| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Abelardo Moralejo 11/2003 <mailto:moralejo@pd.infn.it>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2008
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MStereoPar
|
|---|
| 28 | //
|
|---|
| 29 | // Storage Container for shower parameters estimated using the information
|
|---|
| 30 | // from two telescopes (presently for MC studies)
|
|---|
| 31 | //
|
|---|
| 32 | //
|
|---|
| 33 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 34 | #include "MStereoPar.h"
|
|---|
| 35 |
|
|---|
| 36 | #include <fstream>
|
|---|
| 37 |
|
|---|
| 38 | #include <TMath.h>
|
|---|
| 39 |
|
|---|
| 40 | #include "MLog.h"
|
|---|
| 41 | #include "MLogManip.h"
|
|---|
| 42 |
|
|---|
| 43 | #include "MHillas.h"
|
|---|
| 44 | #include "MGeomCam.h"
|
|---|
| 45 | #include "MPointingPos.h"
|
|---|
| 46 |
|
|---|
| 47 | ClassImp(MStereoPar);
|
|---|
| 48 |
|
|---|
| 49 | using namespace std;
|
|---|
| 50 |
|
|---|
| 51 | // --------------------------------------------------------------------------
|
|---|
| 52 | //
|
|---|
| 53 | // Default constructor.
|
|---|
| 54 | //
|
|---|
| 55 | MStereoPar::MStereoPar(const char *name, const char *title)
|
|---|
| 56 | {
|
|---|
| 57 | fName = name ? name : "MStereoPar";
|
|---|
| 58 | fTitle = title ? title : "Stereo image parameters";
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | // --------------------------------------------------------------------------
|
|---|
| 62 | //
|
|---|
| 63 | void MStereoPar::Reset()
|
|---|
| 64 | {
|
|---|
| 65 | fCoreX = 0.;
|
|---|
| 66 | fCoreY = 0.;
|
|---|
| 67 | fSourceX = 0.;
|
|---|
| 68 | fSourceY = 0.;
|
|---|
| 69 | }
|
|---|
| 70 |
|
|---|
| 71 | // --------------------------------------------------------------------------
|
|---|
| 72 | //
|
|---|
| 73 | // Transformation of coordinates, from a point on the camera x, y , to
|
|---|
| 74 | // the directon cosines of the corresponding direction, in the system of
|
|---|
| 75 | // coordinates in which X-axis is North, Y-axis is west, and Z-axis
|
|---|
| 76 | // points to the zenith. The transformation has been taken from TDAS 01-05,
|
|---|
| 77 | // although the final system of coordinates is not the same defined there,
|
|---|
| 78 | // but the one defined in Corsika (for convenience).
|
|---|
| 79 | //
|
|---|
| 80 | // rc is the distance from the reflector center to the camera. CTphi and
|
|---|
| 81 | // CTtheta indicate the telescope orientation. The angle CTphi is the
|
|---|
| 82 | // azimuth of the vector going along the telescope axis from the camera
|
|---|
| 83 | // towards the reflector, measured from the North direction anticlockwise
|
|---|
| 84 | // ( being West: phi=pi/2, South: phi=pi, East: phi=3pi/2 )
|
|---|
| 85 | //
|
|---|
| 86 | // rc and x,y must be given in the same units!
|
|---|
| 87 | //
|
|---|
| 88 | TVector3 MStereoPar::CamToDir(const MGeomCam &geom, const MPointingPos &pos, Float_t x, Float_t y) const
|
|---|
| 89 | {
|
|---|
| 90 | const Double_t rc = geom.GetCameraDist()*1e3;
|
|---|
| 91 |
|
|---|
| 92 | const Double_t CTphi = pos.GetAzRad();
|
|---|
| 93 | const Double_t CTtheta = pos.GetZdRad();
|
|---|
| 94 |
|
|---|
| 95 | //
|
|---|
| 96 | // We convert phi to the convention defined in TDAS 01-05
|
|---|
| 97 | //
|
|---|
| 98 | const Double_t sinphi = sin(TMath::TwoPi()-CTphi);
|
|---|
| 99 | const Double_t cosphi = cos(CTphi);
|
|---|
| 100 |
|
|---|
| 101 | const Double_t costheta = cos(CTtheta);
|
|---|
| 102 | const Double_t sintheta = sin(CTtheta);
|
|---|
| 103 |
|
|---|
| 104 | const Double_t xc = x/rc;
|
|---|
| 105 | const Double_t yc = y/rc;
|
|---|
| 106 |
|
|---|
| 107 | const Double_t norm = 1/sqrt(1+xc*xc+yc*yc);
|
|---|
| 108 |
|
|---|
| 109 | const Double_t xref = xc * norm;
|
|---|
| 110 | const Double_t yref = yc * norm;
|
|---|
| 111 | const Double_t zref = -1 * norm;
|
|---|
| 112 |
|
|---|
| 113 | const Double_t cosx = xref * sinphi + yref * costheta*cosphi - zref * sintheta*cosphi;
|
|---|
| 114 | const Double_t cosy = -xref * cosphi + yref * costheta*sinphi - zref * sintheta*sinphi;
|
|---|
| 115 | const Double_t cosz = yref * sintheta + zref * costheta;
|
|---|
| 116 |
|
|---|
| 117 | // Now change from system A of TDAS 01-05 to Corsika system:
|
|---|
| 118 | return TVector3(cosx, -cosy, -cosz);
|
|---|
| 119 | }
|
|---|
| 120 |
|
|---|
| 121 | TVector3 MStereoPar::CamToDir(const MGeomCam &geom, const MPointingPos &pos, const TVector2 &p) const
|
|---|
| 122 | {
|
|---|
| 123 | return CamToDir(geom, pos, p.X(), p.Y());
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | void MStereoPar::CalcCT(const MHillas &h, const MPointingPos &p, const MGeomCam &g, TVector2 &cv1, TVector2 &cv2) const
|
|---|
| 127 | {
|
|---|
| 128 | //
|
|---|
| 129 | // Get the direction corresponding to the c.o.g. of the image on
|
|---|
| 130 | // the camera.
|
|---|
| 131 | //
|
|---|
| 132 | // ct1_a, Direction from ct1 to the shower c.o.g.
|
|---|
| 133 | //
|
|---|
| 134 | const TVector3 a = CamToDir(g, p, h.GetMeanX(), h.GetMeanY());
|
|---|
| 135 |
|
|---|
| 136 | //
|
|---|
| 137 | // Now we get another (arbitrary) point along the image long axis,
|
|---|
| 138 | // fMeanX + cosdelta, fMeanY + sindelta, and calculate the direction
|
|---|
| 139 | // to which it corresponds.
|
|---|
| 140 | //
|
|---|
| 141 | const TVector3 c = CamToDir(g, p, h.GetMeanX()+h.GetCosDelta(), h.GetMeanY()+h.GetSinDelta());
|
|---|
| 142 |
|
|---|
| 143 | //
|
|---|
| 144 | // The vectorial product of the latter two vectors is a vector
|
|---|
| 145 | // perpendicular to the plane which contains the shower axis and
|
|---|
| 146 | // passes through the telescope center (center of reflector).
|
|---|
| 147 | // The vectorial product of that vector and (0,0,1) is a vector on
|
|---|
| 148 | // the horizontal plane pointing from the telescope center to the
|
|---|
| 149 | // shower core position on the z=0 plane (ground).
|
|---|
| 150 | //
|
|---|
| 151 | const Double_t coreVersorX = a.Z()*c.X() - a.X()*c.Z();
|
|---|
| 152 | const Double_t coreVersorY = a.Z()*c.Y() - a.X()*c.Z();
|
|---|
| 153 |
|
|---|
| 154 | //
|
|---|
| 155 | // Now we calculate again the versor, now assuming that the source
|
|---|
| 156 | // direction is paralel to the telescope axis (camera position 0,0)
|
|---|
| 157 | // This increases the precision of the core determination if the showers
|
|---|
| 158 | // actually come from that direction (like for gammas from a point source)
|
|---|
| 159 |
|
|---|
| 160 | const TVector3 b = CamToDir(g, p, 0, 0);
|
|---|
| 161 |
|
|---|
| 162 | const Double_t coreVersorX_best = a.Z()*b.X() - a.X()*b.Z();
|
|---|
| 163 | const Double_t coreVersorY_best = a.Z()*b.Y() - a.Y()*b.Z();
|
|---|
| 164 |
|
|---|
| 165 | cv1.Set(coreVersorX, coreVersorY);
|
|---|
| 166 | cv2.Set(coreVersorX_best, coreVersorY_best);
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | TVector2 MStereoPar::VersorToCore(const TVector2 &v1, const TVector2 &v2, const TVector2 &p1, const TVector2 &p2) const
|
|---|
| 170 | {
|
|---|
| 171 | const TVector2 dp = p1 - p2;
|
|---|
| 172 |
|
|---|
| 173 | //
|
|---|
| 174 | // Estimate core position:
|
|---|
| 175 | //
|
|---|
| 176 | const Double_t t =
|
|---|
| 177 | (dp.X() - v2.X()/v2.Y()*dp.Y())/(v2.X()/v2.Y()*v1.Y() - v1.X());
|
|---|
| 178 |
|
|---|
| 179 | // Core will have the same units as p1/p2
|
|---|
| 180 | return p1 + v1*t;
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | Double_t MStereoPar::CalcImpact(const TVector2 &w, const TVector2 &v, const TVector2 &p) const
|
|---|
| 184 | {
|
|---|
| 185 | const TVector2 d = v-p;
|
|---|
| 186 |
|
|---|
| 187 | const Double_t f = d*w;
|
|---|
| 188 |
|
|---|
| 189 | return TMath::Sqrt( d.Mod2() - f*f );
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | Double_t MStereoPar::CalcImpact(const TVector3 &v, const TVector2 &p) const
|
|---|
| 193 | {
|
|---|
| 194 | const TVector2 w = v.XYvector();
|
|---|
| 195 | return CalcImpact(w, w, p);
|
|---|
| 196 | }
|
|---|
| 197 |
|
|---|
| 198 | Double_t MStereoPar::CalcImpact(const TVector2 &core, const TVector2 &p, const MPointingPos &point) const
|
|---|
| 199 | {
|
|---|
| 200 | const TVector2 pt(-sin(point.GetZdRad()) * cos(point.GetAzRad()),
|
|---|
| 201 | -sin(point.GetZdRad()) * sin(point.GetAzRad()));
|
|---|
| 202 |
|
|---|
| 203 | return CalcImpact(pt, core, p);
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | // --------------------------------------------------------------------------
|
|---|
| 207 | //
|
|---|
| 208 | // Calculation of shower parameters
|
|---|
| 209 | //
|
|---|
| 210 | void MStereoPar::Calc(const MHillas &hillas1, const MPointingPos &pos1, const MGeomCam &geom1, const Float_t ct1_x, const Float_t ct1_y,
|
|---|
| 211 | const MHillas &hillas2, const MPointingPos &pos2, const MGeomCam &geom2, const Float_t ct2_x, const Float_t ct2_y)
|
|---|
| 212 | {
|
|---|
| 213 | TVector2 coreVersor1, coreVersor1_best;
|
|---|
| 214 | CalcCT(hillas1, pos1, geom1, coreVersor1, coreVersor1_best);
|
|---|
| 215 |
|
|---|
| 216 | TVector2 coreVersor2, coreVersor2_best;
|
|---|
| 217 | CalcCT(hillas2, pos2, geom2, coreVersor2, coreVersor2_best);
|
|---|
| 218 |
|
|---|
| 219 | const TVector2 p1(ct1_x, ct1_y);
|
|---|
| 220 | const TVector2 p2(ct2_x, ct2_y);
|
|---|
| 221 |
|
|---|
| 222 | // Estimate core position:
|
|---|
| 223 | const TVector2 core = VersorToCore(coreVersor1, coreVersor2, p1, p2);
|
|---|
| 224 |
|
|---|
| 225 | // Now the estimated core position assuming the source is
|
|---|
| 226 | // located in the center of the camera
|
|---|
| 227 | const TVector2 core2 = VersorToCore(coreVersor1_best, coreVersor2_best, p1, p2);
|
|---|
| 228 |
|
|---|
| 229 | // Copy results to data members
|
|---|
| 230 | //
|
|---|
| 231 | // Be careful, the coordinates in MMcEvt.fCoreX,fCoreY are actually
|
|---|
| 232 | // those of the vector going *from the shower core to the telescope*.
|
|---|
| 233 | // Ours are those of the vector which goes from telescope 1 to the
|
|---|
| 234 | // core estimated core.
|
|---|
| 235 | //
|
|---|
| 236 | fCoreX = core.X();
|
|---|
| 237 | fCoreY = core.Y();
|
|---|
| 238 |
|
|---|
| 239 | fCoreX2 = core2.X();
|
|---|
| 240 | fCoreY2 = core2.Y();
|
|---|
| 241 |
|
|---|
| 242 | // Now estimate the source location on the camera by intersecting
|
|---|
| 243 | // major axis of the ellipses. This assumes both telescopes are
|
|---|
| 244 | // pointing paralel! We introduce the camera scale to account for
|
|---|
| 245 | // the use of telescopes with different focal distances.
|
|---|
| 246 | //
|
|---|
| 247 | const TVector2 v1(hillas1.GetSinDelta(), hillas1.GetCosDelta());
|
|---|
| 248 | const TVector2 v2(hillas2.GetSinDelta(), hillas2.GetCosDelta());
|
|---|
| 249 |
|
|---|
| 250 | const TVector2 h1 = hillas1.GetMean()*geom1.GetConvMm2Deg();
|
|---|
| 251 | const TVector2 h2 = hillas2.GetMean()*geom2.GetConvMm2Deg();
|
|---|
| 252 |
|
|---|
| 253 | const TVector2 src = VersorToCore(v1, v2, h1, h2);
|
|---|
| 254 |
|
|---|
| 255 | // Reconstructed source positon
|
|---|
| 256 | fSourceX = src.X();
|
|---|
| 257 | fSourceY = src.Y();
|
|---|
| 258 |
|
|---|
| 259 | // Squared angular distance from reconstr. src pos to camera center.
|
|---|
| 260 | fTheta2 = src.Mod2();
|
|---|
| 261 |
|
|---|
| 262 | // Get the direction corresponding to the intersection of axes
|
|---|
| 263 | const TVector3 srcdir = CamToDir(geom1, pos1, src/geom1.GetConvMm2Deg());
|
|---|
| 264 |
|
|---|
| 265 | fCT1Impact = CalcImpact(srcdir, p1);
|
|---|
| 266 | fCT2Impact = CalcImpact(srcdir, p2);
|
|---|
| 267 |
|
|---|
| 268 | // Now calculate i.p. assuming source is point-like and placed in
|
|---|
| 269 | // the center of the camera.
|
|---|
| 270 | fCT1Impact2 = CalcImpact(core2, p1, pos1);
|
|---|
| 271 | fCT2Impact2 = CalcImpact(core2, p2, pos2);
|
|---|
| 272 |
|
|---|
| 273 | SetReadyToSave();
|
|---|
| 274 | }
|
|---|