1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Christoph Kolodziejski, 11/2004 <mailto:>
|
---|
19 | ! Author(s): Thomas Bretz, 11/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2004-2005
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | //////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | // MHexagonalFT
|
---|
29 | //
|
---|
30 | // This is a class representating a (fast) fourier transformation explicitly
|
---|
31 | // for hexagonal geometries as described in astro-ph/0409388.
|
---|
32 | //
|
---|
33 | //
|
---|
34 | // WARNING:
|
---|
35 | // ========
|
---|
36 | // Be carefull using the fast transformation (Prepare())! The precalculation
|
---|
37 | // consumes a lot of memory. fPsi has the size of 2*n^4 (while n is the
|
---|
38 | // number of rows in fourier space). For the enhanced MAGIC camery fPsi has
|
---|
39 | // the size 27691682*sizeof(float) = 105.6MB (Std MAGIC: ~12MB)
|
---|
40 | //
|
---|
41 | // The runtime is more or less determined by the speed of accessing a
|
---|
42 | // huge amount of memory (see above) sequentially.
|
---|
43 | //
|
---|
44 | //
|
---|
45 | // Coordinate systems:
|
---|
46 | // ===================
|
---|
47 | //
|
---|
48 | // original hexagonal structure enhanced hexagonal structure
|
---|
49 | // ---------------------------- ----------------------------
|
---|
50 | //
|
---|
51 | // structure
|
---|
52 | // ---------
|
---|
53 | //
|
---|
54 | // h h h f f h h h f f
|
---|
55 | // h h h h f h h h h f
|
---|
56 | // h h h h h -----> h h h h h
|
---|
57 | // h h h h h h h h
|
---|
58 | // h h h h h h
|
---|
59 | // f f
|
---|
60 | // f
|
---|
61 | //
|
---|
62 | // numbering
|
---|
63 | // ---------
|
---|
64 | // d c b m n o p q r s
|
---|
65 | // e 4 3 a g h i j k l
|
---|
66 | // f 5 1 2 9 -----> b c d e f
|
---|
67 | // g 6 7 8 7 8 9 a
|
---|
68 | // h i j 4 5 6
|
---|
69 | // 2 3
|
---|
70 | // 1
|
---|
71 | //
|
---|
72 | // In reality the fourier space looks like because of symmetries:
|
---|
73 | //
|
---|
74 | // real part imaginary part
|
---|
75 | // --------- --------------
|
---|
76 | // m n o p o n m m n o 0 -o -n -m
|
---|
77 | // g h i i h g g h i -i -h -g
|
---|
78 | // b c d c b b c 0 -c -b
|
---|
79 | // 7 8 8 7 7 8 -8 -7
|
---|
80 | // 4 5 4 4 0 -4
|
---|
81 | // 2 2 2 -2
|
---|
82 | // 1 0
|
---|
83 | //
|
---|
84 | // column: GetK() row: GetM()
|
---|
85 | // -------------- -----------
|
---|
86 | // 6 5 4 3 2 1 0 0 1 2 3 4 5 6
|
---|
87 | // 5 4 3 2 1 0 0 1 2 3 4 5
|
---|
88 | // 4 3 2 1 0 0 1 2 3 4
|
---|
89 | // 3 2 1 0 0 1 2 3
|
---|
90 | // 2 1 0 0 1 2
|
---|
91 | // 1 0 0 1
|
---|
92 | // 0 0
|
---|
93 | //
|
---|
94 | // row: GetRow() (m+k) column: GetCol() (m-k)
|
---|
95 | // ------------------- ----------------------
|
---|
96 | // 6 6 6 6 6 6 6 -6 -4 -2 0 2 4 6
|
---|
97 | // 5 5 5 5 5 5 -5 -3 -1 1 3 5
|
---|
98 | // 4 4 4 4 4 -4 -2 0 2 4
|
---|
99 | // 3 3 3 3 -3 -1 1 3
|
---|
100 | // 2 2 2 -2 0 2
|
---|
101 | // 1 1 -1 1
|
---|
102 | // 0 0
|
---|
103 | //
|
---|
104 | //
|
---|
105 | // The coordinates of the pixels in the triangle are:
|
---|
106 | //
|
---|
107 | // Double_t dx; // Distance of too pixels in x
|
---|
108 | // Double_t dy; // Distance of to pixel rows in y
|
---|
109 | // Int_t idx; // Index of pixel in triangle (see above)
|
---|
110 | //
|
---|
111 | // const Float_t x = dx*GetCol(idx);
|
---|
112 | // const Float_t y = dy*Int_t(GetRow(idx)-2*GetNumRows()/3);
|
---|
113 | //
|
---|
114 | // You can use MGeomCam::GetPixelIdxXY(x, y) to get the corresponding index
|
---|
115 | // in space space.
|
---|
116 | //
|
---|
117 | //////////////////////////////////////////////////////////////////////////////
|
---|
118 | #include "MHexagonalFT.h"
|
---|
119 |
|
---|
120 | #include <TMath.h>
|
---|
121 |
|
---|
122 | #include "MLog.h"
|
---|
123 | #include "MLogManip.h"
|
---|
124 |
|
---|
125 | #include "MArrayD.h"
|
---|
126 |
|
---|
127 | ClassImp(MHexagonalFT);
|
---|
128 |
|
---|
129 | using namespace std;
|
---|
130 |
|
---|
131 | // ---------------------------------------------------------------------------
|
---|
132 | //
|
---|
133 | // Default Constructor - empty
|
---|
134 | //
|
---|
135 | MHexagonalFT::MHexagonalFT()
|
---|
136 | {
|
---|
137 | }
|
---|
138 |
|
---|
139 | // ---------------------------------------------------------------------------
|
---|
140 | //
|
---|
141 | // Default Constructor - num is the number of lines the fourier space has.
|
---|
142 | // It calls Prepare to fill the arrays with the necessary coefficients.
|
---|
143 | //
|
---|
144 | // Here are some simple rules to calculate parameters in a hexagonal space:
|
---|
145 | //
|
---|
146 | // Number of Rings (r) ---> Number of Pixels (p)
|
---|
147 | // p = 3*r*(r-1)+1
|
---|
148 | //
|
---|
149 | // Number of Pixels (p) ---> Number of Rings (r)
|
---|
150 | // p = (sqrt(9+12*(p-1))+3)/6
|
---|
151 | //
|
---|
152 | // Number of pixels at one border == number of rings (r)
|
---|
153 | // Row of border == number of rings (r)
|
---|
154 | //
|
---|
155 | // Number of rows to get a triangle: 3r-2
|
---|
156 | //
|
---|
157 | MHexagonalFT::MHexagonalFT(Int_t num)
|
---|
158 | {
|
---|
159 | Prepare(num);
|
---|
160 | }
|
---|
161 |
|
---|
162 | // ---------------------------------------------------------------------------
|
---|
163 | //
|
---|
164 | // Calculate the contents of: fM, fK, fP, fIdx and fPsi.
|
---|
165 | //
|
---|
166 | // While fPsi are the fourier coefficients, fM and fK are the hexagonal x and
|
---|
167 | // y coordinates of the pixel corresponding to the index i which is the
|
---|
168 | // common index of all arrays. fP is P(i,j) for all pixels.
|
---|
169 | //
|
---|
170 | // fIdx is also filled and used for reverse mapping. Due to the geometry
|
---|
171 | // the right and left side of the fourier space triangle has identical
|
---|
172 | // values. fIdx 'maps' the indices from the right to the left side.
|
---|
173 | //
|
---|
174 | void MHexagonalFT::Prepare(Int_t num)
|
---|
175 | {
|
---|
176 | fNumRows = num;
|
---|
177 |
|
---|
178 | fPsi.Set(num*num*num*num*2);
|
---|
179 |
|
---|
180 | Int_t lim = num*(num+1)/2;
|
---|
181 |
|
---|
182 | fM.Set(lim);
|
---|
183 | fK.Set(lim);
|
---|
184 | fP.Set(lim);
|
---|
185 | fIdx.Set(lim);
|
---|
186 |
|
---|
187 | for(int j=0; j<num; j++)
|
---|
188 | {
|
---|
189 | for(int n=0; n+j<num; n++)
|
---|
190 | {
|
---|
191 | int idx1 = (j+n)*(j+n+1)/2 + j;
|
---|
192 |
|
---|
193 | fM[idx1]=n;
|
---|
194 | fK[idx1]=j;
|
---|
195 |
|
---|
196 | fP[idx1]=P(j,n);
|
---|
197 |
|
---|
198 | for(int k=0; k<num; k++)
|
---|
199 | {
|
---|
200 | for(int m=0; m+k<num; m++)
|
---|
201 | {
|
---|
202 | const Double_t dx = TMath::Pi()*(m-k)/(num-1)/3;
|
---|
203 | const Double_t dy = TMath::Pi()*(m+k)/(num-1);
|
---|
204 |
|
---|
205 | const Double_t cos1 = TMath::Cos(dy*(j+n));
|
---|
206 | const Double_t cos2 = TMath::Cos(dy*j);
|
---|
207 | const Double_t cos3 = TMath::Cos(dy*n);
|
---|
208 |
|
---|
209 | const Double_t psire = 2*(
|
---|
210 | +cos1*TMath::Cos(dx*(j-n))
|
---|
211 | +cos2*TMath::Cos(dx*(j+2*n))
|
---|
212 | +cos3*TMath::Cos(dx*(2*j+n)));
|
---|
213 |
|
---|
214 | const Double_t psiim = 2*(
|
---|
215 | +cos1*TMath::Sin(dx*(j-n))
|
---|
216 | +cos2*TMath::Sin(dx*(j+2*n))
|
---|
217 | -cos3*TMath::Sin(dx*(2*j+n)));
|
---|
218 |
|
---|
219 | const Int_t idx3 = (k+m)*(k+m+1)/2 + k;
|
---|
220 | const Int_t id1 = idx1*lim + idx3;
|
---|
221 |
|
---|
222 | fPsi[id1*2] = psire;
|
---|
223 | fPsi[id1*2+1] = psiim;
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | for (int idx1=0; idx1<lim; idx1++)
|
---|
230 | {
|
---|
231 | int n = fM[idx1];
|
---|
232 | int j = fK[idx1];
|
---|
233 |
|
---|
234 | int idx0;
|
---|
235 | for (idx0=0; idx0<lim; idx0++)
|
---|
236 | if (fM[idx0]==j && fK[idx0]==n)
|
---|
237 | break;
|
---|
238 |
|
---|
239 | fIdx[idx1]=idx0;
|
---|
240 | }
|
---|
241 |
|
---|
242 | }
|
---|
243 |
|
---|
244 | // ---------------------------------------------------------------------------
|
---|
245 | //
|
---|
246 | // Do a fast forward tranformation. Because all coefficients are
|
---|
247 | // precalculated, the tranformation is reduced to a simple pointer based
|
---|
248 | // loop over the coeffiecients multiplied with the corresponding input
|
---|
249 | // values.
|
---|
250 | //
|
---|
251 | // Parameters:
|
---|
252 | // inre: array storing the real part of the input (eg. pixel contents)
|
---|
253 | // outre: array storing the real part of the output
|
---|
254 | // outim: array storing the imaginary part of the output
|
---|
255 | //
|
---|
256 | // inre must be of the size of the fourier space triangle. The pixel
|
---|
257 | // contents must have been mapped into this new space with the proper
|
---|
258 | // pixel indices. The size of outre and outim is set accordingly.
|
---|
259 | //
|
---|
260 | // After initialization (Prepare()) you can get the size of the arrays with
|
---|
261 | // GetNumKnots()
|
---|
262 | //
|
---|
263 | // For the definition of the coordinate system see class description
|
---|
264 | //
|
---|
265 | void MHexagonalFT::TransformFastFWD(const MArrayD &inre, MArrayD &outre,
|
---|
266 | MArrayD &outim) const
|
---|
267 | {
|
---|
268 | const UInt_t num = fP.GetSize();
|
---|
269 |
|
---|
270 | if (inre.GetSize()!=num)
|
---|
271 | {
|
---|
272 | cout << "ERROR - MHexagonalFT prepared for different size." << endl;
|
---|
273 | return;
|
---|
274 | }
|
---|
275 |
|
---|
276 | outre.Set(num);
|
---|
277 | outim.Set(num);
|
---|
278 |
|
---|
279 | const Int_t cnt = 108*(fNumRows-1)*(fNumRows-1);
|
---|
280 |
|
---|
281 | const Float_t *endp = fP.GetArray()+num;
|
---|
282 |
|
---|
283 | for (UInt_t idx1=0; idx1<num; idx1++)
|
---|
284 | {
|
---|
285 | if (fK[idx1]>fM[idx1])
|
---|
286 | continue;
|
---|
287 |
|
---|
288 | Double_t sumre=0;
|
---|
289 | Double_t sumim=0;
|
---|
290 |
|
---|
291 | Float_t *psi = fPsi.GetArray() + idx1*num*2;
|
---|
292 | Float_t *p = fP.GetArray();
|
---|
293 | Double_t *re = inre.GetArray();
|
---|
294 |
|
---|
295 | // 1st access to psi: const Float_t psire = *psi++;
|
---|
296 | // 2nd access to psi: const Float_t psiim = *psi++;
|
---|
297 | // sumre += f * *psire;
|
---|
298 | // sumim += f * *psiim;
|
---|
299 | while (p<endp)
|
---|
300 | {
|
---|
301 | const Double_t f = *p++ * *re++;
|
---|
302 |
|
---|
303 | sumre += f * *psi++;
|
---|
304 | sumim += f * *psi++;
|
---|
305 | }
|
---|
306 |
|
---|
307 | const Double_t factor2 = fP[idx1]/cnt;
|
---|
308 |
|
---|
309 | outre[fIdx[idx1]] = (outre[idx1] = factor2 * sumre);
|
---|
310 | outim[fIdx[idx1]] = -(outim[idx1] = -factor2 * sumim);
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 | // ---------------------------------------------------------------------------
|
---|
315 | //
|
---|
316 | // Do a fast backward tranformation. Because all coefficients are
|
---|
317 | // precalculated, the tranformation is reduced to a simple pointer based
|
---|
318 | // loop over the coeffiecients multiplied with the corresponding input
|
---|
319 | // values.
|
---|
320 | //
|
---|
321 | // Parameters:
|
---|
322 | // inre: outre of TransformFastBwd
|
---|
323 | // inim: outim of TransformFastBwd
|
---|
324 | // outre: backward tranformed real part of the resulting
|
---|
325 | //
|
---|
326 | // inre and inim must be of the size of the fourier space triangle. The
|
---|
327 | // pixel contents must have been mapped into this new space with the proper
|
---|
328 | // pixel indices. The size of outre is set accordingly.
|
---|
329 | //
|
---|
330 | // After initialization (Prepare()) you can get the size of the arrays with
|
---|
331 | // GetNumKnots()
|
---|
332 | //
|
---|
333 | // For the definition of the coordinate system see class description
|
---|
334 | //
|
---|
335 | void MHexagonalFT::TransformFastBWD(const MArrayD &inre, const MArrayD &inim,
|
---|
336 | MArrayD &outre) const
|
---|
337 | {
|
---|
338 | const UInt_t num = fP.GetSize();
|
---|
339 |
|
---|
340 | // Sanity check: check size of arrays
|
---|
341 | if (inre.GetSize()!=num)
|
---|
342 | {
|
---|
343 | cout << "ERROR - MHexagonalFT prepared for different size." << endl;
|
---|
344 | return;
|
---|
345 | }
|
---|
346 | if (inim.GetSize()!=num)
|
---|
347 | {
|
---|
348 | cout << "ERROR - MHexagonalFT prepared for different size." << endl;
|
---|
349 | return;
|
---|
350 | }
|
---|
351 | outre.Set(num);
|
---|
352 |
|
---|
353 | const Double_t *endre = inre.GetArray()+num;
|
---|
354 |
|
---|
355 | for (UInt_t idx1=0; idx1<num; idx1++)
|
---|
356 | {
|
---|
357 | Float_t *psi = fPsi.GetArray() + idx1*num*2;
|
---|
358 | Double_t *im = inim.GetArray();
|
---|
359 | Double_t *re = inre.GetArray();
|
---|
360 |
|
---|
361 | Double_t sumre=0;
|
---|
362 | while (re<endre)
|
---|
363 | {
|
---|
364 | const Float_t psire = *psi++;
|
---|
365 | const Float_t psiim = *psi++;
|
---|
366 |
|
---|
367 | sumre += *re++ * psire - *im++ * psiim;
|
---|
368 | }
|
---|
369 |
|
---|
370 | outre[idx1] = sumre;
|
---|
371 | }
|
---|
372 | }
|
---|
373 |
|
---|
374 | // ---------------------------------------------------------------------------
|
---|
375 | //
|
---|
376 | // This is a slow (direct) version of the tranformation. It is identical
|
---|
377 | // for forward and backward tranformation.
|
---|
378 | //
|
---|
379 | // The whole calculation is done straight forward without any precalculation.
|
---|
380 | //
|
---|
381 | // Parameters:
|
---|
382 | // inre: real part of input
|
---|
383 | // inim: imaginary part of input
|
---|
384 | // outre: real part of output
|
---|
385 | // outim: imaginary part of output
|
---|
386 | // fwd: kTRUE for forward, kFALSE for backward transformations
|
---|
387 | //
|
---|
388 | // After initialization (Prepare()) you can get the size of the arrays with
|
---|
389 | // GetNumKnots()
|
---|
390 | //
|
---|
391 | // For the definition of the coordinate system see class description
|
---|
392 | //
|
---|
393 | // It is currently not tested!
|
---|
394 | //
|
---|
395 | void MHexagonalFT::TransformSlow(const MArrayD &inre, const MArrayD &inim,
|
---|
396 | MArrayD &outre, MArrayD &outim,
|
---|
397 | Bool_t fwd)
|
---|
398 | {
|
---|
399 | static const Double_t fgSqrt3 = TMath::Sqrt(3.);
|
---|
400 | static const Double_t fgTan30 = TMath::Tan(30*TMath::DegToRad())*3;
|
---|
401 |
|
---|
402 | Int_t num = (Int_t)TMath::Sqrt((Float_t)inim.GetSize());
|
---|
403 | Int_t cnt = 108*(num-1)*(num-1);
|
---|
404 | Int_t inv = fwd?-1:1;
|
---|
405 |
|
---|
406 | // FIXME: For p(j,n)
|
---|
407 | fNumRows = num;
|
---|
408 |
|
---|
409 | for(int j=0; j<num; j++)
|
---|
410 | {
|
---|
411 | for(int n=0; n+j<num; n++)
|
---|
412 | {
|
---|
413 | if (j-n>0 && fwd)
|
---|
414 | continue;
|
---|
415 |
|
---|
416 | Double_t sumre=0;
|
---|
417 | Double_t sumim=0;
|
---|
418 |
|
---|
419 | for(int k=0; k<num; k++)
|
---|
420 | {
|
---|
421 | for(int m=0; m+k<num; m++)
|
---|
422 | {
|
---|
423 | Double_t dx = 0.5*(m-k)/num;
|
---|
424 | Double_t dy = 0.5*(m+k)/num*fgTan30;
|
---|
425 |
|
---|
426 | dx *= TMath::TwoPi()/3;
|
---|
427 | dy *= TMath::TwoPi()/fgSqrt3;
|
---|
428 |
|
---|
429 | const Double_t cos1 = TMath::Cos(dy*(j+n));
|
---|
430 | const Double_t cos2 = TMath::Cos(dy*j);
|
---|
431 | const Double_t cos3 = TMath::Cos(dy*n);
|
---|
432 |
|
---|
433 | //Alternatie nach Paper:
|
---|
434 | const Double_t psire = 2*(
|
---|
435 | +cos1*TMath::Cos(dx*(j-n))
|
---|
436 | +cos2*TMath::Cos(dx*(j+2*n))
|
---|
437 | +cos3*TMath::Cos(dx*(2*j+n)));
|
---|
438 |
|
---|
439 | const Double_t psiim = 2*inv*(
|
---|
440 | +cos1*TMath::Sin(dx*(j-n))
|
---|
441 | +cos2*TMath::Sin(dx*(j+2*n))
|
---|
442 | -cos3*TMath::Sin(dx*(2*j+n)));
|
---|
443 |
|
---|
444 | const Double_t factor = (fwd==1?P(k,m):1.);
|
---|
445 |
|
---|
446 | sumre += factor * (inre[k*num+m]*psire - inim[k*num+m]*psiim);
|
---|
447 | sumim += factor * (inre[k*num+m]*psiim + inim[k*num+m]*psire);
|
---|
448 | }
|
---|
449 | }
|
---|
450 |
|
---|
451 | const Double_t factor = (fwd==1?P(j,n)/cnt:1.);
|
---|
452 |
|
---|
453 | outre[j*num+n] = factor * sumre;
|
---|
454 | outim[j*num+n] = factor * sumim;
|
---|
455 |
|
---|
456 | if (fwd)
|
---|
457 | {
|
---|
458 | outre[n*num+j] = factor * sumre;
|
---|
459 | outim[n*num+j] = -factor * sumim;
|
---|
460 | }
|
---|
461 | }
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 |
|
---|