1 | #ifndef MARS_MJTrainSeparation
|
---|
2 | #define MARS_MJTrainSeparation
|
---|
3 |
|
---|
4 | #ifndef MARS_MJTrainRanForest
|
---|
5 | #include "MJTrainRanForest.h"
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #ifndef MARS_MDataSet
|
---|
9 | #include "MDataSet.h"
|
---|
10 | #endif
|
---|
11 |
|
---|
12 | class MH3;
|
---|
13 |
|
---|
14 | class MJTrainSeparation : public MJTrainRanForest
|
---|
15 | {
|
---|
16 | public:
|
---|
17 | enum Type_t { kTrainOn, kTrainOff, kTestOn, kTestOff };
|
---|
18 |
|
---|
19 | private:
|
---|
20 | MDataSet fDataSetTest;
|
---|
21 | MDataSet fDataSetTrain;
|
---|
22 |
|
---|
23 | UInt_t fNum[4];
|
---|
24 |
|
---|
25 | TList fPreTasksSet[4];
|
---|
26 | TList fPostTasksSet[4];
|
---|
27 |
|
---|
28 | Bool_t fAutoTrain;
|
---|
29 | Bool_t fUseRegression;
|
---|
30 |
|
---|
31 | Bool_t fEnableWeights[4];
|
---|
32 |
|
---|
33 | Float_t fFluxTrain;
|
---|
34 | Float_t fFluxTest;
|
---|
35 |
|
---|
36 | // Result
|
---|
37 | void DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime);
|
---|
38 |
|
---|
39 | // Auto training
|
---|
40 | Bool_t GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const;
|
---|
41 | Double_t GetDataRate(MDataSet &set, Double_t &num) const;
|
---|
42 | Double_t GetNumMC(MDataSet &set) const;
|
---|
43 | Float_t AutoTrain(MDataSet &set, Type_t typon, Type_t typoff, Float_t flux);
|
---|
44 |
|
---|
45 | public:
|
---|
46 | MJTrainSeparation() :
|
---|
47 | fAutoTrain(kFALSE), fUseRegression(kFALSE),
|
---|
48 | fFluxTrain(2e-7), fFluxTest(2e-7)
|
---|
49 | { for (int i=0; i<4; i++) { fEnableWeights[i]=kFALSE; fNum[i] = (UInt_t)-1; } }
|
---|
50 |
|
---|
51 | void SetDataSetTrain(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1)
|
---|
52 | {
|
---|
53 | ds.Copy(fDataSetTrain);
|
---|
54 |
|
---|
55 | fDataSetTrain.SetNumAnalysis(1);
|
---|
56 |
|
---|
57 | fNum[kTrainOn] = non;
|
---|
58 | fNum[kTrainOff] = noff;
|
---|
59 | }
|
---|
60 | void SetDataSetTest(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1)
|
---|
61 | {
|
---|
62 | ds.Copy(fDataSetTest);
|
---|
63 |
|
---|
64 | fDataSetTest.SetNumAnalysis(1);
|
---|
65 |
|
---|
66 | fNum[kTestOn] = non;
|
---|
67 | fNum[kTestOff] = noff;
|
---|
68 | }
|
---|
69 |
|
---|
70 | // Deprecated, used for test purpose
|
---|
71 | void AddPreTask(Type_t typ, MTask *t) { Add(fPreTasksSet[typ], t); }
|
---|
72 | void AddPreTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPreTasksSet[typ], rule, name); }
|
---|
73 |
|
---|
74 | void AddPostTask(Type_t typ, MTask *t) { Add(fPostTasksSet[typ], t); }
|
---|
75 | void AddPostTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPostTasksSet[typ], rule, name); }
|
---|
76 |
|
---|
77 | void SetWeights(Type_t typ, const char *rule) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, rule); }
|
---|
78 | void SetWeights(Type_t typ, MTask *t) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, t); }
|
---|
79 |
|
---|
80 | // Standard user interface
|
---|
81 | void AddPreTaskOn(MTask *t) { AddPreTask(kTrainOn, t); AddPreTask(kTestOn, t); }
|
---|
82 | void AddPreTaskOn(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOn, rule, name); AddPreTask(kTestOn, rule, name); }
|
---|
83 | void AddPreTaskOff(MTask *t) { AddPreTask(kTrainOff, t); AddPreTask(kTestOff, t); }
|
---|
84 | void AddPreTaskOff(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOff, rule, name); AddPreTask(kTestOff, rule, name); }
|
---|
85 |
|
---|
86 | void AddPostTaskOn(MTask *t) { AddPostTask(kTrainOn, t); AddPostTask(kTestOn, t); }
|
---|
87 | void AddPostTaskOn(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOn, rule, name); AddPostTask(kTestOn, rule, name); }
|
---|
88 | void AddPostTaskOff(MTask *t) { AddPostTask(kTrainOff, t); AddPostTask(kTestOff, t); }
|
---|
89 | void AddPostTaskOff(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOff, rule, name); AddPostTask(kTestOff, rule, name); }
|
---|
90 |
|
---|
91 | void SetWeightsOn(const char *rule) { SetWeights(kTrainOn, rule); SetWeights(kTestOn, rule); }
|
---|
92 | void SetWeightsOn(MTask *t) { SetWeights(kTrainOn, t); SetWeights(kTestOn, t); }
|
---|
93 | void SetWeightsOff(const char *rule) { SetWeights(kTrainOff, rule); SetWeights(kTestOff, rule); }
|
---|
94 | void SetWeightsOff(MTask *t) { SetWeights(kTrainOff, t); SetWeights(kTestOff, t); }
|
---|
95 |
|
---|
96 | void SetFluxTrain(Float_t f) { fFluxTrain = f; }
|
---|
97 | void SetFluxTest(Float_t f) { fFluxTest = f; }
|
---|
98 | void SetFlux(Float_t f) { SetFluxTrain(f); SetFluxTest(f); }
|
---|
99 |
|
---|
100 | void EnableAutoTrain(Bool_t b=kTRUE) { fAutoTrain = b; }
|
---|
101 | void EnableRegression(Bool_t b=kTRUE) { fUseRegression = b; }
|
---|
102 | void EnableClassification(Bool_t b=kTRUE) { fUseRegression = !b; }
|
---|
103 |
|
---|
104 | Bool_t Train(const char *out);
|
---|
105 |
|
---|
106 | ClassDef(MJTrainSeparation, 0)//Class to train Random Forest gamma-/background-separation
|
---|
107 | };
|
---|
108 |
|
---|
109 | #endif
|
---|