1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 11/2008 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2000-2009
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MQuaternion
|
---|
28 | //
|
---|
29 | // The MQuaternion is derived from TQuaternion. A quaternion is a four vector
|
---|
30 | // which can store space and time (like a lorentz vector).
|
---|
31 | //
|
---|
32 | // There are a few advantages of the TQuaternion class over the
|
---|
33 | // TLorentzVector, namely the implementation of a direct algebra with
|
---|
34 | // just the space part of the vector keeping the time as it is.
|
---|
35 | // (This is useful, e.g, for rotations and shift just in space).
|
---|
36 | //
|
---|
37 | // - You can construct the MQuaternion from a TQuaternion or a TVector3 and
|
---|
38 | // time.
|
---|
39 | // - Multiplying the MQuaternion with a TRotation with rotate just the
|
---|
40 | // space-part.
|
---|
41 | // - You can access the data members with X(), Y(), Z() and T()
|
---|
42 | // - To get the length or squared-length of the space-vector use R() and R2()
|
---|
43 | // - Access the 2D vector (x/y) with XYvector()
|
---|
44 | // - Thera are a few new function to propagate a MQuaternion along a trajectory
|
---|
45 | // in space and time (also expressed as an MQuaternion with a direction
|
---|
46 | // vector and a speed) Here we assume v>0.
|
---|
47 | //
|
---|
48 | // + PropagateDz(MQuaternion &w, Double_t dz)
|
---|
49 | //
|
---|
50 | // If dz is positive the position is propagated along the given trajectory
|
---|
51 | // in space (such that the z-component will increase by dz) and
|
---|
52 | // forward in time. If dz<0 the result is vice versa.
|
---|
53 | //
|
---|
54 | // + PropagateZ0(MQuaternion &w)
|
---|
55 | //
|
---|
56 | // This is an abbreviation for Propagate(w, -Z()). It propagates the
|
---|
57 | // position such that its z-component will vanish. If this is along
|
---|
58 | // the given trajectory time will increase if it is backward time
|
---|
59 | // will decrease.
|
---|
60 | //
|
---|
61 | // + PropagateZ(MQuaternion &w, Double_t z)
|
---|
62 | //
|
---|
63 | // This is an abbreviation for Propagate(w, z-Z()). It propagates the
|
---|
64 | // position such that its z-component will become z. If this is along
|
---|
65 | // the given trajectory time will increase if it is backward time
|
---|
66 | // will decrease.
|
---|
67 | //
|
---|
68 | //////////////////////////////////////////////////////////////////////////////
|
---|
69 | #include "MQuaternion.h"
|
---|
70 |
|
---|
71 | ClassImp(MQuaternion);
|
---|
72 |
|
---|
73 | using namespace std;
|
---|
74 |
|
---|