| 1 | #ifndef MARS_MJTrainSeparation
|
|---|
| 2 | #define MARS_MJTrainSeparation
|
|---|
| 3 |
|
|---|
| 4 | #ifndef MARS_MJTrainRanForest
|
|---|
| 5 | #include "MJTrainRanForest.h"
|
|---|
| 6 | #endif
|
|---|
| 7 |
|
|---|
| 8 | #ifndef MARS_MDataSet
|
|---|
| 9 | #include "MDataSet.h"
|
|---|
| 10 | #endif
|
|---|
| 11 |
|
|---|
| 12 | class MH3;
|
|---|
| 13 |
|
|---|
| 14 | class MJTrainSeparation : public MJTrainRanForest
|
|---|
| 15 | {
|
|---|
| 16 | public:
|
|---|
| 17 | enum Type_t { kTrainOn, kTrainOff, kTestOn, kTestOff };
|
|---|
| 18 |
|
|---|
| 19 | private:
|
|---|
| 20 | MDataSet fDataSetTest;
|
|---|
| 21 | MDataSet fDataSetTrain;
|
|---|
| 22 |
|
|---|
| 23 | UInt_t fNum[4];
|
|---|
| 24 |
|
|---|
| 25 | TList fPreTasksSet[4];
|
|---|
| 26 | TList fPostTasksSet[4];
|
|---|
| 27 |
|
|---|
| 28 | Bool_t fAutoTrain;
|
|---|
| 29 | Bool_t fUseRegression;
|
|---|
| 30 |
|
|---|
| 31 | Bool_t fEnableWeights[4];
|
|---|
| 32 |
|
|---|
| 33 | Float_t fFluxTrain;
|
|---|
| 34 | Float_t fFluxTest;
|
|---|
| 35 |
|
|---|
| 36 | // Result
|
|---|
| 37 | void DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime);
|
|---|
| 38 |
|
|---|
| 39 | // Auto training
|
|---|
| 40 | Bool_t GetEventsProduced(MDataSet &set, Double_t &num, Double_t &min, Double_t &max) const;
|
|---|
| 41 | Double_t GetDataRate(MDataSet &set, Double_t &num) const;
|
|---|
| 42 | Double_t GetNumMC(MDataSet &set) const;
|
|---|
| 43 | Float_t AutoTrain(MDataSet &set, Type_t typon, Type_t typoff, Float_t flux);
|
|---|
| 44 |
|
|---|
| 45 | public:
|
|---|
| 46 | MJTrainSeparation() :
|
|---|
| 47 | fAutoTrain(kFALSE), fUseRegression(kFALSE),
|
|---|
| 48 | fFluxTrain(2e-7), fFluxTest(2e-7)
|
|---|
| 49 | { for (int i=0; i<4; i++) { fEnableWeights[i]=kFALSE; fNum[i] = (UInt_t)-1; } }
|
|---|
| 50 |
|
|---|
| 51 | void SetDataSetTrain(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1)
|
|---|
| 52 | {
|
|---|
| 53 | ds.Copy(fDataSetTrain);
|
|---|
| 54 |
|
|---|
| 55 | fDataSetTrain.SetNumAnalysis(1);
|
|---|
| 56 |
|
|---|
| 57 | fNum[kTrainOn] = non;
|
|---|
| 58 | fNum[kTrainOff] = noff;
|
|---|
| 59 | }
|
|---|
| 60 | void SetDataSetTest(const MDataSet &ds, UInt_t non=(UInt_t)-1, UInt_t noff=(UInt_t)-1)
|
|---|
| 61 | {
|
|---|
| 62 | ds.Copy(fDataSetTest);
|
|---|
| 63 |
|
|---|
| 64 | fDataSetTest.SetNumAnalysis(1);
|
|---|
| 65 |
|
|---|
| 66 | fNum[kTestOn] = non;
|
|---|
| 67 | fNum[kTestOff] = noff;
|
|---|
| 68 | }
|
|---|
| 69 |
|
|---|
| 70 | // Deprecated, used for test purpose
|
|---|
| 71 | void AddPreTask(Type_t typ, MTask *t) { Add(fPreTasksSet[typ], t); }
|
|---|
| 72 | void AddPreTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPreTasksSet[typ], rule, name); }
|
|---|
| 73 |
|
|---|
| 74 | void AddPostTask(Type_t typ, MTask *t) { Add(fPostTasksSet[typ], t); }
|
|---|
| 75 | void AddPostTask(Type_t typ, const char *rule, const char *name="MWeight") { AddPar(fPostTasksSet[typ], rule, name); }
|
|---|
| 76 |
|
|---|
| 77 | void SetWeights(Type_t typ, const char *rule) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, rule); }
|
|---|
| 78 | void SetWeights(Type_t typ, MTask *t) { if (fEnableWeights[typ]) return; fEnableWeights[typ]=kTRUE; AddPostTask(typ, t); }
|
|---|
| 79 |
|
|---|
| 80 | // Standard user interface
|
|---|
| 81 | void AddPreTaskOn(MTask *t) { AddPreTask(kTrainOn, t); AddPreTask(kTestOn, t); }
|
|---|
| 82 | void AddPreTaskOn(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOn, rule, name); AddPreTask(kTestOn, rule, name); }
|
|---|
| 83 | void AddPreTaskOff(MTask *t) { AddPreTask(kTrainOff, t); AddPreTask(kTestOff, t); }
|
|---|
| 84 | void AddPreTaskOff(const char *rule, const char *name="MWeight") { AddPreTask(kTrainOff, rule, name); AddPreTask(kTestOff, rule, name); }
|
|---|
| 85 |
|
|---|
| 86 | void AddPostTaskOn(MTask *t) { AddPostTask(kTrainOn, t); AddPostTask(kTestOn, t); }
|
|---|
| 87 | void AddPostTaskOn(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOn, rule, name); AddPostTask(kTestOn, rule, name); }
|
|---|
| 88 | void AddPostTaskOff(MTask *t) { AddPostTask(kTrainOff, t); AddPostTask(kTestOff, t); }
|
|---|
| 89 | void AddPostTaskOff(const char *rule, const char *name="MWeight") { AddPostTask(kTrainOff, rule, name); AddPostTask(kTestOff, rule, name); }
|
|---|
| 90 |
|
|---|
| 91 | void SetWeightsOn(const char *rule) { SetWeights(kTrainOn, rule); SetWeights(kTestOn, rule); }
|
|---|
| 92 | void SetWeightsOn(MTask *t) { SetWeights(kTrainOn, t); SetWeights(kTestOn, t); }
|
|---|
| 93 | void SetWeightsOff(const char *rule) { SetWeights(kTrainOff, rule); SetWeights(kTestOff, rule); }
|
|---|
| 94 | void SetWeightsOff(MTask *t) { SetWeights(kTrainOff, t); SetWeights(kTestOff, t); }
|
|---|
| 95 |
|
|---|
| 96 | void SetFluxTrain(Float_t f) { fFluxTrain = f; }
|
|---|
| 97 | void SetFluxTest(Float_t f) { fFluxTest = f; }
|
|---|
| 98 | void SetFlux(Float_t f) { SetFluxTrain(f); SetFluxTest(f); }
|
|---|
| 99 |
|
|---|
| 100 | void EnableAutoTrain(Bool_t b=kTRUE) { fAutoTrain = b; }
|
|---|
| 101 | void EnableRegression(Bool_t b=kTRUE) { fUseRegression = b; }
|
|---|
| 102 | void EnableClassification(Bool_t b=kTRUE) { fUseRegression = !b; }
|
|---|
| 103 |
|
|---|
| 104 | Bool_t Train(const char *out);
|
|---|
| 105 |
|
|---|
| 106 | ClassDef(MJTrainSeparation, 0)//Class to train Random Forest gamma-/background-separation
|
|---|
| 107 | };
|
|---|
| 108 |
|
|---|
| 109 | #endif
|
|---|