| 1 | #ifndef MARS_MJTrainCuts
|
|---|
| 2 | #define MARS_MJTrainCuts
|
|---|
| 3 |
|
|---|
| 4 | #ifndef MARS_MJTrainRanForest
|
|---|
| 5 | #include "MJTrainRanForest.h"
|
|---|
| 6 | #endif
|
|---|
| 7 |
|
|---|
| 8 | #ifndef ROOT_TObjArray
|
|---|
| 9 | #include <TObjArray.h>
|
|---|
| 10 | #endif
|
|---|
| 11 |
|
|---|
| 12 | #ifndef MARS_MDataSet
|
|---|
| 13 | #include "MDataSet.h"
|
|---|
| 14 | #endif
|
|---|
| 15 |
|
|---|
| 16 | class MH3;
|
|---|
| 17 | class MBinning;
|
|---|
| 18 |
|
|---|
| 19 | class MJTrainCuts : public MJTrainRanForest
|
|---|
| 20 | {
|
|---|
| 21 | public:
|
|---|
| 22 | enum Type_t { kTrainOn, kTrainOff, kTestOn, kTestOff };
|
|---|
| 23 |
|
|---|
| 24 | private:
|
|---|
| 25 | MDataSet fDataSetOn;
|
|---|
| 26 | MDataSet fDataSetOff;
|
|---|
| 27 |
|
|---|
| 28 | UInt_t fNum[4];
|
|---|
| 29 | /*
|
|---|
| 30 | TList fPreTasksSet[4];
|
|---|
| 31 | TList fPostTasksSet[4];
|
|---|
| 32 |
|
|---|
| 33 | Bool_t fEnableWeights[4];
|
|---|
| 34 | */
|
|---|
| 35 | Bool_t fUseRegression;
|
|---|
| 36 |
|
|---|
| 37 | TList fHists;
|
|---|
| 38 | TObjArray fBinnings;
|
|---|
| 39 |
|
|---|
| 40 | // Result
|
|---|
| 41 | void DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime);
|
|---|
| 42 |
|
|---|
| 43 | public:
|
|---|
| 44 | MJTrainCuts() : fUseRegression(kFALSE)
|
|---|
| 45 | {
|
|---|
| 46 | for (int i=0; i<4; i++)
|
|---|
| 47 | {
|
|---|
| 48 | //fEnableWeights[i]=kFALSE;
|
|---|
| 49 | fNum[i] = (UInt_t)-1;
|
|---|
| 50 | }
|
|---|
| 51 |
|
|---|
| 52 | fHists.SetOwner();
|
|---|
| 53 | fBinnings.SetOwner();
|
|---|
| 54 | }
|
|---|
| 55 |
|
|---|
| 56 | void SetDataSetOn(const MDataSet &ds, UInt_t ntrain=(UInt_t)-1, UInt_t ntest=(UInt_t)-1)
|
|---|
| 57 | {
|
|---|
| 58 | ds.Copy(fDataSetOn);
|
|---|
| 59 |
|
|---|
| 60 | fDataSetOn.SetNumAnalysis(1);
|
|---|
| 61 |
|
|---|
| 62 | fNum[kTestOn] = ntrain;
|
|---|
| 63 | fNum[kTrainOn] = ntest;
|
|---|
| 64 | }
|
|---|
| 65 | void SetDataSetOff(const MDataSet &ds, UInt_t ntrain=(UInt_t)-1, UInt_t ntest=(UInt_t)-1)
|
|---|
| 66 | {
|
|---|
| 67 | ds.Copy(fDataSetOff);
|
|---|
| 68 |
|
|---|
| 69 | fDataSetOff.SetNumAnalysis(2);
|
|---|
| 70 |
|
|---|
| 71 | fNum[kTestOff] = ntrain;
|
|---|
| 72 | fNum[kTrainOff] = ntest;
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | // Add Histogram
|
|---|
| 76 | void AddHist(UInt_t nx);
|
|---|
| 77 | void AddHist(UInt_t nx, UInt_t ny);
|
|---|
| 78 | void AddHist(UInt_t nx, UInt_t ny, UInt_t nz);
|
|---|
| 79 |
|
|---|
| 80 | void AddBinning(UInt_t n, const MBinning &bins);
|
|---|
| 81 | //void AddBinning(const MBinning &bins);
|
|---|
| 82 |
|
|---|
| 83 | // Standard user interface
|
|---|
| 84 | /*
|
|---|
| 85 | void SetWeights(Type_t typ, const char *rule) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, rule); }
|
|---|
| 86 | void SetWeights(Type_t typ, MTask *t) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, t); }
|
|---|
| 87 |
|
|---|
| 88 | void AddPreTaskOn(MTask *t) { AddPreTask(kTrainOn, t); AddPreTask(kTestOn, t); }
|
|---|
| 89 | void AddPreTaskOn(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOn, rule, name); AddPreTask(kTestOn, rule, name); }
|
|---|
| 90 | void AddPreTaskOff(MTask *t) { AddPreTask(kTrainOff, t); AddPreTask(kTestOff, t); }
|
|---|
| 91 | void AddPreTaskOff(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOff, rule, name); AddPreTask(kTestOff, rule, name); }
|
|---|
| 92 |
|
|---|
| 93 | void AddPostTaskOn(MTask *t) { AddPostTask(kTrainOn, t); AddPostTask(kTestOn, t); }
|
|---|
| 94 | void AddPostTaskOn(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOn, rule, name); AddPostTask(kTestOn, rule, name); }
|
|---|
| 95 | void AddPostTaskOff(MTask *t) { AddPostTask(kTrainOff, t); AddPostTask(kTestOff, t); }
|
|---|
| 96 | void AddPostTaskOff(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOff, rule, name); AddPostTask(kTestOff, rule, name); }
|
|---|
| 97 |
|
|---|
| 98 | void AddPreTask(Type_t typ, MTask *t) { Add(fPreTasksSet[typ], t); }
|
|---|
| 99 | void AddPreTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPreTasksSet[typ], rule, name); }
|
|---|
| 100 | void AddPostTask(Type_t typ, MTask *t) { Add(fPostTasksSet[typ], t); }
|
|---|
| 101 | void AddPostTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPostTasksSet[typ], rule, name); }
|
|---|
| 102 |
|
|---|
| 103 | void SetWeightsOn(const char *rule) { SetWeights(kTrainOn, rule); SetWeights(kTestOn, rule); }
|
|---|
| 104 | void SetWeightsOn(MTask *t) { SetWeights(kTrainOn, t); SetWeights(kTestOn, t); }
|
|---|
| 105 | void SetWeightsOff(const char *rule) { SetWeights(kTrainOff, rule); SetWeights(kTestOff, rule); }
|
|---|
| 106 | void SetWeightsOff(MTask *t) { SetWeights(kTrainOff, t); SetWeights(kTestOff, t); }
|
|---|
| 107 | */
|
|---|
| 108 | void EnableRegression(Bool_t b=kTRUE) { fUseRegression = b; }
|
|---|
| 109 | void EnableClassification(Bool_t b=kTRUE) { fUseRegression = !b; }
|
|---|
| 110 |
|
|---|
| 111 | // Main function to start processing
|
|---|
| 112 | Bool_t Process(const char *out);
|
|---|
| 113 |
|
|---|
| 114 | ClassDef(MJTrainCuts, 0)//Class to help finding cuts using the random forest
|
|---|
| 115 | };
|
|---|
| 116 |
|
|---|
| 117 | #endif
|
|---|