1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Christoph Kolodziejski, 11/2004 <mailto:>
|
---|
19 | ! Author(s): Thomas Bretz, 11/2004 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2004
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | //////////////////////////////////////////////////////////////////////////////
|
---|
27 | //
|
---|
28 | //////////////////////////////////////////////////////////////////////////////
|
---|
29 |
|
---|
30 | #include "MHexagonFFT.h"
|
---|
31 |
|
---|
32 | #include <TMath.h>
|
---|
33 |
|
---|
34 | #include "MLog.h"
|
---|
35 | #include "MLogManip.h"
|
---|
36 |
|
---|
37 | ClassImp(MHexagonFFT);
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 |
|
---|
41 | // ---------------------------------------------------------------------------
|
---|
42 | //
|
---|
43 | // Default Constructor
|
---|
44 | // Initializes random number generator and default variables
|
---|
45 | //
|
---|
46 | MHexagonFFT::MHexagonFFT()
|
---|
47 | {
|
---|
48 | }
|
---|
49 |
|
---|
50 | /*
|
---|
51 | void MHexagonFFT::Prepare(Int_t num, Float_t scale)
|
---|
52 | {
|
---|
53 | //Int_t num = 34;
|
---|
54 | //Double_t scale = dist_y/dist_x;
|
---|
55 |
|
---|
56 | Int_t cnt = 108*num*num;
|
---|
57 |
|
---|
58 | psire.Set(num*num);
|
---|
59 | psiim.Set(num*num);
|
---|
60 |
|
---|
61 | // for(int j=0; j<num; j++)
|
---|
62 | // {
|
---|
63 | // for(int n=0; n<num; n++)
|
---|
64 | // {
|
---|
65 | // if (arr_k_m_id[j][n]<0)
|
---|
66 | // continue;
|
---|
67 | //
|
---|
68 | // Double_t sumre=0;
|
---|
69 | // Double_t sumim=0;
|
---|
70 |
|
---|
71 | for(int k=0; k<num; k++)
|
---|
72 | {
|
---|
73 | for(int m=0; m<34-k; m++)
|
---|
74 | {
|
---|
75 | //Int_t new_ID=arr_k_m_id[k][m];
|
---|
76 | //if (new_ID<0)
|
---|
77 | // continue;
|
---|
78 |
|
---|
79 | Double_t dx = 0.5*(m-k)/num;
|
---|
80 | Double_t dy = 0.5*(m+k)/num*scale;
|
---|
81 |
|
---|
82 | dx *= TMath::TwoPi()/3;
|
---|
83 | dy *= TMath::TwoPi()/fgSqrt3;
|
---|
84 |
|
---|
85 | const Double_t cos1 = cos(dy*(j+n));
|
---|
86 | const Double_t cos2 = cos(dy*j);
|
---|
87 | const Double_t cos3 = cos(dy*n);
|
---|
88 |
|
---|
89 | //Alternatie nach Paper:
|
---|
90 | psire[m*num+k] = 0.5*(
|
---|
91 | +cos1*cos(dx*(j-n))
|
---|
92 | +cos2*cos(dx*(j+2*n))
|
---|
93 | +cos3*cos(dx*(2*j+n)));
|
---|
94 |
|
---|
95 | psiim[m*num+k] = 0.5*(
|
---|
96 | +cos1*sin(dx*(j-n))
|
---|
97 | +cos2*sin(dx*(j+2*n))
|
---|
98 | -cos3*sin(dx*(2*j+n)));
|
---|
99 |
|
---|
100 |
|
---|
101 | // psi_im *= i_inv;
|
---|
102 | //
|
---|
103 | // Double_t factor = (i_inv==1?1.:P_j_n(k,m));
|
---|
104 | //
|
---|
105 | // sumre += factor * (inre[new_ID]*psi_re - inim[new_ID]*psi_im);
|
---|
106 | // sumim += factor * (inre[new_ID]*psi_im + inim[new_ID]*psi_re);
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | // Double_t factor = (i_inv==1?1.:P_j_n(j,n)/cnt);
|
---|
111 | //
|
---|
112 | // outre[arr_k_m_id[j][n]] = factor * sumre;
|
---|
113 | // outim[arr_k_m_id[j][n]] = factor * sumim;
|
---|
114 | // }
|
---|
115 | // }
|
---|
116 | }
|
---|
117 | */
|
---|
118 |
|
---|
119 | void MHexagonFFT::Prepare(Float_t scale, Int_t num)
|
---|
120 | {
|
---|
121 | static const Double_t fgSqrt3 = TMath::Sqrt(3.);
|
---|
122 |
|
---|
123 | fNum = num;
|
---|
124 |
|
---|
125 | MArrayD fCosX(num*num*num*3);
|
---|
126 | MArrayD fCosY(num*num*num*3);
|
---|
127 | MArrayD fSin(num*num*num*3);
|
---|
128 |
|
---|
129 | for(int j=0; j<3*num; j++)
|
---|
130 | {
|
---|
131 | for(int k=0; k<num; k++)
|
---|
132 | {
|
---|
133 | for(int m=0; m<num-k; m++)
|
---|
134 | {
|
---|
135 | Double_t dx = 0.5*(m-k)/num;
|
---|
136 | Double_t dy = 0.5*(m+k)/num*scale;
|
---|
137 |
|
---|
138 | dx *= TMath::TwoPi()/3;
|
---|
139 | dy *= TMath::TwoPi()/fgSqrt3;
|
---|
140 |
|
---|
141 | const Int_t idx = (m*num + k)*3*num;
|
---|
142 |
|
---|
143 | fCosX[idx+j] = TMath::Cos(dx*j);
|
---|
144 | fCosY[idx+j] = TMath::Cos(dy*j);
|
---|
145 | fSin [idx+j] = TMath::Sin(dx*j);
|
---|
146 | }
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | //fPsiRe.Set(num*num*num*num);
|
---|
151 | //fPsiIm.Set(num*num*num*num);
|
---|
152 | fPsi.Set(num*num*num*num*2);
|
---|
153 |
|
---|
154 | Int_t lim = num*(num+1)/2;
|
---|
155 |
|
---|
156 | fM.Set(lim);
|
---|
157 | fK.Set(lim);
|
---|
158 | fP.Set(lim);
|
---|
159 | fIdx.Set(lim);
|
---|
160 |
|
---|
161 | for(int j=0; j<num; j++)
|
---|
162 | {
|
---|
163 | for(int n=0; n<num-j; n++)
|
---|
164 | {
|
---|
165 | int idx0 = num-n-1;
|
---|
166 | int idx1 = idx0*(idx0+1)/2 + j;
|
---|
167 |
|
---|
168 | fM[idx1]=n;
|
---|
169 | fK[idx1]=j;
|
---|
170 |
|
---|
171 | fP[idx1]=P(j,n);
|
---|
172 |
|
---|
173 | for(int k=0; k<num; k++)
|
---|
174 | {
|
---|
175 | for(int m=0; m<num-k; m++)
|
---|
176 | {
|
---|
177 | const Int_t idx = (m*num + k)*3*num;
|
---|
178 |
|
---|
179 | const Float_t cos1 = fCosY[idx+j+n];
|
---|
180 | const Float_t cos2 = fCosY[idx+j];
|
---|
181 | const Float_t cos3 = fCosY[idx+n];
|
---|
182 |
|
---|
183 | int idx2 = num-m-1;
|
---|
184 | int idx3 = idx2*(idx2+1)/2 + k;
|
---|
185 | const Int_t id1 = idx1*lim + idx3;
|
---|
186 |
|
---|
187 | //fPsiRe[id1]
|
---|
188 | Double_t fPsiRe
|
---|
189 | = 2*(
|
---|
190 | +cos1*fCosX[idx+TMath::Abs(j-n)]
|
---|
191 | +cos2*fCosX[idx+j+2*n]
|
---|
192 | +cos3*fCosX[idx+2*j+n]);
|
---|
193 |
|
---|
194 | //fPsiIm[id1] = 2*(
|
---|
195 | Double_t fPsiIm = 2*(
|
---|
196 | +cos1*fSin[idx+TMath::Abs(j-n)]*TMath::Sign(1, j-n)
|
---|
197 | +cos2*fSin[idx+j+2*n]
|
---|
198 | -cos3*fSin[idx+2*j+n]);
|
---|
199 |
|
---|
200 | fPsi[id1*2] = fPsiRe;//fPsiRe[id1];
|
---|
201 | fPsi[id1*2+1] = fPsiIm;//fPsiIm[id1];
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | }
|
---|
206 | }
|
---|
207 |
|
---|
208 | for (int idx1=0; idx1<lim; idx1++)
|
---|
209 | {
|
---|
210 | int n = fM[idx1];
|
---|
211 | int j = fK[idx1];
|
---|
212 |
|
---|
213 | int idx0;
|
---|
214 | for (idx0=0; idx0<lim; idx0++)
|
---|
215 | if (fM[idx0]==j && fK[idx0]==n)
|
---|
216 | break;
|
---|
217 |
|
---|
218 | fIdx[idx1]=idx0;
|
---|
219 | }
|
---|
220 |
|
---|
221 | }
|
---|
222 | /*
|
---|
223 | void MHexagonFFT::DGT4(const MArrayD &inre,
|
---|
224 | const MArrayD &inim,
|
---|
225 | MArrayD &outre,
|
---|
226 | MArrayD &outim,
|
---|
227 | Float_t scale,
|
---|
228 | Bool_t fwd)
|
---|
229 | {
|
---|
230 | Int_t num = (Int_t)TMath::Sqrt((Float_t)inim.GetSize());
|
---|
231 | Int_t cnt = 108*num*num;
|
---|
232 | Int_t lim = num*(num+1)/2;
|
---|
233 |
|
---|
234 | Float_t *endp = fP.GetArray()+lim;
|
---|
235 |
|
---|
236 | for (int idx1=0; idx1<lim; idx1++)
|
---|
237 | {
|
---|
238 | if (fK[idx1]>fM[idx1] && fwd)
|
---|
239 | continue;
|
---|
240 |
|
---|
241 | Double_t sumre=0;
|
---|
242 | Double_t sumim=0;
|
---|
243 |
|
---|
244 | Float_t *psi = fPsi.GetArray() + idx1*lim*2;
|
---|
245 | Float_t *p = fP.GetArray();
|
---|
246 | Double_t *im = inim.GetArray();
|
---|
247 | Double_t *re = inre.GetArray();
|
---|
248 |
|
---|
249 | while (p<endp)
|
---|
250 | {
|
---|
251 | const Float_t factor1 = (fwd?*p:1.);
|
---|
252 |
|
---|
253 | const Float_t psire = *psi++;
|
---|
254 | const Float_t psiim = *psi++;
|
---|
255 |
|
---|
256 | sumre += factor1 * (*re * psire - *im * psiim);
|
---|
257 | if (fwd)
|
---|
258 | sumim += factor1 * (*re * psiim + *im * psire);
|
---|
259 |
|
---|
260 | im++;
|
---|
261 | re++;
|
---|
262 | p++;
|
---|
263 | }
|
---|
264 |
|
---|
265 | const Double_t factor2 = fwd?fP[idx1]/cnt:1.;
|
---|
266 |
|
---|
267 | outre[idx1] = factor2 * sumre;
|
---|
268 | outim[idx1] = -factor2 * sumim;
|
---|
269 | }
|
---|
270 |
|
---|
271 | if (!fwd)
|
---|
272 | return;
|
---|
273 |
|
---|
274 | for (int idx1=0; idx1<lim; idx1++)
|
---|
275 | {
|
---|
276 | if (fK[idx1]<fM[idx1])
|
---|
277 | continue;
|
---|
278 |
|
---|
279 | outre[idx1] = outre[fIdx[idx1]];
|
---|
280 | outim[idx1] = -outim[fIdx[idx1]];
|
---|
281 | }
|
---|
282 | }*/
|
---|
283 |
|
---|
284 | void MHexagonFFT::TransformFastFWD(const MArrayD &inre,
|
---|
285 | MArrayD &outre,
|
---|
286 | MArrayD &outim) const
|
---|
287 | {
|
---|
288 | const UInt_t num = fP.GetSize();
|
---|
289 |
|
---|
290 | if (inre.GetSize()!=num)
|
---|
291 | {
|
---|
292 | cout << "ERROR - MHexagonFFT prepared for different size." << endl;
|
---|
293 | return;
|
---|
294 | }
|
---|
295 |
|
---|
296 | outre.Set(num);
|
---|
297 | outim.Set(num);
|
---|
298 |
|
---|
299 | const Int_t cnt = 108*fNum*fNum;
|
---|
300 |
|
---|
301 | const Float_t *endp = fP.GetArray()+num;
|
---|
302 |
|
---|
303 | for (UInt_t idx1=0; idx1<num; idx1++)
|
---|
304 | {
|
---|
305 | if (fK[idx1]>fM[idx1])
|
---|
306 | continue;
|
---|
307 |
|
---|
308 | Double_t sumre=0;
|
---|
309 | Double_t sumim=0;
|
---|
310 |
|
---|
311 | Float_t *psi = fPsi.GetArray() + idx1*num*2;
|
---|
312 | Float_t *p = fP.GetArray();
|
---|
313 | Double_t *re = inre.GetArray();
|
---|
314 |
|
---|
315 | // 1st access to psi: const Float_t psire = *psi++;
|
---|
316 | // 2nd access to psi: const Float_t psiim = *psi++;
|
---|
317 | // sumre += f * *psire;
|
---|
318 | // sumim += f * *psiim;
|
---|
319 | while (p<endp)
|
---|
320 | {
|
---|
321 | const Double_t f = *p++ * *re++;
|
---|
322 |
|
---|
323 | sumre += f * *psi++;
|
---|
324 | sumim += f * *psi++;
|
---|
325 | }
|
---|
326 |
|
---|
327 | const Double_t factor2 = fP[idx1]/cnt;
|
---|
328 |
|
---|
329 | outre[fIdx[idx1]] = outre[idx1] = factor2 * sumre;
|
---|
330 | outim[fIdx[idx1]] = -(outim[idx1] = -factor2 * sumim);
|
---|
331 |
|
---|
332 | /*
|
---|
333 | outre[idx1] = factor2 * sumre;
|
---|
334 | outim[idx1] = -factor2 * sumim;
|
---|
335 |
|
---|
336 | outre[fIdx[idx1]] = outre[idx1];
|
---|
337 | outim[fIdx[idx1]] = -outim[idx1];
|
---|
338 | */
|
---|
339 | }
|
---|
340 | /*
|
---|
341 | for (UInt_t idx1=0; idx1<num; idx1++)
|
---|
342 | {
|
---|
343 | if (fK[idx1]<fM[idx1])
|
---|
344 | continue;
|
---|
345 |
|
---|
346 | outre[idx1] = outre[fIdx[idx1]];
|
---|
347 | outim[idx1] = -outim[fIdx[idx1]];
|
---|
348 | }
|
---|
349 | */
|
---|
350 | }
|
---|
351 |
|
---|
352 | void MHexagonFFT::TransformFastBWD(const MArrayD &inre,
|
---|
353 | const MArrayD &inim,
|
---|
354 | MArrayD &outre) const
|
---|
355 | {
|
---|
356 | const UInt_t num = fP.GetSize();
|
---|
357 |
|
---|
358 | if (inre.GetSize()!=num)
|
---|
359 | {
|
---|
360 | cout << "ERROR - MHexagonFFT prepared for different size." << endl;
|
---|
361 | return;
|
---|
362 | }
|
---|
363 | if (inim.GetSize()!=num)
|
---|
364 | {
|
---|
365 | cout << "ERROR - MHexagonFFT prepared for different size." << endl;
|
---|
366 | return;
|
---|
367 | }
|
---|
368 | outre.Set(num);
|
---|
369 |
|
---|
370 |
|
---|
371 | const Double_t *endre = inre.GetArray()+num;
|
---|
372 |
|
---|
373 | for (UInt_t idx1=0; idx1<num; idx1++)
|
---|
374 | {
|
---|
375 | Float_t *psi = fPsi.GetArray() + idx1*num*2;
|
---|
376 | Double_t *im = inim.GetArray();
|
---|
377 | Double_t *re = inre.GetArray();
|
---|
378 |
|
---|
379 | Double_t sumre=0;
|
---|
380 | while (re<endre)
|
---|
381 | {
|
---|
382 | const Float_t psire = *psi++;
|
---|
383 | const Float_t psiim = *psi++;
|
---|
384 |
|
---|
385 | sumre += *re++ * psire - *im++ * psiim;
|
---|
386 | }
|
---|
387 |
|
---|
388 | outre[idx1] = sumre;
|
---|
389 | }
|
---|
390 | }
|
---|
391 | /*
|
---|
392 | void MHexagonFFT::DGT3(const MArrayD &inre,
|
---|
393 | const MArrayD &inim,
|
---|
394 | MArrayD &outre,
|
---|
395 | MArrayD &outim,
|
---|
396 | Float_t scale,
|
---|
397 | Bool_t fwd)
|
---|
398 | {
|
---|
399 | Int_t num = (Int_t)TMath::Sqrt((Float_t)inim.GetSize());
|
---|
400 | Int_t cnt = 108*num*num;
|
---|
401 |
|
---|
402 | for(int j=0; j<num; j++)
|
---|
403 | {
|
---|
404 | for(int n=0; n<num-j; n++)
|
---|
405 | {
|
---|
406 | if (j-n>0 && fwd)
|
---|
407 | continue;
|
---|
408 |
|
---|
409 | Double_t sumre=0;
|
---|
410 | Double_t sumim=0;
|
---|
411 |
|
---|
412 | Int_t lim = num*(num+1)/2;
|
---|
413 | for (int idx0=0; idx0<lim; idx0++)
|
---|
414 |
|
---|
415 | // for(int k=0; k<num; k++)
|
---|
416 | {
|
---|
417 | int m = fM[idx0];
|
---|
418 | int k = fK[idx0];
|
---|
419 | // for(int m=0; m<num-k; m++)
|
---|
420 |
|
---|
421 | {
|
---|
422 | const Int_t id = k*num + m;
|
---|
423 | const Int_t id1 = (((id*num)+n)*num+j)*2;
|
---|
424 |
|
---|
425 | //Alternatie nach Paper:
|
---|
426 | const Float_t psire = fPsi[id1]; //fPsiRe[(id*num+n)*num+j];
|
---|
427 | const Float_t psiim = fPsi[id1+1]; //fPsiIm[(id*num+n)*num+j]*inv;
|
---|
428 |
|
---|
429 | const Float_t factor1 = fwd==1?P(k,m):1.;
|
---|
430 |
|
---|
431 | sumre += factor1 * (inre[id]*psire - inim[id]*psiim);
|
---|
432 | if (fwd)
|
---|
433 | sumim += factor1 * (inre[id]*psiim + inim[id]*psire);
|
---|
434 | }
|
---|
435 | }
|
---|
436 |
|
---|
437 | const Double_t factor2 = fwd==1?P(j,n)/cnt:1.;
|
---|
438 |
|
---|
439 | outre[j*num+n] = factor2 * sumre;
|
---|
440 | outim[j*num+n] = -factor2 * sumim;
|
---|
441 |
|
---|
442 | if (!fwd)
|
---|
443 | continue;
|
---|
444 |
|
---|
445 | outre[n*num+j] = factor2 * sumre;
|
---|
446 | outim[n*num+j] = factor2 * sumim;
|
---|
447 | }
|
---|
448 | }
|
---|
449 | }
|
---|
450 |
|
---|
451 | void MHexagonFFT::DGT2(const MArrayD &inre,
|
---|
452 | const MArrayD &inim,
|
---|
453 | MArrayD &outre,
|
---|
454 | MArrayD &outim,
|
---|
455 | Float_t scale,
|
---|
456 | Bool_t fwd)
|
---|
457 | {
|
---|
458 | Int_t num = (Int_t)TMath::Sqrt((Float_t)inim.GetSize());
|
---|
459 | Int_t cnt = 108*num*num;
|
---|
460 | Int_t inv = fwd?-1:1;
|
---|
461 |
|
---|
462 | for(int j=0; j<num; j++)
|
---|
463 | {
|
---|
464 | for(int n=0; n<num-j; n++)
|
---|
465 | {
|
---|
466 | if (j-n>0 && fwd)
|
---|
467 | continue;
|
---|
468 |
|
---|
469 | Double_t sumre=0;
|
---|
470 | Double_t sumim=0;
|
---|
471 |
|
---|
472 | for(int k=0; k<num; k++)
|
---|
473 | {
|
---|
474 | for(int m=0; m<num-k; m++)
|
---|
475 | {
|
---|
476 | const Int_t idx = (m*num + k)*3*num;
|
---|
477 |
|
---|
478 | const Float_t cos1 = fCosY[idx+j+n];
|
---|
479 | const Float_t cos2 = fCosY[idx+j];
|
---|
480 | const Float_t cos3 = fCosY[idx+n];
|
---|
481 |
|
---|
482 | //Alternatie nach Paper:
|
---|
483 | const Float_t psire = 2*(
|
---|
484 | +cos1*fCosX[idx+TMath::Abs(j-n)]
|
---|
485 | +cos2*fCosX[idx+j+2*n]
|
---|
486 | +cos3*fCosX[idx+2*j+n]);
|
---|
487 |
|
---|
488 | const Float_t psiim = 2*inv*(
|
---|
489 | +cos1*fSin[idx+TMath::Abs(j-n)]*TMath::Sign(1, j-n)
|
---|
490 | +cos2*fSin[idx+j+2*n]
|
---|
491 | -cos3*fSin[idx+2*j+n]);
|
---|
492 |
|
---|
493 | const Float_t factor = (fwd==1?P(k,m):1.);
|
---|
494 |
|
---|
495 | sumre += factor * (inre[k*num+m]*psire - inim[k*num+m]*psiim);
|
---|
496 | sumim += factor * (inre[k*num+m]*psiim + inim[k*num+m]*psire);
|
---|
497 | }
|
---|
498 | }
|
---|
499 |
|
---|
500 | const Double_t factor = (fwd==1?P(j,n)/cnt:1.);
|
---|
501 |
|
---|
502 | outre[j*num+n] = factor * sumre;
|
---|
503 | outim[j*num+n] = factor * sumim;
|
---|
504 |
|
---|
505 | if (fwd)
|
---|
506 | {
|
---|
507 | outre[n*num+j] = factor * sumre;
|
---|
508 | outim[n*num+j] = -factor * sumim;
|
---|
509 | }
|
---|
510 | }
|
---|
511 | }
|
---|
512 | }
|
---|
513 | */
|
---|
514 | void MHexagonFFT::TransformSlow(const MArrayD &inre, const MArrayD &inim,
|
---|
515 | MArrayD &outre, MArrayD &outim,
|
---|
516 | Float_t scale, Bool_t fwd)
|
---|
517 | {
|
---|
518 | static const Double_t fgSqrt3 = TMath::Sqrt(3.);
|
---|
519 |
|
---|
520 | Int_t num = (Int_t)TMath::Sqrt((Float_t)inim.GetSize());
|
---|
521 | Int_t cnt = 108*num*num;
|
---|
522 | Int_t inv = fwd?-1:1;
|
---|
523 |
|
---|
524 | for(int j=0; j<num; j++)
|
---|
525 | {
|
---|
526 | for(int n=0; n<num-j; n++)
|
---|
527 | {
|
---|
528 | if (j-n>0 && fwd)
|
---|
529 | continue;
|
---|
530 |
|
---|
531 | Double_t sumre=0;
|
---|
532 | Double_t sumim=0;
|
---|
533 |
|
---|
534 | for(int k=0; k<num; k++)
|
---|
535 | {
|
---|
536 | for(int m=0; m<num-k; m++)
|
---|
537 | {
|
---|
538 | Double_t dx = 0.5*(m-k)/num;
|
---|
539 | Double_t dy = 0.5*(m+k)/num*scale;
|
---|
540 |
|
---|
541 | dx *= TMath::TwoPi()/3;
|
---|
542 | dy *= TMath::TwoPi()/fgSqrt3;
|
---|
543 |
|
---|
544 | const Double_t cos1 = TMath::Cos(dy*(j+n));
|
---|
545 | const Double_t cos2 = TMath::Cos(dy*j);
|
---|
546 | const Double_t cos3 = TMath::Cos(dy*n);
|
---|
547 |
|
---|
548 | //Alternatie nach Paper:
|
---|
549 | const Double_t psire = 2*(
|
---|
550 | +cos1*TMath::Cos(dx*(j-n))
|
---|
551 | +cos2*TMath::Cos(dx*(j+2*n))
|
---|
552 | +cos3*TMath::Cos(dx*(2*j+n)));
|
---|
553 |
|
---|
554 | const Double_t psiim = 2*inv*(
|
---|
555 | +cos1*TMath::Sin(dx*(j-n))
|
---|
556 | +cos2*TMath::Sin(dx*(j+2*n))
|
---|
557 | -cos3*TMath::Sin(dx*(2*j+n)));
|
---|
558 |
|
---|
559 | const Double_t factor = (fwd==1?P(k,m):1.);
|
---|
560 |
|
---|
561 | sumre += factor * (inre[k*num+m]*psire - inim[k*num+m]*psiim);
|
---|
562 | sumim += factor * (inre[k*num+m]*psiim + inim[k*num+m]*psire);
|
---|
563 | }
|
---|
564 | }
|
---|
565 |
|
---|
566 | const Double_t factor = (fwd==1?P(j,n)/cnt:1.);
|
---|
567 |
|
---|
568 | outre[j*num+n] = factor * sumre;
|
---|
569 | outim[j*num+n] = factor * sumim;
|
---|
570 |
|
---|
571 | if (fwd)
|
---|
572 | {
|
---|
573 | outre[n*num+j] = factor * sumre;
|
---|
574 | outim[n*num+j] = -factor * sumim;
|
---|
575 | }
|
---|
576 | }
|
---|
577 | }
|
---|
578 | }
|
---|