1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@phys.ethz.ch>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2013
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSimCamera
|
---|
28 | //
|
---|
29 | // This task initializes the analog channels with analog noise and simulated
|
---|
30 | // the analog pulses from the photon signal.
|
---|
31 | //
|
---|
32 | // Input Containers:
|
---|
33 | // MPhotonEvent
|
---|
34 | // MPhotonStatistics
|
---|
35 | // MRawRunHeader
|
---|
36 | //
|
---|
37 | // Output Containers:
|
---|
38 | // MAnalogChannels
|
---|
39 | //
|
---|
40 | //////////////////////////////////////////////////////////////////////////////
|
---|
41 | #include "MSimCamera.h"
|
---|
42 |
|
---|
43 | #include <TF1.h>
|
---|
44 | #include <TRandom.h> // Needed for TRandom
|
---|
45 |
|
---|
46 | #include "MLog.h"
|
---|
47 | #include "MLogManip.h"
|
---|
48 |
|
---|
49 | #include "MTruePhotonsPerPixelCont.h"
|
---|
50 |
|
---|
51 | #include "MSpline3.h"
|
---|
52 | #include "MParSpline.h"
|
---|
53 |
|
---|
54 | #include "MParList.h"
|
---|
55 |
|
---|
56 | #include "MPhotonEvent.h"
|
---|
57 | #include "MPhotonData.h"
|
---|
58 |
|
---|
59 | #include "MPedestalCam.h"
|
---|
60 | #include "MPedestalPix.h"
|
---|
61 |
|
---|
62 | #include "MAnalogSignal.h"
|
---|
63 | #include "MAnalogChannels.h"
|
---|
64 |
|
---|
65 | #include "MParameters.h"
|
---|
66 |
|
---|
67 | #include "MMcEvt.hxx" // To be replaced by a CheObs class
|
---|
68 | #include "MRawRunHeader.h"
|
---|
69 |
|
---|
70 | ClassImp(MSimCamera);
|
---|
71 |
|
---|
72 | using namespace std;
|
---|
73 |
|
---|
74 | // --------------------------------------------------------------------------
|
---|
75 | //
|
---|
76 | // Default Constructor.
|
---|
77 | //
|
---|
78 | MSimCamera::MSimCamera(const char* name, const char *title)
|
---|
79 | : fEvt(0), fStat(0), fRunHeader(0), fElectronicNoise(0), fGain(0),
|
---|
80 | fCamera(0), fMcEvt(0),fCrosstalkCoeffParam(0), fSpline(0), fBaselineGain(kFALSE),
|
---|
81 | fDefaultOffset(-1), fDefaultNoise(-1), fDefaultGain(-1), fACFudgeFactor(0),
|
---|
82 | fACTimeConstant(0)
|
---|
83 |
|
---|
84 | {
|
---|
85 | fName = name ? name : "MSimCamera";
|
---|
86 | fTitle = title ? title : "Task to simulate the electronic noise and to convert photons into pulses";
|
---|
87 | }
|
---|
88 |
|
---|
89 | // --------------------------------------------------------------------------
|
---|
90 | //
|
---|
91 | // Search for the necessayr parameter containers.
|
---|
92 | // Setup spline for pulse shape.
|
---|
93 | //
|
---|
94 | Int_t MSimCamera::PreProcess(MParList *pList)
|
---|
95 | {
|
---|
96 | fMcEvt = (MMcEvt*)pList->FindCreateObj("MMcEvt");
|
---|
97 | if (!fMcEvt)
|
---|
98 | return kFALSE;
|
---|
99 |
|
---|
100 | fCamera = (MAnalogChannels*)pList->FindCreateObj("MAnalogChannels");
|
---|
101 | if (!fCamera)
|
---|
102 | return kFALSE;
|
---|
103 |
|
---|
104 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
|
---|
105 | if (!fEvt)
|
---|
106 | {
|
---|
107 | *fLog << err << "MPhotonEvent not found... aborting." << endl;
|
---|
108 | return kFALSE;
|
---|
109 | }
|
---|
110 |
|
---|
111 | fStat = (MPhotonStatistics*)pList->FindObject("MPhotonStatistics");
|
---|
112 | if (!fStat)
|
---|
113 | {
|
---|
114 | *fLog << err << "MPhotonStatistics not found... aborting." << endl;
|
---|
115 | return kFALSE;
|
---|
116 | }
|
---|
117 |
|
---|
118 | fRunHeader = (MRawRunHeader *)pList->FindObject("MRawRunHeader");
|
---|
119 | if (!fRunHeader)
|
---|
120 | {
|
---|
121 | *fLog << err << "MRawRunHeader not found... aborting." << endl;
|
---|
122 | return kFALSE;
|
---|
123 | }
|
---|
124 | // -------------------------------------------------------------------
|
---|
125 | // Dominik Neise and Sebastian Mueller on fix time offsets:
|
---|
126 | // We obtain the fix temporal offsets for the FACT camera pixels out of
|
---|
127 | // a text file. The textfile must be mentioned in the ceres.rc file.
|
---|
128 | // There are no default offsets on purporse. The filename must be specified
|
---|
129 | // in ceres.rc and the file must be parsed without errors and it must
|
---|
130 | // provide exactly 1440 floating point numbers.
|
---|
131 | fFixTimeOffsetsBetweenPixelsInNs =
|
---|
132 | (MMatrix*)pList->FindObject("MFixTimeOffset");
|
---|
133 | if (!fFixTimeOffsetsBetweenPixelsInNs)
|
---|
134 | {
|
---|
135 | // the key value pair providing the text file is not present in the
|
---|
136 | // environment env.
|
---|
137 | *fLog << err << "In Source: "<< __FILE__ <<" in line: "<< __LINE__;
|
---|
138 | *fLog << " in function: "<< __func__ <<"\n";
|
---|
139 | *fLog << "MFixTimeOffset not found... aborting." << endl;
|
---|
140 | return kFALSE;
|
---|
141 |
|
---|
142 | }
|
---|
143 | else if ( fFixTimeOffsetsBetweenPixelsInNs->fM.size() != 1440 )
|
---|
144 | {
|
---|
145 | // The number of time offsets must match the number of pixels in the
|
---|
146 | // FACT camera.
|
---|
147 | *fLog << err << "In Source: "<< __FILE__ <<" in line: "<< __LINE__;
|
---|
148 | *fLog << " in function: "<< __func__ <<"\n";
|
---|
149 | *fLog << "MFixTimeOffset has the wrong dimension! ";
|
---|
150 | *fLog << "There should be "<< 1440 <<" time offsets ";
|
---|
151 | *fLog << "(one for each pixel in FACT) but there are: ";
|
---|
152 | *fLog << fFixTimeOffsetsBetweenPixelsInNs->fM.size() << "! ";
|
---|
153 | *fLog << "... aborting." << endl;
|
---|
154 | return kFALSE;
|
---|
155 | }
|
---|
156 | // Check all entries for inf and nan. Those are not accepted here.
|
---|
157 | for( std::vector< double > row : fFixTimeOffsetsBetweenPixelsInNs->fM ){
|
---|
158 | for( double number : row){
|
---|
159 |
|
---|
160 | if( std::isnan(number) || std::isinf(number) ){
|
---|
161 |
|
---|
162 | *fLog << err << "In Source: "<< __FILE__ <<" in line: ";
|
---|
163 | *fLog << __LINE__;
|
---|
164 | *fLog << " in function: "<< __func__ <<"\n";
|
---|
165 | *fLog << "There is a non normal number in the fix temporal ";
|
---|
166 | *fLog << "pixel offsets. This is at least one number is ";
|
---|
167 | *fLog << "NaN or Inf. This here is >"<< number;
|
---|
168 | *fLog << "<... aborting." << endl;
|
---|
169 | return kFALSE;
|
---|
170 | }
|
---|
171 | }
|
---|
172 | }
|
---|
173 | // -------------------------------------------------------------------
|
---|
174 | /*
|
---|
175 | fPulsePos = (MParameterD*)pList->FindObject("IntendedPulsePos", "MParameterD");
|
---|
176 | if (!fPulsePos)
|
---|
177 | {
|
---|
178 | *fLog << err << "IntendedPulsePos [MParameterD] not found... aborting." << endl;
|
---|
179 | return kFALSE;
|
---|
180 | }
|
---|
181 | */
|
---|
182 | fResidualTimeSpread = (MParameterD*)pList->FindObject("ResidualTimeSpread");
|
---|
183 | if (!fResidualTimeSpread)
|
---|
184 | {
|
---|
185 | *fLog << err << "ResidualTimeSpread [MParameterD] not found... aborting." << endl;
|
---|
186 | return kFALSE;
|
---|
187 | }
|
---|
188 |
|
---|
189 | // Create it here to make sure that MGeomApply will set the correct size
|
---|
190 | fElectronicNoise = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "ElectronicNoise");
|
---|
191 | if (!fElectronicNoise)
|
---|
192 | return kFALSE;
|
---|
193 |
|
---|
194 | fGain = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "Gain");
|
---|
195 | if (!fGain)
|
---|
196 | return kFALSE;
|
---|
197 |
|
---|
198 | fAccidentalPhotons = (MPedestalCam*)pList->FindObject("AccidentalPhotonRates","MPedestalCam");
|
---|
199 | if(!fAccidentalPhotons)
|
---|
200 | {
|
---|
201 | *fLog << err << "AccidentalPhotonRates [MPedestalCam] not found... aborting." << endl;
|
---|
202 | return kFALSE;
|
---|
203 | }
|
---|
204 |
|
---|
205 | fCrosstalkCoeffParam = (MParameterD*)pList->FindCreateObj("MParameterD","CrosstalkCoeffParam");
|
---|
206 | if (!fCrosstalkCoeffParam)
|
---|
207 | {
|
---|
208 | *fLog << err << "CrosstalkCoeffParam [MParameterD] not found... aborting." << endl;
|
---|
209 | return kFALSE;
|
---|
210 | }
|
---|
211 |
|
---|
212 | fTruePhotons = (MTruePhotonsPerPixelCont*)pList->FindCreateObj("MTruePhotonsPerPixelCont");
|
---|
213 | if (!fTruePhotons)
|
---|
214 | {
|
---|
215 | *fLog << err << "MTruePhotonsPerPixelCont not found... aborting." << endl;
|
---|
216 | return kFALSE;
|
---|
217 | }
|
---|
218 |
|
---|
219 | MParSpline *pulse = (MParSpline*)pList->FindObject("PulseShape", "MParSpline");
|
---|
220 | if (!pulse)
|
---|
221 | {
|
---|
222 | *fLog << err << "PulseShape [MParSpline] not found... aborting." << endl;
|
---|
223 | return kFALSE;
|
---|
224 | }
|
---|
225 |
|
---|
226 | // if (fRunHeader->GetFreqSampling()!=1000)
|
---|
227 | // {
|
---|
228 | // *fLog << err << "ERROR - Sampling frequencies others than 1GHz are not yet supported." << endl;
|
---|
229 | // *fLog << warn << "FIXME - SCALE MPulsShape WITH THE SAMPLING FREQUENCY." << endl;
|
---|
230 | // return kFALSE;
|
---|
231 | // }
|
---|
232 |
|
---|
233 | fSpline = pulse->GetSpline();
|
---|
234 | if (!fSpline)
|
---|
235 | {
|
---|
236 | *fLog << err << "No spline initialized." << endl;
|
---|
237 | return kFALSE;
|
---|
238 | }
|
---|
239 |
|
---|
240 | // ---------------- Information output ----------------------
|
---|
241 |
|
---|
242 | if (fBaselineGain)
|
---|
243 | *fLog << inf << "Gain is also applied to the electronic noise." << endl;
|
---|
244 |
|
---|
245 | return kTRUE;
|
---|
246 | }
|
---|
247 |
|
---|
248 | // --------------------------------------------------------------------------
|
---|
249 | //
|
---|
250 | // FIXME: For now this is a workaround to set a baseline and the
|
---|
251 | // electronic (guassian noise)
|
---|
252 | //
|
---|
253 | Bool_t MSimCamera::ReInit(MParList *plist)
|
---|
254 | {
|
---|
255 | for (int i=0; i<fElectronicNoise->GetSize(); i++)
|
---|
256 | {
|
---|
257 | MPedestalPix &ped = (*fElectronicNoise)[i];
|
---|
258 | ped.SetPedestal(fDefaultOffset);
|
---|
259 | if (fDefaultNoise>0)
|
---|
260 | ped.SetPedestalRms(fDefaultNoise);
|
---|
261 |
|
---|
262 | ped.SetPedestalABoffset(0);
|
---|
263 | ped.SetNumEvents(0);
|
---|
264 |
|
---|
265 |
|
---|
266 | MPedestalPix &gain = (*fGain)[i];
|
---|
267 | if (fDefaultGain>0)
|
---|
268 | gain.SetPedestal(fDefaultGain);
|
---|
269 |
|
---|
270 | gain.SetPedestalRms(0);
|
---|
271 | gain.SetPedestalABoffset(0);
|
---|
272 | gain.SetNumEvents(0);
|
---|
273 | }
|
---|
274 |
|
---|
275 | return kTRUE;
|
---|
276 | }
|
---|
277 |
|
---|
278 | // --------------------------------------------------------------------------
|
---|
279 | //
|
---|
280 | // fStat->GetMaxIndex must return the maximum index possible
|
---|
281 | // (equiv. number of pixels) not just the maximum index stored!
|
---|
282 | //
|
---|
283 | Int_t MSimCamera::Process()
|
---|
284 | {
|
---|
285 | // Calculate start time, end time and corresponding number of samples
|
---|
286 | const Double_t freq = fRunHeader->GetFreqSampling()/1000.;
|
---|
287 |
|
---|
288 | // FIXME: Should we use a higher sampling here?
|
---|
289 |
|
---|
290 | const Double_t start = fStat->GetTimeFirst()*freq;
|
---|
291 | const Double_t end = fStat->GetTimeLast() *freq;
|
---|
292 |
|
---|
293 | const UInt_t nlen = TMath::CeilNint(end-start);
|
---|
294 |
|
---|
295 | // Get number of pixels/channels
|
---|
296 | const UInt_t npix = fStat->GetMaxIndex()+1;
|
---|
297 |
|
---|
298 | if (npix>(UInt_t)fElectronicNoise->GetSize())
|
---|
299 | {
|
---|
300 | *fLog << err << "ERROR - More indices (" << npix << ") ";
|
---|
301 | *fLog << "assigned than existing in camera (";
|
---|
302 | *fLog << fElectronicNoise->GetSize() << ")!" << endl;
|
---|
303 | return kERROR;
|
---|
304 | }
|
---|
305 |
|
---|
306 | const Double_t pl = fSpline->GetXmin()*freq;
|
---|
307 | const Double_t pr = fSpline->GetXmax()*freq;
|
---|
308 |
|
---|
309 | // Init the arrays and set the range which will contain valid data
|
---|
310 | fCamera->Init(npix, nlen);
|
---|
311 | fCamera->SetValidRange(TMath::FloorNint(pr), TMath::CeilNint(nlen+pl));
|
---|
312 |
|
---|
313 | Double_t timeoffset[npix];
|
---|
314 |
|
---|
315 |
|
---|
316 | // Add electronic noise to empty channels
|
---|
317 | for (UInt_t i=0; i<npix; i++)
|
---|
318 | {
|
---|
319 |
|
---|
320 | // Get the ResidualTimeSpread Parameter
|
---|
321 | const Double_t residualTimeSpread = fResidualTimeSpread->GetVal();
|
---|
322 |
|
---|
323 | // Jens Buss on residual time spread:
|
---|
324 | // randomly draw an additional time offset to be added to the arrivaltime
|
---|
325 | // from a gaussian normal distribution with a given standard deviation
|
---|
326 | timeoffset[i] = gRandom->Gaus(0.0, residualTimeSpread);
|
---|
327 | const MPedestalPix &pix = (*fElectronicNoise)[i];
|
---|
328 |
|
---|
329 | const Double_t val = pix.GetPedestal();
|
---|
330 | const Double_t rms = pix.GetPedestalRms();
|
---|
331 |
|
---|
332 | // FTemme: Implementation of AC-coupling:
|
---|
333 | // to calculate the value of the accoupling per slice I use the
|
---|
334 | // following equation:
|
---|
335 | // accouplingPerSlice = accidentalPhotonRate * (1 + crossTalkProb)
|
---|
336 | // * areaOfOnePulse / samplingRate;
|
---|
337 | // Therefore I need the following variables
|
---|
338 | // Double_t accidentalPhotonRate; // [MHz]
|
---|
339 | // Float_t crossTalkProb; // [1]
|
---|
340 | // Double_t areaOfOnePulse; // [ADC-Counts * s]
|
---|
341 | // Double_t samplingRate; // [slices * MHz]
|
---|
342 |
|
---|
343 | // The accidental photon rate is stored in GHz, so we have to multiply
|
---|
344 | // with 1E3 to get MHz:
|
---|
345 | const MPedestalPix &accPhoPix = (*fAccidentalPhotons)[i];
|
---|
346 |
|
---|
347 | const Double_t accidentalPhotonRate = accPhoPix.GetPedestal() * 1e3; //[MHz]
|
---|
348 |
|
---|
349 | Double_t currentAccidentalPhotonRate = accidentalPhotonRate;
|
---|
350 | if (fACTimeConstant!=0)
|
---|
351 | {
|
---|
352 | const Double_t accidentalPhotons = fACTimeConstant * accidentalPhotonRate;
|
---|
353 | const Double_t sigmaAccidentalPhotons = TMath::Sqrt(accidentalPhotons);
|
---|
354 |
|
---|
355 | const Double_t gaus = gRandom->Gaus(accidentalPhotons,sigmaAccidentalPhotons);
|
---|
356 |
|
---|
357 | currentAccidentalPhotonRate = gaus / fACTimeConstant;
|
---|
358 | }
|
---|
359 |
|
---|
360 | // Get the CrosstalkCoefficient Parameter
|
---|
361 | const Double_t crossTalkProb = fCrosstalkCoeffParam->GetVal();
|
---|
362 |
|
---|
363 | // To get the area of one Pulse, I only need to calculate the Integral
|
---|
364 | // of the Pulse Shape, which is stored in fSpline. Because the spline is
|
---|
365 | // normalized to a maximal amplitude of 1.0, I had to multiply it with
|
---|
366 | // the Default gain [ADC-Counts * s]
|
---|
367 | const Double_t areaOfOnePulse = fSpline->Integral() * fDefaultGain;
|
---|
368 |
|
---|
369 | // The sampling rate I get from the RunHeader:
|
---|
370 | const Double_t samplingRate = fRunHeader->GetFreqSampling(); // [slices * MHz]
|
---|
371 |
|
---|
372 | const Double_t accouplingPerSlice = currentAccidentalPhotonRate
|
---|
373 | * (1 + crossTalkProb + fACFudgeFactor)
|
---|
374 | * areaOfOnePulse / samplingRate;
|
---|
375 |
|
---|
376 | // The accoupling is substracted from the timeline by decreasing the
|
---|
377 | // mean of the gaussian noise which is added
|
---|
378 |
|
---|
379 | if (!fBaselineGain)
|
---|
380 | {
|
---|
381 | (*fCamera)[i].AddGaussianNoise(rms, val - accouplingPerSlice);
|
---|
382 | continue;
|
---|
383 | }
|
---|
384 | // Sorry, the name "pedestal" is misleading here
|
---|
385 | // FIXME: Simulate gain fluctuations
|
---|
386 | const Double_t gain = (*fGain)[i].GetPedestal();
|
---|
387 |
|
---|
388 | // FIXME: We might add the base line here already.
|
---|
389 | // FIXME: How stable is the offset?
|
---|
390 | // FIXME: Should we write a container AppliedGain for MSImTrigger?
|
---|
391 |
|
---|
392 | (*fCamera)[i].AddGaussianNoise(rms*gain, (val - accouplingPerSlice)*gain);
|
---|
393 | }
|
---|
394 |
|
---|
395 | // FIXME: Simulate correlations with neighboring pixels
|
---|
396 |
|
---|
397 | const Int_t num = fEvt->GetNumPhotons();
|
---|
398 |
|
---|
399 | // A random shift, uniformely distributed within one slice, to make sure that
|
---|
400 | // the first photon is not always aligned identically with a sample edge.
|
---|
401 | // FIXME: Make it switchable
|
---|
402 | const Float_t rndm = gRandom->Uniform();
|
---|
403 |
|
---|
404 | // FIXME: Shell we add a random shift of [0,1] samples per channel?
|
---|
405 | // Or maybe per channel and run?
|
---|
406 |
|
---|
407 | Double_t tot = 0;
|
---|
408 |
|
---|
409 | for (int i=0 ; i<1440 ; i++)
|
---|
410 | {
|
---|
411 | (*fTruePhotons->cherenkov_photons_weight)[i] = 0;
|
---|
412 | (*fTruePhotons->cherenkov_photons_number)[i] = 0;
|
---|
413 | (*fTruePhotons->cherenkov_arrival_time_mean)[i] = 0;
|
---|
414 | (*fTruePhotons->cherenkov_arrival_time_variance)[i] = 0;
|
---|
415 | (*fTruePhotons->muon_cherenkov_photons_weight)[i] = 0;
|
---|
416 | (*fTruePhotons->muon_cherenkov_photons_number)[i] = 0;
|
---|
417 | (*fTruePhotons->cherenkov_arrival_time_min)[i] = 10000;
|
---|
418 | (*fTruePhotons->cherenkov_arrival_time_max)[i] = 0;
|
---|
419 | (*fTruePhotons->noise_photons_weight)[i] = 0;
|
---|
420 | }
|
---|
421 |
|
---|
422 | //--------------------------------------------------------------------------
|
---|
423 |
|
---|
424 |
|
---|
425 | // Simulate pulses
|
---|
426 | for (Int_t i=0; i<num; i++)
|
---|
427 | {
|
---|
428 | const MPhotonData &ph = (*fEvt)[i];
|
---|
429 |
|
---|
430 | const UInt_t idx = ph.GetTag();
|
---|
431 | Double_t t = (ph.GetTime()-fStat->GetTimeFirst())*freq+rndm;// - fSpline->GetXmin();
|
---|
432 |
|
---|
433 | // Sebastian Mueller and Dominik Neise on fix time offsets:
|
---|
434 | // We add a fix temporal offset to the relative arrival time of the
|
---|
435 | // individual pixel. The offsets are stored in the
|
---|
436 | // fFixTimeOffsetsBetweenPixelsInNs -> fM matrix. We identify the first
|
---|
437 | // column to hold the offsets in ns.
|
---|
438 | t = t + freq*fFixTimeOffsetsBetweenPixelsInNs->fM[idx][0];
|
---|
439 |
|
---|
440 | // Jens Buss on residual time spread:
|
---|
441 | // add random time offset to the arrivaltimes
|
---|
442 | t = t + timeoffset[idx];
|
---|
443 |
|
---|
444 | // FIXME: Time jitter?
|
---|
445 | // FIXME: Add additional routing here?
|
---|
446 | // FIMXE: How stable is the gain?
|
---|
447 |
|
---|
448 | if (ph.GetPrimary()!=MMcEvt::kNightSky && ph.GetPrimary()!=MMcEvt::kArtificial)
|
---|
449 | {
|
---|
450 | tot += ph.GetWeight();
|
---|
451 | (*fTruePhotons->cherenkov_photons_weight)[idx] += ph.GetWeight();
|
---|
452 | (*fTruePhotons->cherenkov_photons_number)[idx] += 1;
|
---|
453 |
|
---|
454 | (*fTruePhotons->cherenkov_arrival_time_mean)[idx] += t;
|
---|
455 | (*fTruePhotons->cherenkov_arrival_time_variance)[idx] += t*t;
|
---|
456 |
|
---|
457 | if (ph.GetPrimary()==MMcEvt::kMUON)
|
---|
458 | {
|
---|
459 | (*fTruePhotons->muon_cherenkov_photons_weight)[idx] += ph.GetWeight();
|
---|
460 | (*fTruePhotons->muon_cherenkov_photons_number)[idx] += 1;
|
---|
461 | }
|
---|
462 |
|
---|
463 | // find min
|
---|
464 | if (t < (*fTruePhotons->cherenkov_arrival_time_min)[idx] )
|
---|
465 | {
|
---|
466 | (*fTruePhotons->cherenkov_arrival_time_min)[idx] = t;
|
---|
467 | }
|
---|
468 | // find max
|
---|
469 | if (t > (*fTruePhotons->cherenkov_arrival_time_max)[idx] )
|
---|
470 | {
|
---|
471 | (*fTruePhotons->cherenkov_arrival_time_max)[idx] = t;
|
---|
472 | }
|
---|
473 | }
|
---|
474 | else
|
---|
475 | {
|
---|
476 | (*fTruePhotons->noise_photons_weight)[idx] += ph.GetWeight();
|
---|
477 | }
|
---|
478 |
|
---|
479 | // Sorry, the name "pedestal" is misleading here
|
---|
480 | // FIXME: Simulate gain fluctuations
|
---|
481 | const Double_t gain = (*fGain)[idx].GetPedestal();
|
---|
482 |
|
---|
483 | // === FIXME === FIXME === FIXME === Frequency!!!!
|
---|
484 | (*fCamera)[idx].AddPulse(*fSpline, t, ph.GetWeight()*gain);
|
---|
485 | }
|
---|
486 |
|
---|
487 | for (unsigned int i=0 ; i < 1440 ; i++)
|
---|
488 | {
|
---|
489 | float number = (*fTruePhotons->cherenkov_photons_number)[i];
|
---|
490 | (*fTruePhotons->cherenkov_arrival_time_mean)[i] /= number;
|
---|
491 | float mean = (*fTruePhotons->cherenkov_arrival_time_mean)[i];
|
---|
492 | float sum_tt = (*fTruePhotons->cherenkov_arrival_time_variance)[i];
|
---|
493 | (*fTruePhotons->cherenkov_arrival_time_variance)[i] = (sum_tt / number - mean*mean) /(number - 1);
|
---|
494 | }
|
---|
495 |
|
---|
496 | fMcEvt->SetPhotElfromShower(TMath::Nint(tot));
|
---|
497 |
|
---|
498 | return kTRUE;
|
---|
499 | }
|
---|
500 |
|
---|
501 | // --------------------------------------------------------------------------
|
---|
502 | //
|
---|
503 | // BaselineGain: Off
|
---|
504 | //
|
---|
505 | Int_t MSimCamera::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
506 | {
|
---|
507 | Bool_t rc = kFALSE;
|
---|
508 | if (IsEnvDefined(env, prefix, "BaselineGain", print))
|
---|
509 | {
|
---|
510 | rc = kTRUE;
|
---|
511 | fBaselineGain = GetEnvValue(env, prefix, "BaselineGain", fBaselineGain);
|
---|
512 | }
|
---|
513 |
|
---|
514 | if (IsEnvDefined(env, prefix, "DefaultOffset", print))
|
---|
515 | {
|
---|
516 | rc = kTRUE;
|
---|
517 | fDefaultOffset = GetEnvValue(env, prefix, "DefaultOffset", fDefaultOffset);
|
---|
518 | }
|
---|
519 | if (IsEnvDefined(env, prefix, "DefaultNoise", print))
|
---|
520 | {
|
---|
521 | rc = kTRUE;
|
---|
522 | fDefaultNoise = GetEnvValue(env, prefix, "DefaultNoise", fDefaultNoise);
|
---|
523 | }
|
---|
524 | if (IsEnvDefined(env, prefix, "DefaultGain", print))
|
---|
525 | {
|
---|
526 | rc = kTRUE;
|
---|
527 | fDefaultGain = GetEnvValue(env, prefix, "DefaultGain", fDefaultGain);
|
---|
528 | }
|
---|
529 | if (IsEnvDefined(env, prefix, "ACFudgeFactor", print))
|
---|
530 | {
|
---|
531 | rc = kTRUE;
|
---|
532 | fACFudgeFactor = GetEnvValue(env, prefix, "ACFudgeFactor", fACFudgeFactor);
|
---|
533 | }
|
---|
534 | if (IsEnvDefined(env, prefix, "ACTimeConstant", print))
|
---|
535 | {
|
---|
536 | rc = kTRUE;
|
---|
537 | fACTimeConstant = GetEnvValue(env, prefix, "ACTimeConstant", fACTimeConstant);
|
---|
538 | }
|
---|
539 |
|
---|
540 | return rc;
|
---|
541 | }
|
---|