---|
| 1203 | Double_t  xup = fHist->GetBinLowEdge(i+1); | 
|---|
| 1204 |  | 
|---|
| 1205 | if ( xlo >= fAlphalow-fEps  &&  xlo <= fAlphahig+fEps  && | 
|---|
| 1206 | xup >= fAlphalow-fEps  &&  xup <= fAlphahig+fEps     ) | 
|---|
| 1207 | { | 
|---|
| 1208 | fGMbins++; | 
|---|
| 1209 |  | 
|---|
| 1210 | if ( xlo < fAlphalo ) | 
|---|
| 1211 | fAlphalo = xlo; | 
|---|
| 1212 |  | 
|---|
| 1213 | if ( xup > fAlphahi ) | 
|---|
| 1214 | fAlphahi = xup; | 
|---|
| 1215 |  | 
|---|
| 1216 | Double_t content = fHist->GetBinContent(i); | 
|---|
| 1217 |  | 
|---|
| 1218 |  | 
|---|
| 1219 | // count bins with zero entry | 
|---|
| 1220 | if (content <= 0.0) | 
|---|
| 1221 | fGNzero++; | 
|---|
| 1222 |  | 
|---|
| 1223 | // set minimum error | 
|---|
| 1224 | if (content < 9.0) | 
|---|
| 1225 | fHist->SetBinError(i, 3.0); | 
|---|
| 1226 |  | 
|---|
| 1227 | //*fLog << "Take : i, content, error = " << i << ",  " | 
|---|
| 1228 | //      << fHist->GetBinContent(i) << ",  " | 
|---|
| 1229 | //      << fHist->GetBinError(i)   << endl; | 
|---|
| 1230 |  | 
|---|
| 1231 | continue; | 
|---|
| 1232 | } | 
|---|
| 1233 | // bin is not completely contained in the fit range : set error huge | 
|---|
| 1234 |  | 
|---|
| 1235 | fHist->SetBinError(i, dummy); | 
|---|
| 1236 |  | 
|---|
| 1237 | //*fLog << "Omit : i, content, error = " << i << ",  " | 
|---|
| 1238 | //      << fHist->GetBinContent(i) << ",  " << fHist->GetBinError(i) | 
|---|
| 1239 | //      << endl; | 
|---|
| 1240 |  | 
|---|
| 1241 | } | 
|---|
| 1242 |  | 
|---|
| 1243 |  | 
|---|
| 1244 | // if a bin has no entries don't fit | 
|---|
| 1245 | if (fGNzero > 0) | 
|---|
| 1246 | { | 
|---|
| 1247 | *fLog << "MHFindSignificance::FitGaussPoly; out of " << fGMbins | 
|---|
| 1248 | << " bins there are " << fGNzero | 
|---|
| 1249 | << " bins with zero entry" << endl; | 
|---|
| 1250 |  | 
|---|
| 1251 | fGPoly = NULL; | 
|---|
| 1252 | return kFALSE; | 
|---|
| 1253 | } | 
|---|
| 1254 |  | 
|---|
| 1255 |  | 
|---|
| 1256 | //-------------------------------------------------- | 
|---|
| 1257 | // prepare fit of a (polynomial+Gauss) : | 
|---|
| 1258 | // (a0 + a1*x + a2*x**2 + a3*x**3 + ...) + A*exp( -0.5*((x-x0)/sigma)**2 ) | 
|---|
| 1259 |  | 
|---|
| 1260 | TString funcname = "PolyGauss"; | 
|---|
| 1261 | Double_t xmin =   0.0; | 
|---|
| 1262 | Double_t xmax =  90.0; | 
|---|
| 1263 |  | 
|---|
| 1264 | TString xpower   = "*x"; | 
|---|
| 1265 | TString newpower = "*x"; | 
|---|
| 1266 |  | 
|---|
| 1267 | TString formulaBackg = "[0]"; | 
|---|
| 1268 | for (Int_t i=1; i<=fDegree; i++) | 
|---|
| 1269 | formulaBackg += Form("+[%d]*x^%d", i, i); | 
|---|
| 1270 |  | 
|---|
| 1271 | const TString formulaGauss = | 
|---|
| 1272 | Form("[%d]/[%d]*exp(-0.5*((x-[%d])/[%d])^2)", | 
|---|
| 1273 | fDegree+1, fDegree+3, fDegree+2, fDegree+3); | 
|---|
| 1274 |  | 
|---|
| 1275 | TString formula = formulaBackg; | 
|---|
| 1276 | formula += "+"; | 
|---|
| 1277 | formula += formulaGauss; | 
|---|
| 1278 |  | 
|---|
| 1279 | *fLog << "FitGaussPoly : formulaBackg = " << formulaBackg << endl; | 
|---|
| 1280 | *fLog << "FitGaussPoly : formulaGauss = " << formulaGauss << endl; | 
|---|
| 1281 | *fLog << "FitGaussPoly : formula = " << formula << endl; | 
|---|
| 1282 |  | 
|---|
| 1283 | fGPoly = new TF1(funcname, formula, xmin, xmax); | 
|---|
| 1284 | TList *funclist = fHist->GetListOfFunctions(); | 
|---|
| 1285 | funclist->Add(fGPoly); | 
|---|
| 1286 |  | 
|---|
| 1287 | fGBackg = new TF1("Backg", formulaBackg, xmin, xmax); | 
|---|
| 1288 | funclist->Add(fGBackg); | 
|---|
| 1289 |  | 
|---|
| 1290 | //------------------------ | 
|---|
| 1291 | // attention : the dimensions must agree with those in CallMinuit() | 
|---|
| 1292 | Int_t npar = fDegree+1 + 3; | 
|---|
| 1293 |  | 
|---|
| 1294 | TString parname[npar]; | 
|---|
| 1295 | TArrayD vinit(npar); | 
|---|
| 1296 | TArrayD  step(npar); | 
|---|
| 1297 | TArrayD limlo(npar); | 
|---|
| 1298 | TArrayD limup(npar); | 
|---|
| 1299 | TArrayI   fix(npar); | 
|---|
| 1300 |  | 
|---|
| 1301 |  | 
|---|
| 1302 | // take as initial values for the polynomial | 
|---|
| 1303 | // the result from the polynomial fit | 
|---|
| 1304 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1305 | vinit[j] = fPoly->GetParameter(j); | 
|---|
| 1306 |  | 
|---|
| 1307 | Double_t sigma = 8; | 
|---|
| 1308 | vinit[fDegree+1] = 2.0 * fNex * fHist->GetBinWidth(1) / TMath::Sqrt(TMath::Pi()*2); | 
|---|
| 1309 | vinit[fDegree+2] = 0; | 
|---|
| 1310 | vinit[fDegree+3] = sigma; | 
|---|
| 1311 |  | 
|---|
| 1312 | *fLog << "FitGaussPoly : starting value for Gauss-amplitude = " | 
|---|
| 1313 | << vinit[fDegree+1] << endl; | 
|---|
| 1314 |  | 
|---|
| 1315 | for (Int_t j=0; j<npar; j++) | 
|---|
| 1316 | { | 
|---|
| 1317 | parname[j]  = "p"; | 
|---|
| 1318 | parname[j] += j+1; | 
|---|
| 1319 |  | 
|---|
| 1320 | step[j] = vinit[j]!=0 ? TMath::Abs(vinit[j]) / 10.0 : 0.000001; | 
|---|
| 1321 | } | 
|---|
| 1322 |  | 
|---|
| 1323 | // limit the first coefficient of the polynomial to positive values | 
|---|
| 1324 | // because the background must not be negative | 
|---|
| 1325 | limup[0] = fHist->GetEntries()*10; | 
|---|
| 1326 |  | 
|---|
| 1327 | // limit the sigma of the Gauss function | 
|---|
| 1328 | limup[fDegree+3] = 20; | 
|---|
| 1329 |  | 
|---|
| 1330 |  | 
|---|
| 1331 | // use the subsequernt loop if you want to apply the | 
|---|
| 1332 | // constraint : uneven derivatives (at alpha=0) = zero | 
|---|
| 1333 | for (Int_t j=1; j<=fDegree; j+=2) | 
|---|
| 1334 | { | 
|---|
| 1335 | vinit[j] = 0; | 
|---|
| 1336 | step[j]  = 0; | 
|---|
| 1337 | fix[j]   = 1; | 
|---|
| 1338 | } | 
|---|
| 1339 |  | 
|---|
| 1340 | // fix position of Gauss function | 
|---|
| 1341 | vinit[fDegree+2] = 0; | 
|---|
| 1342 | step[fDegree+2]  = 0; | 
|---|
| 1343 | fix[fDegree+2]   = 1; | 
|---|
| 1344 |  | 
|---|
| 1345 | // if a constant background has been assumed (due to low statistics) | 
|---|
| 1346 | // fix the background | 
|---|
| 1347 | if (fConstantBackg) | 
|---|
| 1348 | { | 
|---|
| 1349 | step[0] = 0; | 
|---|
| 1350 | fix[0]  = 1; | 
|---|
| 1351 | } | 
|---|
| 1352 |  | 
|---|
| 1353 | MMinuitInterface inter; | 
|---|
| 1354 | const Bool_t rc = inter.CallMinuit(fcnpolygauss, parname, vinit, step, | 
|---|
| 1355 | limlo, limup, fix, fHist, "Migrad", | 
|---|
| 1356 | kFALSE); | 
|---|
| 1357 |  | 
|---|
| 1358 | if (rc != 0) | 
|---|
| 1359 | { | 
|---|
| 1360 | //  *fLog << "MHFindSignificance::FitGaussPoly; (polynomial+Gauss) fit failed" | 
|---|
| 1361 | //        << endl; | 
|---|
| 1362 | //  return kFALSE; | 
|---|
| 1363 | } | 
|---|
| 1364 |  | 
|---|
| 1365 |  | 
|---|
| 1366 | //------------------- | 
|---|
| 1367 | // get status of the minimization | 
|---|
| 1368 | Double_t fmin; | 
|---|
| 1369 | Double_t fedm; | 
|---|
| 1370 | Double_t errdef; | 
|---|
| 1371 | Int_t    npari; | 
|---|
| 1372 | Int_t    nparx; | 
|---|
| 1373 |  | 
|---|
| 1374 | if (gMinuit) | 
|---|
| 1375 | gMinuit->mnstat(fmin, fedm, errdef, npari, nparx, fGIstat); | 
|---|
| 1376 |  | 
|---|
| 1377 | *fLog << "MHFindSignificance::FitGaussPoly; fmin, fedm, errdef, npari, nparx, fGIstat = " | 
|---|
| 1378 | << fmin << ",  " << fedm << ",  " << errdef << ",  " << npari | 
|---|
| 1379 | << ",  " << nparx << ",  " << fGIstat << endl; | 
|---|
| 1380 |  | 
|---|
| 1381 |  | 
|---|
| 1382 | //------------------- | 
|---|
| 1383 | // store the results | 
|---|
| 1384 |  | 
|---|
| 1385 | Int_t nparfree  = gMinuit!=NULL ? gMinuit->GetNumFreePars() : 0; | 
|---|
| 1386 | fGChisq         = fmin; | 
|---|
| 1387 | fGNdf           = fGMbins - nparfree; | 
|---|
| 1388 | fGProb          = TMath::Prob(fGChisq, fGNdf); | 
|---|
| 1389 |  | 
|---|
| 1390 |  | 
|---|
| 1391 | // get fitted parameter values and errors | 
|---|
| 1392 | fGValues.Set(npar); | 
|---|
| 1393 | fGErrors.Set(npar); | 
|---|
| 1394 |  | 
|---|
| 1395 | for (Int_t j=0; j<npar; j++) | 
|---|
| 1396 | { | 
|---|
| 1397 | Double_t val, err; | 
|---|
| 1398 | if (gMinuit) | 
|---|
| 1399 | gMinuit->GetParameter(j, val, err); | 
|---|
| 1400 |  | 
|---|
| 1401 | fGPoly->SetParameter(j, val); | 
|---|
| 1402 | fGPoly->SetParError(j, err); | 
|---|
| 1403 |  | 
|---|
| 1404 | fGValues[j] = val; | 
|---|
| 1405 | fGErrors[j] = err; | 
|---|
| 1406 |  | 
|---|
| 1407 | if (j <=fDegree) | 
|---|
| 1408 | { | 
|---|
| 1409 | fGBackg->SetParameter(j, val); | 
|---|
| 1410 | fGBackg->SetParError(j, err); | 
|---|
| 1411 | } | 
|---|
| 1412 | } | 
|---|
| 1413 |  | 
|---|
| 1414 | fSigmaGauss  = fGValues[fDegree+3]; | 
|---|
| 1415 | fdSigmaGauss = fGErrors[fDegree+3]; | 
|---|
| 1416 | // fitted total number of excess events | 
|---|
| 1417 | fNexGauss = fGValues[fDegree+1] * TMath::Sqrt(TMath::Pi()*2) / | 
|---|
| 1418 | (fHist->GetBinWidth(1)*2 ); | 
|---|
| 1419 | fdNexGauss = fNexGauss * fGErrors[fDegree+1]/fGValues[fDegree+1]; | 
|---|
| 1420 |  | 
|---|
| 1421 | //-------------------------------------------------- | 
|---|
| 1422 | // get the error matrix of the fitted parameters | 
|---|
| 1423 |  | 
|---|
| 1424 |  | 
|---|
| 1425 | if (fGIstat >= 1) | 
|---|
| 1426 | { | 
|---|
| 1427 | // error matrix was calculated | 
|---|
| 1428 | if (gMinuit) | 
|---|
| 1429 | gMinuit->mnemat(&fGEmat[0][0], fGNdim); | 
|---|
| 1430 |  | 
|---|
| 1431 | // copy covariance matrix into a matrix which includes also the fixed | 
|---|
| 1432 | // parameters | 
|---|
| 1433 | TString  name; | 
|---|
| 1434 | Double_t bnd1, bnd2, val, err; | 
|---|
| 1435 | Int_t    jvarbl; | 
|---|
| 1436 | Int_t    kvarbl; | 
|---|
| 1437 | for (Int_t j=0; j<npar; j++) | 
|---|
| 1438 | { | 
|---|
| 1439 | if (gMinuit) | 
|---|
| 1440 | gMinuit->mnpout(j, name, val, err, bnd1, bnd2, jvarbl); | 
|---|
| 1441 |  | 
|---|
| 1442 | for (Int_t k=0; k<npar; k++) | 
|---|
| 1443 | { | 
|---|
| 1444 | if (gMinuit) | 
|---|
| 1445 | gMinuit->mnpout(k, name, val, err, bnd1, bnd2, kvarbl); | 
|---|
| 1446 |  | 
|---|
| 1447 | fGEma[j][k] = jvarbl==0 || kvarbl==0 ? 0 : fGEmat[jvarbl-1][kvarbl-1]; | 
|---|
| 1448 | } | 
|---|
| 1449 | } | 
|---|
| 1450 | } | 
|---|
| 1451 | else | 
|---|
| 1452 | { | 
|---|
| 1453 | // error matrix was not calculated, construct it | 
|---|
| 1454 | *fLog << "MHFindSignificance::FitPolynomial; error matrix not defined" | 
|---|
| 1455 | << endl; | 
|---|
| 1456 | for (Int_t j=0; j<npar; j++) | 
|---|
| 1457 | { | 
|---|
| 1458 | for (Int_t k=0; k<npar; k++) | 
|---|
| 1459 | fGEma[j][k] = 0; | 
|---|
| 1460 |  | 
|---|
| 1461 | fGEma[j][j] = fGErrors[j]*fGErrors[j]; | 
|---|
| 1462 | } | 
|---|
| 1463 | } | 
|---|
| 1464 |  | 
|---|
| 1465 |  | 
|---|
| 1466 | //-------------------------------------------------- | 
|---|
| 1467 | // calculate correlation matrix | 
|---|
| 1468 | for (Int_t j=0; j<npar; j++) | 
|---|
| 1469 | { | 
|---|
| 1470 | for (Int_t k=0; k<npar; k++) | 
|---|
| 1471 | { | 
|---|
| 1472 | const Double_t sq = fGEma[j][j]*fGEma[k][k]; | 
|---|
| 1473 | fGCorr[j][k] = sq==0 ? 0 : fGEma[j][k] / sqrt( fGEma[j][j]*fGEma[k][k] ); | 
|---|
| 1474 | } | 
|---|
| 1475 | } | 
|---|
| 1476 |  | 
|---|
| 1477 |  | 
|---|
| 1478 | //-------------------------------------------------- | 
|---|
| 1479 | // reset the errors of the points in the histogram | 
|---|
| 1480 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 1481 | fHist->SetBinError(i, saveError[i-1]); | 
|---|
| 1482 |  | 
|---|
| 1483 | return kTRUE; | 
|---|
| 1484 |  | 
|---|
| 1485 | } | 
|---|
| 1486 |  | 
|---|
| 1487 | // -------------------------------------------------------------------------- | 
|---|
| 1488 | // | 
|---|
| 1489 | //  DetExcess | 
|---|
| 1490 | // | 
|---|
| 1491 | //  using the result of the polynomial fit (fValues), DetExcess determines | 
|---|
| 1492 | // | 
|---|
| 1493 | //  - the total number of events in the signal region (fNon) | 
|---|
| 1494 | //  - the number of backgound events in the signal region (fNbg) | 
|---|
| 1495 | //  - the number of excess events (fNex) | 
|---|
| 1496 | //  - the effective number of background events (fNoff), and fGamma : | 
|---|
| 1497 | //    fNbg = fGamma * fNoff;  fdNbg = fGamma * sqrt(fNoff); | 
|---|
| 1498 | // | 
|---|
| 1499 | //  It assumed that the polynomial is defined as | 
|---|
| 1500 | //               a0 + a1*x + a2*x**2 + a3*x**3 + .. | 
|---|
| 1501 | // | 
|---|
| 1502 | //  and that the alpha distribution has the range 0 < alpha < 90 degrees | 
|---|
| 1503 | // | 
|---|
| 1504 |  | 
|---|
| 1505 | Bool_t MHFindSignificance::DetExcess() | 
|---|
| 1506 | { | 
|---|
| 1507 | //*fLog << "MHFindSignificance::DetExcess;" << endl; | 
|---|
| 1508 |  | 
|---|
| 1509 | //-------------------------------------------- | 
|---|
| 1510 | // calculate the total number of events (fNon) in the signal region | 
|---|
| 1511 |  | 
|---|
| 1512 | fNon  = 0.0; | 
|---|
| 1513 | fdNon = 0.0; | 
|---|
| 1514 |  | 
|---|
| 1515 | Double_t alphaup = -1000.0; | 
|---|
| 1516 | Double_t binwidth = fHist->GetBinWidth(1); | 
|---|
| 1517 |  | 
|---|
| 1518 | Int_t nbins = fHist->GetNbinsX(); | 
|---|
| 1519 | for (Int_t i=1; i<=nbins; i++) | 
|---|
| 1520 | { | 
|---|
| 1521 | Double_t  xlo = fHist->GetBinLowEdge(i); | 
|---|
| 1522 | Double_t  xup = fHist->GetBinLowEdge(i+1); | 
|---|
| 1523 |  | 
|---|
| 1524 | // bin must be completely contained in the signal region | 
|---|
| 1525 | if ( xlo <= (fAlphasig+fEps)  &&  xup <= (fAlphasig+fEps)    ) | 
|---|
| 1526 | { | 
|---|
| 1527 | Double_t width = fabs(xup-xlo); | 
|---|
| 1528 | if (fabs(width-binwidth) > fEps) | 
|---|
| 1529 | { | 
|---|
| 1530 | *fLog << "MHFindSignificance::DetExcess; alpha plot has variable binning, which is not allowed" | 
|---|
| 1531 | << endl; | 
|---|
| 1532 | return kFALSE; | 
|---|
| 1533 | } | 
|---|
| 1534 |  | 
|---|
| 1535 | if (xup > alphaup) | 
|---|
| 1536 | alphaup = xup; | 
|---|
| 1537 |  | 
|---|
| 1538 | fNon  += fHist->GetBinContent(i); | 
|---|
| 1539 | fdNon += fHist->GetBinError(i) * fHist->GetBinError(i); | 
|---|
| 1540 | } | 
|---|
| 1541 | } | 
|---|
| 1542 | fdNon = sqrt(fdNon); | 
|---|
| 1543 |  | 
|---|
| 1544 | // the actual signal range is : | 
|---|
| 1545 | if (alphaup == -1000.0) | 
|---|
| 1546 | return kFALSE; | 
|---|
| 1547 |  | 
|---|
| 1548 | fAlphasi = alphaup; | 
|---|
| 1549 |  | 
|---|
| 1550 | //*fLog << "fAlphasi, fNon, fdNon, binwidth, fDegree = " << fAlphasi << ",  " | 
|---|
| 1551 | //      << fNon << ",  " << fdNon << ",  " << binwidth << ",  " | 
|---|
| 1552 | //      << fDegree << endl; | 
|---|
| 1553 |  | 
|---|
| 1554 | //-------------------------------------------- | 
|---|
| 1555 | // calculate the number of background events (fNbg) in the signal region | 
|---|
| 1556 | // and its error (fdNbg) | 
|---|
| 1557 |  | 
|---|
| 1558 | Double_t fac = 1.0/binwidth; | 
|---|
| 1559 |  | 
|---|
| 1560 | fNbg         = 0.0; | 
|---|
| 1561 | Double_t altothejplus1 = fAlphasi; | 
|---|
| 1562 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1563 | { | 
|---|
| 1564 | fNbg += fValues[j] * altothejplus1 / ((Double_t)(j+1)); | 
|---|
| 1565 | altothejplus1 *= fAlphasi; | 
|---|
| 1566 | } | 
|---|
| 1567 | fNbg *= fac; | 
|---|
| 1568 |  | 
|---|
| 1569 | // derivative of Nbg | 
|---|
| 1570 | Double_t facj; | 
|---|
| 1571 | Double_t fack; | 
|---|
| 1572 |  | 
|---|
| 1573 | Double_t sum = 0.0; | 
|---|
| 1574 | altothejplus1 = fAlphasi; | 
|---|
| 1575 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1576 | { | 
|---|
| 1577 | facj = altothejplus1 / ((Double_t)(j+1)); | 
|---|
| 1578 |  | 
|---|
| 1579 | Double_t altothekplus1 = fAlphasi; | 
|---|
| 1580 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1581 | { | 
|---|
| 1582 | fack = altothekplus1 / ((Double_t)(k+1)); | 
|---|
| 1583 |  | 
|---|
| 1584 | sum   += facj * fack * fEma[j][k]; | 
|---|
| 1585 | altothekplus1 *= fAlphasi; | 
|---|
| 1586 | } | 
|---|
| 1587 | altothejplus1 *= fAlphasi; | 
|---|
| 1588 | } | 
|---|
| 1589 | sum  *= fac*fac; | 
|---|
| 1590 |  | 
|---|
| 1591 | if (sum < 0.0) | 
|---|
| 1592 | { | 
|---|
| 1593 | *fLog << "MHFindsignificance::DetExcess; error squared is negative" | 
|---|
| 1594 | << endl; | 
|---|
| 1595 | return kFALSE; | 
|---|
| 1596 | } | 
|---|
| 1597 |  | 
|---|
| 1598 | fdNbg = sqrt(sum); | 
|---|
| 1599 |  | 
|---|
| 1600 |  | 
|---|
| 1601 | //-------------------------------------------- | 
|---|
| 1602 | // AS A CHECK : | 
|---|
| 1603 | // calculate the number of background events (fNbgtotFitted) in the | 
|---|
| 1604 | // background region, and its error (fdNbgtotFitted) | 
|---|
| 1605 | // expect fdnbg to be approximately equal to sqrt(fNbgtotFitted) | 
|---|
| 1606 |  | 
|---|
| 1607 | Double_t fNmi = 0.0; | 
|---|
| 1608 | altothejplus1 = fAlphami; | 
|---|
| 1609 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1610 | { | 
|---|
| 1611 | fNmi += fValues[j] * altothejplus1 / ((Double_t)(j+1)); | 
|---|
| 1612 | altothejplus1 *= fAlphami; | 
|---|
| 1613 | } | 
|---|
| 1614 | fNmi *= fac; | 
|---|
| 1615 |  | 
|---|
| 1616 | Double_t fNma = 0.0; | 
|---|
| 1617 | altothejplus1 = fAlphama; | 
|---|
| 1618 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1619 | { | 
|---|
| 1620 | fNma += fValues[j] * altothejplus1 / ((Double_t)(j+1)); | 
|---|
| 1621 | altothejplus1 *= fAlphama; | 
|---|
| 1622 | } | 
|---|
| 1623 | fNma *= fac; | 
|---|
| 1624 |  | 
|---|
| 1625 | fNbgtotFitted  = fNma - fNmi; | 
|---|
| 1626 |  | 
|---|
| 1627 | //---------------------- | 
|---|
| 1628 |  | 
|---|
| 1629 | sum = 0.0; | 
|---|
| 1630 | Double_t altothejma = fAlphama; | 
|---|
| 1631 | Double_t altothejmi = fAlphami; | 
|---|
| 1632 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1633 | { | 
|---|
| 1634 | facj = (altothejma-altothejmi) / ((Double_t)(j+1)); | 
|---|
| 1635 |  | 
|---|
| 1636 | Double_t altothekma = fAlphama; | 
|---|
| 1637 | Double_t altothekmi = fAlphami; | 
|---|
| 1638 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1639 | { | 
|---|
| 1640 | fack = (altothekma-altothekmi) / ((Double_t)(k+1)); | 
|---|
| 1641 |  | 
|---|
| 1642 | sum   += facj * fack * fEma[j][k]; | 
|---|
| 1643 | altothekma *= fAlphama; | 
|---|
| 1644 | altothekmi *= fAlphami; | 
|---|
| 1645 | } | 
|---|
| 1646 | altothejma *= fAlphama; | 
|---|
| 1647 | altothejmi *= fAlphami; | 
|---|
| 1648 | } | 
|---|
| 1649 | sum  *= fac*fac; | 
|---|
| 1650 |  | 
|---|
| 1651 | fdNbgtotFitted = sqrt(sum); | 
|---|
| 1652 | if ( fabs(fdNbgtotFitted - sqrt(fNbgtotFitted)) > 0.2 * sqrt(fNbgtotFitted) ) | 
|---|
| 1653 | { | 
|---|
| 1654 | *fLog << "MHFindSignificance::DetExcess; error of calculated number of background events (in the background region) does not agree with the expectation :" | 
|---|
| 1655 | << endl; | 
|---|
| 1656 | *fLog << "                    fNbgtotFitted, fdNbgtotFitted = " | 
|---|
| 1657 | << fNbgtotFitted << ",  " << fdNbgtotFitted | 
|---|
| 1658 | << ",  expected : " << sqrt(fNbgtotFitted) << endl; | 
|---|
| 1659 | } | 
|---|
| 1660 |  | 
|---|
| 1661 |  | 
|---|
| 1662 | //-------------------------------------------- | 
|---|
| 1663 | // calculate the number of excess events in the signal region | 
|---|
| 1664 |  | 
|---|
| 1665 | fNex = fNon - fNbg; | 
|---|
| 1666 |  | 
|---|
| 1667 | //-------------------------------------------- | 
|---|
| 1668 | // calculate the effective number of background events (fNoff) , and fGamma : | 
|---|
| 1669 | // fNbg = fGamma * fNoff;   dfNbg = fGamma * sqrt(fNoff); | 
|---|
| 1670 |  | 
|---|
| 1671 | if (fNbg < 0.0) | 
|---|
| 1672 | { | 
|---|
| 1673 | *fLog << "MHFindSignificamce::DetExcess; number of background events is negative,  fNbg, fdNbg = " | 
|---|
| 1674 | << fNbg  << ",  " << fdNbg << endl; | 
|---|
| 1675 |  | 
|---|
| 1676 | fGamma = 1.0; | 
|---|
| 1677 | fNoff  = 0.0; | 
|---|
| 1678 | return kFALSE; | 
|---|
| 1679 | } | 
|---|
| 1680 |  | 
|---|
| 1681 | if (fNbg > 0.0) | 
|---|
| 1682 | { | 
|---|
| 1683 | fGamma = fdNbg*fdNbg / fNbg; | 
|---|
| 1684 | fNoff  =  fNbg*fNbg  / (fdNbg*fdNbg); | 
|---|
| 1685 | } | 
|---|
| 1686 | else | 
|---|
| 1687 | { | 
|---|
| 1688 | fGamma = 1.0; | 
|---|
| 1689 | fNoff  = 0.0; | 
|---|
| 1690 | } | 
|---|
| 1691 |  | 
|---|
| 1692 | //*fLog << "Exit DetExcess()" << endl; | 
|---|
| 1693 |  | 
|---|
| 1694 | return kTRUE; | 
|---|
| 1695 | } | 
|---|
| 1696 |  | 
|---|
| 1697 | // -------------------------------------------------------------------------- | 
|---|
| 1698 | // | 
|---|
| 1699 | //  SigmaLiMa | 
|---|
| 1700 | // | 
|---|
| 1701 | //  calculates the significance according to Li & Ma | 
|---|
| 1702 | //  ApJ 272 (1983) 317 | 
|---|
| 1703 | // | 
|---|
| 1704 | Bool_t MHFindSignificance::SigmaLiMa(Double_t non,   Double_t noff, | 
|---|
| 1705 | Double_t gamma, Double_t *siglima) | 
|---|
| 1706 | { | 
|---|
| 1707 | if (gamma <= 0.0  ||  non <= 0.0  ||  noff <= 0.0) | 
|---|
| 1708 | { | 
|---|
| 1709 | *siglima = 0.0; | 
|---|
| 1710 | return kFALSE; | 
|---|
| 1711 | } | 
|---|
| 1712 |  | 
|---|
| 1713 | Double_t help1 = non  * log( (1.0+gamma)*non  / (gamma*(non+noff)) ); | 
|---|
| 1714 | Double_t help2 = noff * log( (1.0+gamma)*noff / (       non+noff ) ); | 
|---|
| 1715 | *siglima = sqrt( 2.0 * (help1+help2) ); | 
|---|
| 1716 |  | 
|---|
| 1717 | Double_t nex = non - gamma*noff; | 
|---|
| 1718 | if (nex < 0.0) | 
|---|
| 1719 | *siglima = - *siglima; | 
|---|
| 1720 |  | 
|---|
| 1721 | //*fLog << "MHFindSignificance::SigmaLiMa; non, noff, gamma, *siglima = " | 
|---|
| 1722 | //      << non << ",  " << noff << ",  " << gamma << ",  " << *siglima << endl; | 
|---|
| 1723 |  | 
|---|
| 1724 | return kTRUE; | 
|---|
| 1725 | } | 
|---|
| 1726 |  | 
|---|
| 1727 | // -------------------------------------------------------------------------- | 
|---|
| 1728 | // | 
|---|
| 1729 | Bool_t MHFindSignificance::DrawFit(const Option_t *opt) | 
|---|
| 1730 | { | 
|---|
| 1731 | if (fHist == NULL) | 
|---|
| 1732 | *fLog << "MHFindSignificance::DrawFit; fHist = NULL" << endl; | 
|---|
| 1733 |  | 
|---|
| 1734 |  | 
|---|
| 1735 | //TCanvas *fCanvas = new TCanvas("Alpha", "Alpha plot", 600, 600); | 
|---|
| 1736 | //      fCanvas = new TCanvas(fHist->GetName(), "Alpha plot", 600, 600); | 
|---|
| 1737 |  | 
|---|
| 1738 | TVirtualPad *c = gPad ? gPad : MakeDefCanvas(this); | 
|---|
| 1739 |  | 
|---|
| 1740 | //gStyle->SetOptFit(1011); | 
|---|
| 1741 |  | 
|---|
| 1742 | gROOT->SetSelectedPad(NULL); | 
|---|
| 1743 | gStyle->SetPadLeftMargin(0.1); | 
|---|
| 1744 |  | 
|---|
| 1745 | //      fCanvas->cd(); | 
|---|
| 1746 | c->cd(); | 
|---|
| 1747 |  | 
|---|
| 1748 |  | 
|---|
| 1749 | if (fHist) | 
|---|
| 1750 | { | 
|---|
| 1751 | fHist->DrawCopy(); | 
|---|
| 1752 | } | 
|---|
| 1753 |  | 
|---|
| 1754 | TF1 *fpoly = fHist->GetFunction("Poly"); | 
|---|
| 1755 | if (fpoly == NULL) | 
|---|
| 1756 | *fLog << "MHFindSignificance::DrawFit; fpoly = NULL" << endl; | 
|---|
| 1757 |  | 
|---|
| 1758 | if (fpoly) | 
|---|
| 1759 | { | 
|---|
| 1760 | // 2, 1 is red and solid | 
|---|
| 1761 | fpoly->SetLineColor(2); | 
|---|
| 1762 | fpoly->SetLineStyle(1); | 
|---|
| 1763 | fpoly->SetLineWidth(2); | 
|---|
| 1764 | fpoly->DrawCopy("same"); | 
|---|
| 1765 | } | 
|---|
| 1766 |  | 
|---|
| 1767 | if (fFitGauss) | 
|---|
| 1768 | { | 
|---|
| 1769 | TF1 *fpolygauss = fHist->GetFunction("PolyGauss"); | 
|---|
| 1770 | if (fpolygauss == NULL) | 
|---|
| 1771 | *fLog << "MHFindSignificance::DrawFit; fpolygauss = NULL" << endl; | 
|---|
| 1772 |  | 
|---|
| 1773 | if (fpolygauss) | 
|---|
| 1774 | { | 
|---|
| 1775 | // 4, 1 is blue and solid | 
|---|
| 1776 | fpolygauss->SetLineColor(4); | 
|---|
| 1777 | fpolygauss->SetLineStyle(1); | 
|---|
| 1778 | fpolygauss->SetLineWidth(4); | 
|---|
| 1779 | fpolygauss->DrawCopy("same"); | 
|---|
| 1780 | } | 
|---|
| 1781 |  | 
|---|
| 1782 | TF1 *fbackg = fHist->GetFunction("Backg"); | 
|---|
| 1783 | if (fbackg == NULL) | 
|---|
| 1784 | *fLog << "MHFindSignificance::DrawFit; fbackg = NULL" << endl; | 
|---|
| 1785 |  | 
|---|
| 1786 | if (fbackg) | 
|---|
| 1787 | { | 
|---|
| 1788 | // 6, 4 is pink and dotted | 
|---|
| 1789 | fbackg->SetLineColor(4); | 
|---|
| 1790 | fbackg->SetLineStyle(4); | 
|---|
| 1791 | fbackg->SetLineWidth(4); | 
|---|
| 1792 | fbackg->DrawCopy("same"); | 
|---|
| 1793 | } | 
|---|
| 1794 | } | 
|---|
| 1795 |  | 
|---|
| 1796 |  | 
|---|
| 1797 | //------------------------------- | 
|---|
| 1798 | // print results onto the figure | 
|---|
| 1799 | TPaveText *pt = new TPaveText(0.30, 0.35, 0.70, 0.90, "NDC"); | 
|---|
| 1800 | char tx[100]; | 
|---|
| 1801 |  | 
|---|
| 1802 | sprintf(tx, "Results of polynomial fit (order %2d) :", fDegree); | 
|---|
| 1803 | TText *t1 = pt->AddText(tx); | 
|---|
| 1804 | t1->SetTextSize(0.03); | 
|---|
| 1805 | t1->SetTextColor(2); | 
|---|
| 1806 |  | 
|---|
| 1807 | sprintf(tx, "   (%6.2f< |alpha| <%6.2f [\\circ])", fAlphami, fAlphama); | 
|---|
| 1808 | pt->AddText(tx); | 
|---|
| 1809 |  | 
|---|
| 1810 | sprintf(tx, "   chi2 = %8.2f,  Ndof = %4d,  Prob = %6.2f", | 
|---|
| 1811 | fChisq, fNdf, fProb); | 
|---|
| 1812 | pt->AddText(tx); | 
|---|
| 1813 |  | 
|---|
| 1814 | sprintf(tx, "   Nbgtot(fit) = %8.1f #pm %8.1f", | 
|---|
| 1815 | fNbgtotFitted, fdNbgtotFitted); | 
|---|
| 1816 | pt->AddText(tx); | 
|---|
| 1817 |  | 
|---|
| 1818 | sprintf(tx, "   Nbgtot(meas) = %8.1f", fNbgtot); | 
|---|
| 1819 | pt->AddText(tx); | 
|---|
| 1820 |  | 
|---|
| 1821 |  | 
|---|
| 1822 | //sprintf(tx, "     "); | 
|---|
| 1823 | //pt->AddText(tx); | 
|---|
| 1824 |  | 
|---|
| 1825 | //-------------- | 
|---|
| 1826 | sprintf(tx, "Results for |alpha|< %6.2f [\\circ] :", fAlphasi); | 
|---|
| 1827 | TText *t6 = pt->AddText(tx); | 
|---|
| 1828 | t6->SetTextSize(0.03); | 
|---|
| 1829 | t6->SetTextColor(8); | 
|---|
| 1830 |  | 
|---|
| 1831 | sprintf(tx, "   Non = %8.1f #pm %8.1f", fNon, fdNon); | 
|---|
| 1832 | pt->AddText(tx); | 
|---|
| 1833 |  | 
|---|
| 1834 | sprintf(tx, "   Nex = %8.1f #pm %8.1f", fNex, fdNex); | 
|---|
| 1835 | pt->AddText(tx); | 
|---|
| 1836 |  | 
|---|
| 1837 | sprintf(tx, "   Nbg = %8.1f #pm %8.1f,    gamma = %6.1f", | 
|---|
| 1838 | fNbg, fdNbg, fGamma); | 
|---|
| 1839 | pt->AddText(tx); | 
|---|
| 1840 |  | 
|---|
| 1841 | Double_t ratio = fNbg>0.0 ? fNex/fNbg : 0.0; | 
|---|
| 1842 | sprintf(tx, "   Significance = %6.2f,    Nex/Nbg = %6.2f", | 
|---|
| 1843 | fSigLiMa, ratio); | 
|---|
| 1844 | pt->AddText(tx); | 
|---|
| 1845 |  | 
|---|
| 1846 | //sprintf(tx, "     "); | 
|---|
| 1847 | //pt->AddText(tx); | 
|---|
| 1848 |  | 
|---|
| 1849 | //-------------- | 
|---|
| 1850 | if (fFitGauss) | 
|---|
| 1851 | { | 
|---|
| 1852 | sprintf(tx, "Results of (polynomial+Gauss) fit  :"); | 
|---|
| 1853 | TText *t7 = pt->AddText(tx); | 
|---|
| 1854 | t7->SetTextSize(0.03); | 
|---|
| 1855 | t7->SetTextColor(4); | 
|---|
| 1856 |  | 
|---|
| 1857 | sprintf(tx, "   chi2 = %8.2f,  Ndof = %4d,  Prob = %6.2f", | 
|---|
| 1858 | fGChisq, fGNdf, fGProb); | 
|---|
| 1859 | pt->AddText(tx); | 
|---|
| 1860 |  | 
|---|
| 1861 | sprintf(tx, "   Sigma of Gauss = %8.1f #pm %8.1f  [\\circ]", | 
|---|
| 1862 | fSigmaGauss, fdSigmaGauss); | 
|---|
| 1863 | pt->AddText(tx); | 
|---|
| 1864 |  | 
|---|
| 1865 | sprintf(tx, "   total no.of excess events = %8.1f #pm %8.1f", | 
|---|
| 1866 | fNexGauss, fdNexGauss); | 
|---|
| 1867 | pt->AddText(tx); | 
|---|
| 1868 | } | 
|---|
| 1869 | //-------------- | 
|---|
| 1870 |  | 
|---|
| 1871 | pt->SetFillStyle(0); | 
|---|
| 1872 | pt->SetBorderSize(0); | 
|---|
| 1873 | pt->SetTextAlign(12); | 
|---|
| 1874 |  | 
|---|
| 1875 | pt->Draw(); | 
|---|
| 1876 |  | 
|---|
| 1877 | //      fCanvas->Modified(); | 
|---|
| 1878 | //      fCanvas->Update(); | 
|---|
| 1879 | c->Modified(); | 
|---|
| 1880 | c->Update(); | 
|---|
| 1881 |  | 
|---|
| 1882 | return kTRUE; | 
|---|
| 1883 | } | 
|---|
| 1884 |  | 
|---|
| 1885 |  | 
|---|
| 1886 |  | 
|---|
| 1887 | // -------------------------------------------------------------------------- | 
|---|
| 1888 | // | 
|---|
| 1889 | // Print the results of the polynomial fit to the alpha distribution | 
|---|
| 1890 | // | 
|---|
| 1891 | // | 
|---|
| 1892 | void MHFindSignificance::PrintPoly(Option_t *o) | 
|---|
| 1893 | { | 
|---|
| 1894 | *fLog << "---------------------------" << endl; | 
|---|
| 1895 | *fLog << "MHFindSignificance::PrintPoly :" << endl; | 
|---|
| 1896 |  | 
|---|
| 1897 | *fLog << "fAlphami, fAlphama, fDegree, fAlphasi = " | 
|---|
| 1898 | << fAlphami << ",  " << fAlphama << ",  " << fDegree << ",  " | 
|---|
| 1899 | << fAlphasi << endl; | 
|---|
| 1900 |  | 
|---|
| 1901 | *fLog << "fMbins, fNzero, fIstat = " << fMbins << ",  " | 
|---|
| 1902 | << fNzero << ",  " << fIstat << endl; | 
|---|
| 1903 |  | 
|---|
| 1904 | *fLog << "fChisq, fNdf, fProb = " << fChisq << ",  " | 
|---|
| 1905 | << fNdf << ",  " << fProb << endl; | 
|---|
| 1906 |  | 
|---|
| 1907 | *fLog << "fNon, fNbg, fdNbg, fNbgtot, fNbgtotFitted, fdNbgtotFitted = " | 
|---|
| 1908 | << fNon << ",  " << fNbg << ",  " << fdNbg << ",  " << fNbgtot | 
|---|
| 1909 | << ",  " << fNbgtotFitted << ",  " << fdNbgtotFitted << endl; | 
|---|
| 1910 |  | 
|---|
| 1911 | Double_t sigtoback = fNbg>0.0 ? fNex/fNbg : 0.0; | 
|---|
| 1912 | *fLog << "fNex, fdNex, fGamma, fNoff, fSigLiMa, sigtoback = " | 
|---|
| 1913 | << fNex << ",  " << fdNex << ",  " << fGamma << ",  " << fNoff | 
|---|
| 1914 | << ",  " << fSigLiMa << ",  " << sigtoback << endl; | 
|---|
| 1915 |  | 
|---|
| 1916 | //------------------------------------ | 
|---|
| 1917 | // get errors | 
|---|
| 1918 |  | 
|---|
| 1919 | /* | 
|---|
| 1920 | Double_t eplus; | 
|---|
| 1921 | Double_t eminus; | 
|---|
| 1922 | Double_t eparab; | 
|---|
| 1923 | Double_t gcc; | 
|---|
| 1924 | Double_t errdiag; | 
|---|
| 1925 |  | 
|---|
| 1926 |  | 
|---|
| 1927 | if ( !fConstantBackg ) | 
|---|
| 1928 | { | 
|---|
| 1929 | *fLog << "parameter value     error     eplus     eminus    eparab   errdiag   gcc" | 
|---|
| 1930 | << endl; | 
|---|
| 1931 |  | 
|---|
| 1932 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1933 | { | 
|---|
| 1934 | if (gMinuit) | 
|---|
| 1935 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc); | 
|---|
| 1936 | errdiag = sqrt(fEma[j][j]); | 
|---|
| 1937 | *fLog << j << "  " << fValues[j] << "  "   << fErrors[j] << "  " | 
|---|
| 1938 | << eplus     << "  "       << eminus << "  " << eparab     << "  " | 
|---|
| 1939 | <<  errdiag  << "  "       << gcc    << endl; | 
|---|
| 1940 | } | 
|---|
| 1941 | } | 
|---|
| 1942 | else | 
|---|
| 1943 | { | 
|---|
| 1944 | *fLog << "parameter value     error     errdiag " | 
|---|
| 1945 | << endl; | 
|---|
| 1946 |  | 
|---|
| 1947 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1948 | { | 
|---|
| 1949 | errdiag = sqrt(fEma[j][j]); | 
|---|
| 1950 | *fLog << j << "  " << fValues[j] << "  "   << fErrors[j] << "  " | 
|---|
| 1951 | <<  errdiag  << endl; | 
|---|
| 1952 | } | 
|---|
| 1953 | } | 
|---|
| 1954 | */ | 
|---|
| 1955 |  | 
|---|
| 1956 | //---------------------------------------- | 
|---|
| 1957 | /* | 
|---|
| 1958 | *fLog << "Covariance matrix :" << endl; | 
|---|
| 1959 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1960 | { | 
|---|
| 1961 | *fLog << "j = " << j << " :   "; | 
|---|
| 1962 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1963 | { | 
|---|
| 1964 | *fLog << fEma[j][k] << "   "; | 
|---|
| 1965 | } | 
|---|
| 1966 | *fLog << endl; | 
|---|
| 1967 | } | 
|---|
| 1968 |  | 
|---|
| 1969 | *fLog << "Correlation matrix :" << endl; | 
|---|
| 1970 | for (Int_t j=0; j<=fDegree; j++) | 
|---|
| 1971 | { | 
|---|
| 1972 | *fLog << "j = " << j << " :   "; | 
|---|
| 1973 | for (Int_t k=0; k<=fDegree; k++) | 
|---|
| 1974 | { | 
|---|
| 1975 | *fLog << fCorr[j][k] << "   "; | 
|---|
| 1976 | } | 
|---|
| 1977 | *fLog << endl; | 
|---|
| 1978 | } | 
|---|
| 1979 | */ | 
|---|
| 1980 |  | 
|---|
| 1981 | *fLog << "---------------------------" << endl; | 
|---|
| 1982 | } | 
|---|
| 1983 |  | 
|---|
| 1984 | // -------------------------------------------------------------------------- | 
|---|
| 1985 | // | 
|---|
| 1986 | // Print the results of the (polynomial+Gauss) fit to the alpha distribution | 
|---|
| 1987 | // | 
|---|
| 1988 | // | 
|---|
| 1989 | void MHFindSignificance::PrintPolyGauss(Option_t *o) | 
|---|
| 1990 | { | 
|---|
| 1991 | *fLog << "---------------------------" << endl; | 
|---|
| 1992 | *fLog << "MHFindSignificance::PrintPolyGauss :" << endl; | 
|---|
| 1993 |  | 
|---|
| 1994 | *fLog << "fAlphalo, fAlphahi = " | 
|---|
| 1995 | << fAlphalo << ",  " << fAlphahi << endl; | 
|---|
| 1996 |  | 
|---|
| 1997 | *fLog << "fGMbins, fGNzero, fGIstat = " << fGMbins << ",  " | 
|---|
| 1998 | << fGNzero << ",  " << fGIstat << endl; | 
|---|
| 1999 |  | 
|---|
| 2000 | *fLog << "fGChisq, fGNdf, fGProb = " << fGChisq << ",  " | 
|---|
| 2001 | << fGNdf << ",  " << fGProb << endl; | 
|---|
| 2002 |  | 
|---|
| 2003 |  | 
|---|
| 2004 | //------------------------------------ | 
|---|
| 2005 | // get errors | 
|---|
| 2006 |  | 
|---|
| 2007 | Double_t eplus; | 
|---|
| 2008 | Double_t eminus; | 
|---|
| 2009 | Double_t eparab; | 
|---|
| 2010 | Double_t gcc; | 
|---|
| 2011 | Double_t errdiag; | 
|---|
| 2012 |  | 
|---|
| 2013 | *fLog << "parameter value     error     eplus     eminus    eparab   errdiag   gcc" | 
|---|
| 2014 | << endl; | 
|---|
| 2015 | for (Int_t j=0; j<=(fDegree+3); j++) | 
|---|
| 2016 | { | 
|---|
| 2017 | if (gMinuit) | 
|---|
| 2018 | gMinuit->mnerrs(j, eplus, eminus, eparab, gcc); | 
|---|
| 2019 | errdiag = sqrt(fGEma[j][j]); | 
|---|
| 2020 | *fLog << j << "  " << fGValues[j] << "  "   << fGErrors[j] << "  " | 
|---|
| 2021 | << eplus     << "  "       << eminus << "  " << eparab     << "  " | 
|---|
| 2022 | <<  errdiag  << "  "       << gcc    << endl; | 
|---|
| 2023 | } | 
|---|
| 2024 |  | 
|---|
| 2025 |  | 
|---|
| 2026 | *fLog << "Covariance matrix :" << endl; | 
|---|
| 2027 | for (Int_t j=0; j<=(fDegree+3); j++) | 
|---|
| 2028 | { | 
|---|
| 2029 | *fLog << "j = " << j << " :   "; | 
|---|
| 2030 | for (Int_t k=0; k<=(fDegree+3); k++) | 
|---|
| 2031 | { | 
|---|
| 2032 | *fLog << fGEma[j][k] << "   "; | 
|---|
| 2033 | } | 
|---|
| 2034 | *fLog << endl; | 
|---|
| 2035 | } | 
|---|
| 2036 |  | 
|---|
| 2037 | *fLog << "Correlation matrix :" << endl; | 
|---|
| 2038 | for (Int_t j=0; j<=(fDegree+3); j++) | 
|---|
| 2039 | { | 
|---|
| 2040 | *fLog << "j = " << j << " :   "; | 
|---|
| 2041 | for (Int_t k=0; k<=(fDegree+3); k++) | 
|---|
| 2042 | { | 
|---|
| 2043 | *fLog << fGCorr[j][k] << "   "; | 
|---|
| 2044 | } | 
|---|
| 2045 | *fLog << endl; | 
|---|
| 2046 | } | 
|---|
| 2047 |  | 
|---|
| 2048 | *fLog << "---------------------------" << endl; | 
|---|
| 2049 | } | 
|---|
| 2050 |  | 
|---|
| 2051 | //============================================================================ | 
|---|
| 2052 |  | 
|---|