1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2009
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSimReadout
|
---|
28 | //
|
---|
29 | // Task to convert the analog channels into a digital signal. This should
|
---|
30 | // simulate the conversion and saturation bahaviour of the FADC/readout
|
---|
31 | // system.
|
---|
32 | //
|
---|
33 | // You can give a conversion factor from the unitx of your analog signal
|
---|
34 | // to the units of your adc. This is a fixed factor because it is just
|
---|
35 | // a matter of what the meaning of an adc count is, nothing which could
|
---|
36 | // jitter or is a real part of the electronics. Such effects should
|
---|
37 | // be simulated somewhere else.
|
---|
38 | //
|
---|
39 | //
|
---|
40 | // Input Containers:
|
---|
41 | // MGeomCam
|
---|
42 | // MAnalogChannels
|
---|
43 | // TriggerPos [MParameterD]
|
---|
44 | // IntendedPulsePos [MParameterD]
|
---|
45 | // MRawRunHeader
|
---|
46 | //
|
---|
47 | // Output Containers:
|
---|
48 | // MRawEvtData
|
---|
49 | // MRawEvtHeader
|
---|
50 | //
|
---|
51 | //////////////////////////////////////////////////////////////////////////////
|
---|
52 | #include "MSimReadout.h"
|
---|
53 |
|
---|
54 | #include "MLog.h"
|
---|
55 | #include "MLogManip.h"
|
---|
56 |
|
---|
57 | #include "MArrayI.h"
|
---|
58 |
|
---|
59 | #include "MParList.h"
|
---|
60 | #include "MParameters.h"
|
---|
61 |
|
---|
62 | #include "MGeomCam.h"
|
---|
63 |
|
---|
64 | #include "MRawRunHeader.h"
|
---|
65 | #include "MRawEvtHeader.h"
|
---|
66 | #include "MRawEvtData.h"
|
---|
67 |
|
---|
68 | #include "MAnalogSignal.h"
|
---|
69 | #include "MAnalogChannels.h"
|
---|
70 |
|
---|
71 | ClassImp(MSimReadout);
|
---|
72 |
|
---|
73 | using namespace std;
|
---|
74 |
|
---|
75 |
|
---|
76 | // ------------------------------------------------------------------------
|
---|
77 | //
|
---|
78 | // Default constructor
|
---|
79 | //
|
---|
80 | MSimReadout::MSimReadout(const char* name, const char *title)
|
---|
81 | : fRunHeader(0), fEvtHeader(0), fCamera(0), fPulsePos(0), fTrigger(0), fData(0),
|
---|
82 | fConversionFactor(1)
|
---|
83 | {
|
---|
84 | fName = name ? name : "MSimReadout";
|
---|
85 | fTitle = title ? title : "Task to simulate the analog readout (FADCs)";
|
---|
86 | }
|
---|
87 |
|
---|
88 | // ------------------------------------------------------------------------
|
---|
89 | //
|
---|
90 | // Look for the needed parameter containers.
|
---|
91 | // Initialize MRawEvtData from MRawEvtRunHeader.
|
---|
92 | //
|
---|
93 | Int_t MSimReadout::PreProcess(MParList *pList)
|
---|
94 | {
|
---|
95 | fCamera = (MAnalogChannels*)pList->FindObject("MAnalogChannels");
|
---|
96 | if (!fCamera)
|
---|
97 | {
|
---|
98 | *fLog << err << "MAnalogChannels not found... aborting." << endl;
|
---|
99 | return kFALSE;
|
---|
100 | }
|
---|
101 |
|
---|
102 | fTrigger = (MParameterD*)pList->FindObject("TriggerPos", "MParameterD");
|
---|
103 | if (!fTrigger)
|
---|
104 | {
|
---|
105 | *fLog << err << "TriggerPos [MParameterD] not found... aborting." << endl;
|
---|
106 | return kFALSE;
|
---|
107 | }
|
---|
108 |
|
---|
109 | fPulsePos = (MParameterD*)pList->FindObject("IntendedPulsePos", "MParameterD");
|
---|
110 | if (!fPulsePos)
|
---|
111 | {
|
---|
112 | *fLog << err << "IntendedPulsePos [MParameterD] not found... aborting." << endl;
|
---|
113 | return kFALSE;
|
---|
114 | }
|
---|
115 |
|
---|
116 | fRunHeader = (MRawRunHeader*)pList->FindObject("MRawRunHeader");
|
---|
117 | if (!fRunHeader)
|
---|
118 | {
|
---|
119 | *fLog << err << "MRawRunHeader not found... aborting." << endl;
|
---|
120 | return kFALSE;
|
---|
121 | }
|
---|
122 |
|
---|
123 | fEvtHeader = (MRawEvtHeader*)pList->FindCreateObj("MRawEvtHeader");
|
---|
124 | if (!fEvtHeader)
|
---|
125 | return kFALSE;
|
---|
126 |
|
---|
127 | fData = (MRawEvtData*)pList->FindCreateObj("MRawEvtData");
|
---|
128 | if (!fData)
|
---|
129 | return kFALSE;
|
---|
130 |
|
---|
131 | return kTRUE;
|
---|
132 | }
|
---|
133 |
|
---|
134 | Bool_t MSimReadout::ReInit(MParList *plist)
|
---|
135 | {
|
---|
136 | MGeomCam *cam = (MGeomCam*)plist->FindObject("MGeomCam");
|
---|
137 | if (!cam)
|
---|
138 | {
|
---|
139 | *fLog << err << "MGeomCam not found... aborting." << endl;
|
---|
140 | return kFALSE;
|
---|
141 | }
|
---|
142 |
|
---|
143 | fRunHeader->InitPixels(cam->GetNumPixels());
|
---|
144 |
|
---|
145 | fData->InitRead(fRunHeader);
|
---|
146 | fData->ResetPixels();
|
---|
147 | fData->InitStartCells();
|
---|
148 | fData->SetIndices();
|
---|
149 |
|
---|
150 | return kTRUE;
|
---|
151 | }
|
---|
152 |
|
---|
153 | // ------------------------------------------------------------------------
|
---|
154 | //
|
---|
155 | // Convert (digitize) the analog channels into digital (FADC) data.
|
---|
156 | //
|
---|
157 | Int_t MSimReadout::Process()
|
---|
158 | {
|
---|
159 | // Sanity checks
|
---|
160 | if (fData->GetNumLoGainSamples()>0)
|
---|
161 | {
|
---|
162 | *fLog << err << "ERROR - MSimReadout: Lo-gains not implemented yet." << endl;
|
---|
163 | return kERROR;
|
---|
164 | }
|
---|
165 |
|
---|
166 | // Make sure that we have not more analog channels than pixels
|
---|
167 | // FIXME: Is this really necessary?
|
---|
168 | if (fCamera->GetNumChannels()>fData->GetNumPixels())
|
---|
169 | {
|
---|
170 | *fLog << err;
|
---|
171 | *fLog << "ERROR - Number of analog channels " << fCamera->GetNumChannels();
|
---|
172 | *fLog << " exceeds number of pixels " << fData->GetNumPixels() << endl;
|
---|
173 | return kERROR;
|
---|
174 | }
|
---|
175 |
|
---|
176 | if (fTrigger->GetVal()<0)
|
---|
177 | {
|
---|
178 | *fLog << err << "ERROR - MSimReadout: MSimReadout executed for an event which has no trigger." << endl;
|
---|
179 | return kERROR;
|
---|
180 | }
|
---|
181 |
|
---|
182 | // Get the intended pulse position and convert it to slices
|
---|
183 | const Float_t pulpos = fPulsePos->GetVal()*fRunHeader->GetFreqSampling()/1000.;
|
---|
184 |
|
---|
185 | // Get trigger position and correct for intended pulse position
|
---|
186 | const Int_t trig = TMath::CeilNint(fTrigger->GetVal()-pulpos);
|
---|
187 |
|
---|
188 | // Check if the position is valid
|
---|
189 | if (trig<0)
|
---|
190 | {
|
---|
191 | *fLog << err;
|
---|
192 | *fLog << "ERROR - Trigger position before analog signal." << endl;
|
---|
193 | *fLog << " Trigger: " << fTrigger->GetVal() << endl;
|
---|
194 | *fLog << " PulsePos: " << pulpos << endl;
|
---|
195 | return kERROR;
|
---|
196 | }
|
---|
197 |
|
---|
198 | // Get Number of samples in analog channels
|
---|
199 | const Int_t nsamp = fCamera->GetNumSamples();
|
---|
200 |
|
---|
201 | // Get number of samples to be digitized
|
---|
202 | const Int_t nslices = fData->GetNumSamples();
|
---|
203 |
|
---|
204 | // Check if the whole requested signal can be digitized
|
---|
205 | if (trig+nslices>nsamp)
|
---|
206 | {
|
---|
207 | *fLog << err << "ERROR - Trigger position beyond valid analog signal range." << endl;
|
---|
208 | *fLog << " Trigger: " << fTrigger->GetVal() << endl;
|
---|
209 | *fLog << " PulsePos: " << pulpos << endl;
|
---|
210 | *fLog << " SamplesIn: " << nsamp << endl;
|
---|
211 | *fLog << " SamplesOut: " << nslices << endl;
|
---|
212 | return kERROR;
|
---|
213 | }
|
---|
214 |
|
---|
215 | const Float_t offset = 0;//128;
|
---|
216 | // FTemme: Don't need this anymore:
|
---|
217 | // const UInt_t max = fData->GetMax();
|
---|
218 | // const UInt_t min = fData->GetMin();
|
---|
219 |
|
---|
220 |
|
---|
221 | // FIXME: Take this into account
|
---|
222 | // const UInt_t scale = 16;
|
---|
223 | // const UInt_t resolution = 12;
|
---|
224 |
|
---|
225 | // Digitize into a buffer
|
---|
226 | MArrayI buffer(nslices*fData->GetNumPixels());
|
---|
227 |
|
---|
228 | // Loop over all channels/pixels
|
---|
229 | for (UInt_t i=0; i<fCamera->GetNumChannels(); i++)
|
---|
230 | {
|
---|
231 | // Get i-th canalog hannel
|
---|
232 | const MAnalogSignal &sig = (*fCamera)[i];
|
---|
233 |
|
---|
234 | // Digitize all slices
|
---|
235 | for (Int_t j=0; j<nslices; j++)
|
---|
236 | {
|
---|
237 |
|
---|
238 | Float_t slice = 0;
|
---|
239 | if (j+trig >= (Int_t)sig.GetSize())
|
---|
240 | {
|
---|
241 | // DN: This, IMHO can never happen, since the check in line 205
|
---|
242 | // already took care for this.
|
---|
243 | // DN: But I don't understand why Thomas did this?
|
---|
244 | // We need to add noise at least ?!
|
---|
245 | slice = offset;
|
---|
246 | }
|
---|
247 | else
|
---|
248 | {
|
---|
249 | // normal case
|
---|
250 |
|
---|
251 | // Why do we add 'offset' when it is a hardcoded zero?
|
---|
252 | // And why do we multiply, while this value *may* be changed
|
---|
253 | // by a user, but it should not? Why do we care?
|
---|
254 | // Because we can?
|
---|
255 | slice = sig[j+trig] * fConversionFactor + offset;
|
---|
256 | }
|
---|
257 |
|
---|
258 |
|
---|
259 | // Saturation in FACT is done as follows:
|
---|
260 | // If the digitized signal is larger than an upper limit 'max'
|
---|
261 | // the ADC does set a special bit! The overflow bit ...
|
---|
262 | // So while we say we have a 12bit ADC ... in fact we sometimes
|
---|
263 | // also use a 13th bit ...
|
---|
264 | // but this does not increase our resolution by a factor of 2!
|
---|
265 |
|
---|
266 | // There are different binary formats for signed integers,
|
---|
267 | // however the 'Two's complement' format
|
---|
268 | // http://en.wikipedia.org/wiki/Two%27s_complement
|
---|
269 | // is increadibly common, and this is also what is used by FACTs ADCs.
|
---|
270 |
|
---|
271 | // A normal 12bit (two's complement formatted) signed integer
|
---|
272 | // goes from -2048 to +2047 and is coded like this:
|
---|
273 | // from -2048 = 0x800 = 1000.0000.0000
|
---|
274 | // to +2047 = 0x7FF = 0111.1111.1111
|
---|
275 | //
|
---|
276 | // But on a normal PC we store these 12 bit numbers in a space, that
|
---|
277 | // was designed for 16bit numbers. This is no problem for the positive numbers
|
---|
278 | // 12bit: 0x7FF = 0111.1111.1111 --> 16bit: 0x07FF = 0000.0111.1111.1111
|
---|
279 | // This bit combination is always understood as +2047 .. no problem!
|
---|
280 | // But the negative numbers:
|
---|
281 | // 12bit: 0x800 = 1000.0000.0000 --> 16bit: 0x0800 = 0000.1000.0000.0000
|
---|
282 | // This *would* normally be understood as +2048, because we need to
|
---|
283 | // 'enlarge' the 'sign bit'
|
---|
284 | // so our largest negative number written into a 16bit storage space
|
---|
285 | // should look like this:
|
---|
286 | // 0xF800 = 1111.1000.0000.0000 --> -2048
|
---|
287 |
|
---|
288 | // The enlargement of the sign bit is autotically done on the FACT FAD
|
---|
289 | // board already before the data is send to any PC, because we can do it
|
---|
290 | // damn fast on that board, and a PC would need to touch every incoming
|
---|
291 | // data word again....
|
---|
292 | // But now since we have enlarged the 12th bit ... the sign bit into
|
---|
293 | // the space of bits 13,14,15 and 16 ... where did the overflow-bit go?
|
---|
294 | //
|
---|
295 | // Well .. we still have plenty of bit-combinations, which are normally
|
---|
296 | // forbidden for a 12bit ADC, and these we can use to encode both,
|
---|
297 | // the positive and negative overflow.
|
---|
298 | // we decided to do this:
|
---|
299 | // positive overflow
|
---|
300 | // 0000.1000.0000.0000 --> interpreted by a PC as +2048 and thus out of 12 bit range!
|
---|
301 | // negative underflow
|
---|
302 | // 1111.0111.1111.1111 --> interpreted by a PC as -2049 and thus out of 12 bit range!
|
---|
303 |
|
---|
304 | // we will simulate exactly the same behaviour here!
|
---|
305 |
|
---|
306 | // max and min can be set, by the user currently ..
|
---|
307 | // but I don't see why this should be possible.
|
---|
308 | Int_t digitized_value = TMath::Nint(slice);
|
---|
309 | if (digitized_value > 2047) // positive overflow
|
---|
310 | buffer[nslices*i + j] = 0x0800; // <-- +2048
|
---|
311 | else if (digitized_value < -2048)
|
---|
312 | buffer[nslices*i + j] = 0xF7FF; // <-- -2049
|
---|
313 | else
|
---|
314 | buffer[nslices*i + j] = digitized_value;
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 | // Set samples as raw-data
|
---|
319 | fData->Set(buffer);
|
---|
320 | fData->SetReadyToSave();
|
---|
321 |
|
---|
322 | // Set the trigger/daq event number
|
---|
323 | fEvtHeader->SetDAQEvtNumber(GetNumExecutions());
|
---|
324 | fEvtHeader->SetReadyToSave();
|
---|
325 |
|
---|
326 | // FIMXE: This will never be stored correctly :(
|
---|
327 | fRunHeader->SetNumEvents(fRunHeader->GetNumEvents()+1);
|
---|
328 |
|
---|
329 | return kTRUE;
|
---|
330 | }
|
---|
331 |
|
---|
332 | // --------------------------------------------------------------------------
|
---|
333 | //
|
---|
334 | // Read the parameters from the resource file.
|
---|
335 | //
|
---|
336 | // ConversionFactor: 1
|
---|
337 | //
|
---|
338 | Int_t MSimReadout::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
339 | {
|
---|
340 | Bool_t rc = kFALSE;
|
---|
341 | if (IsEnvDefined(env, prefix, "ConversionFactor", print))
|
---|
342 | {
|
---|
343 | rc = kTRUE;
|
---|
344 | fConversionFactor = GetEnvValue(env, prefix, "ConversionFactor", fConversionFactor);
|
---|
345 | }
|
---|
346 |
|
---|
347 | return rc;
|
---|
348 | }
|
---|