| 1 | // **************************************************************************
|
|---|
| 2 | /** @class Interpolator2D
|
|---|
| 3 |
|
|---|
| 4 | @brief Extra- and interpolate in 2D
|
|---|
| 5 |
|
|---|
| 6 | This class implements a kind of Delaunay triangulation. It calculated the
|
|---|
| 7 | Voronoi points and the corresponding Delaunay triangles. Within each
|
|---|
| 8 | triangle a bi-linear interpolation is provided.
|
|---|
| 9 |
|
|---|
| 10 | A special selection criterion is applied for points outside the grid,
|
|---|
| 11 | so that extrapolation is possible. Note that extrapolation of far away
|
|---|
| 12 | points (as in the 1D case) is not recommended.
|
|---|
| 13 |
|
|---|
| 14 | */
|
|---|
| 15 | // **************************************************************************
|
|---|
| 16 | #ifndef FACT_Interpolator2D
|
|---|
| 17 | #define FACT_Interpolator2D
|
|---|
| 18 |
|
|---|
| 19 | #include <float.h>
|
|---|
| 20 | #include <math.h>
|
|---|
| 21 | #include <vector>
|
|---|
| 22 | #include <fstream>
|
|---|
| 23 |
|
|---|
| 24 | class Interpolator2D
|
|---|
| 25 | {
|
|---|
| 26 | public:
|
|---|
| 27 | struct vec
|
|---|
| 28 | {
|
|---|
| 29 | double x;
|
|---|
| 30 | double y;
|
|---|
| 31 |
|
|---|
| 32 | vec(double _x=0, double _y=0) : x(_x), y(_y) { }
|
|---|
| 33 |
|
|---|
| 34 | vec orto() const { return vec(-y, x); }
|
|---|
| 35 |
|
|---|
| 36 | double dist(const vec &v) const { return hypot(x-v.x, y-v.y); }
|
|---|
| 37 | double operator^(const vec &v) const { return x*v.y - y*v.x; }
|
|---|
| 38 | vec operator-(const vec &v) const { return vec(x-v.x, y-v.y); }
|
|---|
| 39 | vec operator+(const vec &v) const { return vec(x+v.x, y+v.y); }
|
|---|
| 40 | vec operator/(double b) const { return vec(x/b, y/b); }
|
|---|
| 41 | };
|
|---|
| 42 |
|
|---|
| 43 |
|
|---|
| 44 | struct point : vec
|
|---|
| 45 | {
|
|---|
| 46 | unsigned int i;
|
|---|
| 47 | point(unsigned int _i, const vec &_v) : vec(_v), i(_i) { }
|
|---|
| 48 | point(unsigned int _i=0, double _x=0, double _y=0) : vec(_x, _y), i(_i) { }
|
|---|
| 49 | };
|
|---|
| 50 |
|
|---|
| 51 | struct circle : point
|
|---|
| 52 | {
|
|---|
| 53 | point p[3];
|
|---|
| 54 | double r;
|
|---|
| 55 |
|
|---|
| 56 | static bool sameSide(const vec &p1, const vec &p2, const vec &a, const vec &b)
|
|---|
| 57 | {
|
|---|
| 58 | return ((b-a)^(p1-a))*((b-a)^(p2-a)) > 0;
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | bool isInsideTriangle(const vec &v) const
|
|---|
| 62 | {
|
|---|
| 63 | return sameSide(v, p[0], p[1], p[2]) && sameSide(v, p[1], p[0], p[2]) && sameSide(v, p[2], p[0], p[1]);
|
|---|
| 64 | }
|
|---|
| 65 |
|
|---|
| 66 | bool isInsideCircle(const vec &v) const
|
|---|
| 67 | {
|
|---|
| 68 | return dist(v) < r;
|
|---|
| 69 | }
|
|---|
| 70 | };
|
|---|
| 71 |
|
|---|
| 72 | struct weight : point
|
|---|
| 73 | {
|
|---|
| 74 | circle c;
|
|---|
| 75 | double w[3];
|
|---|
| 76 | };
|
|---|
| 77 |
|
|---|
| 78 | private:
|
|---|
| 79 | std::vector<point> inputGrid; /// positions of the data points (e.g. sensors)
|
|---|
| 80 | std::vector<point> outputGrid; /// positions at which inter-/extrapolated values should be provided
|
|---|
| 81 | std::vector<circle> circles; /// the calculated circles/triangles
|
|---|
| 82 | std::vector<weight> weights; /// the weights used for the interpolation
|
|---|
| 83 |
|
|---|
| 84 | // --------------------------------------------------------------------------
|
|---|
| 85 | //
|
|---|
| 86 | //! Calculate the collection of circles/triangles which describe the
|
|---|
| 87 | //! input grid. This is the collection of circles which are calculated
|
|---|
| 88 | //! from any three points and do not contain any other point of the grid.
|
|---|
| 89 | //
|
|---|
| 90 | void CalculateGrid()
|
|---|
| 91 | {
|
|---|
| 92 | circles.reserve(2*inputGrid.size());
|
|---|
| 93 |
|
|---|
| 94 | // Loop over all triplets of points
|
|---|
| 95 | for (auto it0=inputGrid.cbegin(); it0<inputGrid.cend(); it0++)
|
|---|
| 96 | {
|
|---|
| 97 | for (auto it1=inputGrid.cbegin(); it1<it0; it1++)
|
|---|
| 98 | {
|
|---|
| 99 | for (auto it2=inputGrid.cbegin(); it2<it1; it2++)
|
|---|
| 100 | {
|
|---|
| 101 | // Calculate the circle through the three points
|
|---|
| 102 |
|
|---|
| 103 | // Vectors along the side of the corresponding triangle
|
|---|
| 104 | const vec v1 = *it1 - *it0;
|
|---|
| 105 | const vec v2 = *it2 - *it1;
|
|---|
| 106 |
|
|---|
| 107 | // Orthogonal vectors on the sides
|
|---|
| 108 | const vec n1 = v1.orto();
|
|---|
| 109 | const vec n2 = v2.orto();
|
|---|
| 110 |
|
|---|
| 111 | // Center point of two of the three sides
|
|---|
| 112 | const vec p1 = (*it0 + *it1)/2;
|
|---|
| 113 | const vec p2 = (*it1 + *it2)/2;
|
|---|
| 114 |
|
|---|
| 115 | // Calculate the crossing point of the two
|
|---|
| 116 | // orthogonal vectors originating in the
|
|---|
| 117 | // center of the sides.
|
|---|
| 118 | const double denom = n1^n2;
|
|---|
| 119 | if (denom==0)
|
|---|
| 120 | continue;
|
|---|
| 121 |
|
|---|
| 122 | const vec x(n1.x, n2.x);
|
|---|
| 123 | const vec y(n1.y, n2.y);
|
|---|
| 124 |
|
|---|
| 125 | const vec w(p1^(p1+n1), p2^(p2+n2));
|
|---|
| 126 |
|
|---|
| 127 | circle c;
|
|---|
| 128 |
|
|---|
| 129 | // This is the x and y coordinate of the circle
|
|---|
| 130 | // through the three points and the circle's radius.
|
|---|
| 131 | c.x = (x^w)/denom;
|
|---|
| 132 | c.y = (y^w)/denom;
|
|---|
| 133 | c.r = c.dist(*it1);
|
|---|
| 134 |
|
|---|
| 135 | // Check if any other grid point lays within this circle
|
|---|
| 136 | auto it3 = inputGrid.cbegin();
|
|---|
| 137 | for (; it3<inputGrid.cend(); it3++)
|
|---|
| 138 | {
|
|---|
| 139 | if (it3==it0 || it3==it1 || it3==it2)
|
|---|
| 140 | continue;
|
|---|
| 141 |
|
|---|
| 142 | if (c.isInsideCircle(*it3))
|
|---|
| 143 | break;
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | // If a point was found inside, reject the circle
|
|---|
| 147 | if (it3!=inputGrid.cend())
|
|---|
| 148 | continue;
|
|---|
| 149 |
|
|---|
| 150 | // Store the three points of the triangle
|
|---|
| 151 | c.p[0] = *it0;
|
|---|
| 152 | c.p[1] = *it1;
|
|---|
| 153 | c.p[2] = *it2;
|
|---|
| 154 |
|
|---|
| 155 | // Keep in list
|
|---|
| 156 | circles.push_back(c);
|
|---|
| 157 | }
|
|---|
| 158 | }
|
|---|
| 159 | }
|
|---|
| 160 | }
|
|---|
| 161 |
|
|---|
| 162 | // --------------------------------------------------------------------------
|
|---|
| 163 | //
|
|---|
| 164 | //! Calculate the weights corresponding to the points in the output grid.
|
|---|
| 165 | //! Weights are calculated by bi-linear interpolation. For interpolation,
|
|---|
| 166 | //! the triangle which contains the point and has the smallest radius
|
|---|
| 167 | //! is searched. If this is not available in case of extrapolation,
|
|---|
| 168 | //! the condition is relaxed and requires only the circle to contain
|
|---|
| 169 | //! the point. If such circle is not available, the circle with the
|
|---|
| 170 | //! closest center is chosen.
|
|---|
| 171 | //
|
|---|
| 172 | bool CalculateWeights()
|
|---|
| 173 | {
|
|---|
| 174 | weights.reserve(outputGrid.size());
|
|---|
| 175 |
|
|---|
| 176 | // Loop over all points in the output grid
|
|---|
| 177 | for (auto ip=outputGrid.cbegin(); ip<outputGrid.cend(); ip++)
|
|---|
| 178 | {
|
|---|
| 179 | double mindd = DBL_MAX;
|
|---|
| 180 |
|
|---|
| 181 | auto mint = circles.cend();
|
|---|
| 182 | auto minc = circles.cend();
|
|---|
| 183 | auto mind = circles.cend();
|
|---|
| 184 |
|
|---|
| 185 | for (auto ic=circles.cbegin(); ic<circles.cend(); ic++)
|
|---|
| 186 | {
|
|---|
| 187 | // Check if point is inside the triangle
|
|---|
| 188 | if (ic->isInsideTriangle(*ip))
|
|---|
| 189 | {
|
|---|
| 190 | if (mint==circles.cend() || ic->r<mint->r)
|
|---|
| 191 | mint = ic;
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | // If we have found such a triangle, no need to check for more
|
|---|
| 195 | if (mint!=circles.cend())
|
|---|
| 196 | continue;
|
|---|
| 197 |
|
|---|
| 198 | // maybe at least inside the circle
|
|---|
| 199 | const double dd = ic->dist(*ip);
|
|---|
| 200 | if (dd<ic->r)
|
|---|
| 201 | {
|
|---|
| 202 | if (minc==circles.cend() || ic->r<minc->r)
|
|---|
| 203 | minc = ic;
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | // If we found such a circle, no need to check for more
|
|---|
| 207 | if (minc!=circles.cend())
|
|---|
| 208 | continue;
|
|---|
| 209 |
|
|---|
| 210 | // then look for the closest circle center
|
|---|
| 211 | if (dd<mindd)
|
|---|
| 212 | {
|
|---|
| 213 | mindd = dd;
|
|---|
| 214 | mind = ic;
|
|---|
| 215 | }
|
|---|
| 216 | }
|
|---|
| 217 |
|
|---|
| 218 | // Choose the best of the three options
|
|---|
| 219 | const auto it = mint==circles.cend() ? (minc==circles.cend() ? mind : minc) : mint;
|
|---|
| 220 | if (it==circles.cend())
|
|---|
| 221 | return false;
|
|---|
| 222 |
|
|---|
| 223 | // Calculate the bi-linear interpolation
|
|---|
| 224 | const vec &p1 = it->p[0];
|
|---|
| 225 | const vec &p2 = it->p[1];
|
|---|
| 226 | const vec &p3 = it->p[2];
|
|---|
| 227 |
|
|---|
| 228 | const double dy23 = p2.y - p3.y;
|
|---|
| 229 | const double dy31 = p3.y - p1.y;
|
|---|
| 230 | const double dy12 = p1.y - p2.y;
|
|---|
| 231 |
|
|---|
| 232 | const double dx32 = p3.x - p2.x;
|
|---|
| 233 | const double dx13 = p1.x - p3.x;
|
|---|
| 234 | const double dx21 = p2.x - p1.x;
|
|---|
| 235 |
|
|---|
| 236 | const double dxy23 = p2^p3;
|
|---|
| 237 | const double dxy31 = p3^p1;
|
|---|
| 238 | const double dxy12 = p1^p2;
|
|---|
| 239 |
|
|---|
| 240 | const double det = dxy12 + dxy23 + dxy31;
|
|---|
| 241 |
|
|---|
| 242 | const double w1 = (dy23*ip->x + dx32*ip->y + dxy23)/det;
|
|---|
| 243 | const double w2 = (dy31*ip->x + dx13*ip->y + dxy31)/det;
|
|---|
| 244 | const double w3 = (dy12*ip->x + dx21*ip->y + dxy12)/det;
|
|---|
| 245 |
|
|---|
| 246 | // Store the original grid-point, the circle's parameters
|
|---|
| 247 | // and the calculate weights
|
|---|
| 248 | weight w;
|
|---|
| 249 | w.x = ip->x;
|
|---|
| 250 | w.y = ip->y;
|
|---|
| 251 | w.c = *it;
|
|---|
| 252 | w.w[0] = w1;
|
|---|
| 253 | w.w[1] = w2;
|
|---|
| 254 | w.w[2] = w3;
|
|---|
| 255 |
|
|---|
| 256 | weights.push_back(w);
|
|---|
| 257 | }
|
|---|
| 258 |
|
|---|
| 259 | return true;
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | public:
|
|---|
| 263 | // --------------------------------------------------------------------------
|
|---|
| 264 | //
|
|---|
| 265 | //! Default constructor. Does nothing.
|
|---|
| 266 | //
|
|---|
| 267 | Interpolator2D()
|
|---|
| 268 | {
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | // --------------------------------------------------------------------------
|
|---|
| 272 | //
|
|---|
| 273 | //! Initialize the input grid (the points at which values are known).
|
|---|
| 274 | //!
|
|---|
| 275 | //! @param n
|
|---|
| 276 | //! number of data points
|
|---|
| 277 | //!
|
|---|
| 278 | //! @param x
|
|---|
| 279 | //! x coordinates of data points
|
|---|
| 280 | //!
|
|---|
| 281 | //! @param n
|
|---|
| 282 | //! y coordinates of data points
|
|---|
| 283 | //
|
|---|
| 284 | Interpolator2D(int n, double *x, double *y)
|
|---|
| 285 | {
|
|---|
| 286 | SetInputGrid(n, x, y);
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 | Interpolator2D(const std::vector<Interpolator2D::vec> &v)
|
|---|
| 290 | {
|
|---|
| 291 | SetInputGrid(v);
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | const std::vector<Interpolator2D::weight> getWeights() const { return weights; }
|
|---|
| 295 | const std::vector<Interpolator2D::point> getInputGrid() const { return inputGrid; }
|
|---|
| 296 | const std::vector<Interpolator2D::point> getOutputGrid() const { return outputGrid; }
|
|---|
| 297 |
|
|---|
| 298 | // --------------------------------------------------------------------------
|
|---|
| 299 | //
|
|---|
| 300 | //! helper function to read a grid from a simple file
|
|---|
| 301 | //! (alternating x, y)
|
|---|
| 302 | //!
|
|---|
| 303 | //! @param filename
|
|---|
| 304 | //! filename of ascii file with data
|
|---|
| 305 | //!
|
|---|
| 306 | //! @returns
|
|---|
| 307 | //! a vector of point with the x and y values.
|
|---|
| 308 | //! in case of failure the vector is empty
|
|---|
| 309 | //
|
|---|
| 310 | static std::vector<Interpolator2D::vec> ReadGrid(const std::string &filename)
|
|---|
| 311 | {
|
|---|
| 312 | std::vector<Interpolator2D::vec> grid;
|
|---|
| 313 |
|
|---|
| 314 | std::ifstream fin(filename);
|
|---|
| 315 | if (!fin.is_open())
|
|---|
| 316 | return std::vector<Interpolator2D::vec>();
|
|---|
| 317 |
|
|---|
| 318 | while (1)
|
|---|
| 319 | {
|
|---|
| 320 | double x, y;
|
|---|
| 321 | fin >> x;
|
|---|
| 322 | fin >> y;
|
|---|
| 323 | if (!fin)
|
|---|
| 324 | break;
|
|---|
| 325 |
|
|---|
| 326 | grid.emplace_back(x, y);
|
|---|
| 327 | }
|
|---|
| 328 |
|
|---|
| 329 | return fin.bad() ? std::vector<Interpolator2D::vec>() : grid;
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | // --------------------------------------------------------------------------
|
|---|
| 333 | //
|
|---|
| 334 | //! Set a new input grid (the points at which values are known).
|
|---|
| 335 | //! Invalidates the output grid and the calculated weights.
|
|---|
| 336 | //! Calculates the triangles corresponding to the new grid.
|
|---|
| 337 | //!
|
|---|
| 338 | //! @param n
|
|---|
| 339 | //! number of data points
|
|---|
| 340 | //!
|
|---|
| 341 | //! @param x
|
|---|
| 342 | //! x coordinates of data points
|
|---|
| 343 | //!
|
|---|
| 344 | //! @param n
|
|---|
| 345 | //! y coordinates of data points
|
|---|
| 346 | //
|
|---|
| 347 | void SetInputGrid(unsigned int n, double *x, double *y)
|
|---|
| 348 | {
|
|---|
| 349 | circles.clear();
|
|---|
| 350 | weights.clear();
|
|---|
| 351 | outputGrid.clear();
|
|---|
| 352 |
|
|---|
| 353 | inputGrid.clear();
|
|---|
| 354 | inputGrid.reserve(n);
|
|---|
| 355 | for (unsigned int i=0; i<n; i++)
|
|---|
| 356 | inputGrid.emplace_back(i, x[i], y[i]);
|
|---|
| 357 |
|
|---|
| 358 | CalculateGrid();
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 | void SetInputGrid(const std::vector<Interpolator2D::vec> &v)
|
|---|
| 362 | {
|
|---|
| 363 | circles.clear();
|
|---|
| 364 | weights.clear();
|
|---|
| 365 | outputGrid.clear();
|
|---|
| 366 |
|
|---|
| 367 | inputGrid.clear();
|
|---|
| 368 | inputGrid.reserve(v.size());
|
|---|
| 369 | for (unsigned int i=0; i<v.size(); i++)
|
|---|
| 370 | inputGrid.emplace_back(i, v[i]);
|
|---|
| 371 |
|
|---|
| 372 | CalculateGrid();
|
|---|
| 373 | }
|
|---|
| 374 |
|
|---|
| 375 | /*
|
|---|
| 376 | void SetInputGrid(const std::vector<Interpolator2D::point> &v)
|
|---|
| 377 | {
|
|---|
| 378 | circles.clear();
|
|---|
| 379 | weights.clear();
|
|---|
| 380 | outputGrid.clear();
|
|---|
| 381 |
|
|---|
| 382 | inputGrid.clear();
|
|---|
| 383 | inputGrid.reserve(v.size());
|
|---|
| 384 | for (unsigned int i=0; i<v.size(); i++)
|
|---|
| 385 | inputGrid.emplace_back(v[i], i);
|
|---|
| 386 |
|
|---|
| 387 | CalculateGrid();
|
|---|
| 388 | }*/
|
|---|
| 389 |
|
|---|
| 390 | bool ReadInputGrid(const std::string &filename)
|
|---|
| 391 | {
|
|---|
| 392 | const auto grid = ReadGrid(filename);
|
|---|
| 393 | if (grid.empty())
|
|---|
| 394 | return false;
|
|---|
| 395 |
|
|---|
| 396 | SetInputGrid(grid);
|
|---|
| 397 | return true;
|
|---|
| 398 | }
|
|---|
| 399 |
|
|---|
| 400 |
|
|---|
| 401 | // --------------------------------------------------------------------------
|
|---|
| 402 | //
|
|---|
| 403 | //! Set a new output grid (the points at which you want interpolated
|
|---|
| 404 | //! or extrapolated values). Calculates new weights.
|
|---|
| 405 | //!
|
|---|
| 406 | //! @param n
|
|---|
| 407 | //! number of points
|
|---|
| 408 | //!
|
|---|
| 409 | //! @param x
|
|---|
| 410 | //! x coordinates of points
|
|---|
| 411 | //!
|
|---|
| 412 | //! @param n
|
|---|
| 413 | //! y coordinates of points
|
|---|
| 414 | //!
|
|---|
| 415 | //! @returns
|
|---|
| 416 | //! false if the calculation of the weights failed, true in
|
|---|
| 417 | //! case of success
|
|---|
| 418 | //
|
|---|
| 419 | bool SetOutputGrid(std::size_t n, double *x, double *y)
|
|---|
| 420 | {
|
|---|
| 421 | if (inputGrid.empty() && n==0)
|
|---|
| 422 | return false;
|
|---|
| 423 |
|
|---|
| 424 | weights.clear();
|
|---|
| 425 |
|
|---|
| 426 | outputGrid.clear();
|
|---|
| 427 | outputGrid.reserve(n);
|
|---|
| 428 | for (std::size_t i=0; i<n; i++)
|
|---|
| 429 | outputGrid.emplace_back(i, x[i], y[i]);
|
|---|
| 430 |
|
|---|
| 431 | return CalculateWeights();
|
|---|
| 432 | }
|
|---|
| 433 |
|
|---|
| 434 | /*
|
|---|
| 435 | bool SetOutputGrid(const std::vector<std::pair<double,double>> &v)
|
|---|
| 436 | {
|
|---|
| 437 | if (inputGrid.empty() || v.empty())
|
|---|
| 438 | return false;
|
|---|
| 439 |
|
|---|
| 440 | weights.clear();
|
|---|
| 441 |
|
|---|
| 442 | outputGrid.clear();
|
|---|
| 443 | outputGrid.reserve(v.size());
|
|---|
| 444 | for (std::size_t i=0; i<v.size(); i++)
|
|---|
| 445 | outputGrid.emplace_back(i, v[i].first, v[i].second);
|
|---|
| 446 |
|
|---|
| 447 | return CalculateWeights();
|
|---|
| 448 | }*/
|
|---|
| 449 |
|
|---|
| 450 | bool SetOutputGrid(const std::vector<Interpolator2D::vec> &v)
|
|---|
| 451 | {
|
|---|
| 452 | if (inputGrid.empty())
|
|---|
| 453 | return false;
|
|---|
| 454 |
|
|---|
| 455 | weights.clear();
|
|---|
| 456 |
|
|---|
| 457 | outputGrid.clear();
|
|---|
| 458 | outputGrid.reserve(v.size());
|
|---|
| 459 | for (std::size_t i=0; i<v.size(); i++)
|
|---|
| 460 | outputGrid.emplace_back(i, v[i]);
|
|---|
| 461 |
|
|---|
| 462 | return CalculateWeights();
|
|---|
| 463 | }
|
|---|
| 464 |
|
|---|
| 465 | bool ReadOutputGrid(const std::string &filename)
|
|---|
| 466 | {
|
|---|
| 467 | const auto grid = ReadGrid(filename);
|
|---|
| 468 | if (grid.empty())
|
|---|
| 469 | return false;
|
|---|
| 470 |
|
|---|
| 471 | return SetOutputGrid(grid);
|
|---|
| 472 | }
|
|---|
| 473 |
|
|---|
| 474 |
|
|---|
| 475 | // --------------------------------------------------------------------------
|
|---|
| 476 | //
|
|---|
| 477 | //! Perform interpolation.
|
|---|
| 478 | //!
|
|---|
| 479 | //! @param z
|
|---|
| 480 | //! Values at the coordinates of the input grid. The order
|
|---|
| 481 | //! must be identical.
|
|---|
| 482 | //!
|
|---|
| 483 | //! @returns
|
|---|
| 484 | //! A vector<double> is returned with the interpolated values in the
|
|---|
| 485 | //! same order than the putput grid. If the provided vector does
|
|---|
| 486 | //! not match the size of the inputGrid, an empty vector is returned.
|
|---|
| 487 | //
|
|---|
| 488 | std::vector<double> Interpolate(const std::vector<double> &z) const
|
|---|
| 489 | {
|
|---|
| 490 | if (z.size()!=inputGrid.size())
|
|---|
| 491 | return std::vector<double>();
|
|---|
| 492 |
|
|---|
| 493 | std::vector<double> rc;
|
|---|
| 494 | rc.reserve(z.size());
|
|---|
| 495 |
|
|---|
| 496 | for (auto it=weights.cbegin(); it<weights.cend(); it++)
|
|---|
| 497 | rc.push_back(z[it->c.p[0].i] * it->w[0] + z[it->c.p[1].i] * it->w[1] + z[it->c.p[2].i] * it->w[2]);
|
|---|
| 498 |
|
|---|
| 499 | return rc;
|
|---|
| 500 | }
|
|---|
| 501 | };
|
|---|
| 502 | #endif
|
|---|