| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Markus Gaug 01/2004 <mailto:markus@ifae.es>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2001-2004
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | // //
|
|---|
| 27 | // Fast Fourier Transforms //
|
|---|
| 28 | // //
|
|---|
| 29 | // (Most of the code is adapted from Numerical Recipies in C++, 2nd ed., //
|
|---|
| 30 | // pp. 509-563) //
|
|---|
| 31 | // //
|
|---|
| 32 | // Usage: //
|
|---|
| 33 | // //
|
|---|
| 34 | // 1) Functions RealFunctionFFT: (FOURIER TRANSFORM) //
|
|---|
| 35 | // * Take as argument arrays of real numbers, //
|
|---|
| 36 | // in some cases the dimension of the array has to be given separately//
|
|---|
| 37 | // * Return a COMPLEX array with the following meaning: //
|
|---|
| 38 | // array[0]: The value of F(0) (has only real component) //
|
|---|
| 39 | // array[1]: The value of F(N/2) (has only real component) //
|
|---|
| 40 | // array[2i]: The real part of F(i) //
|
|---|
| 41 | // array[2i+1]: The imaginary part of F(i) //
|
|---|
| 42 | // * Note that F(N-i)* = F(i), therefore only the positive frequency //
|
|---|
| 43 | // half is stored. //
|
|---|
| 44 | // * The dimension MUST be an integer power of 2, //
|
|---|
| 45 | // otherwise, the array will be shortened!! //
|
|---|
| 46 | // //
|
|---|
| 47 | // 2) Functions RealFunctionIFFT: (INVERSER FOURIER TRANSFORM) //
|
|---|
| 48 | // * Take as argument a COMPLEX array //
|
|---|
| 49 | // of Fourier-transformed REAL numbers //
|
|---|
| 50 | // with the following meaning: //
|
|---|
| 51 | // array[0]: The value of F(0) (has only real component) //
|
|---|
| 52 | // array[1]: The value of F(N/2) (has only real component) //
|
|---|
| 53 | // array[2i]: The real part of F(i) //
|
|---|
| 54 | // array[2i+1]: The imaginary part of F(i) //
|
|---|
| 55 | // * Returns the original complex array of dimension 2N-1 //
|
|---|
| 56 | // //
|
|---|
| 57 | // 3) Functions PowerSpectrumDensity: //
|
|---|
| 58 | // * Return a histogram with the spectral density, i.e. //
|
|---|
| 59 | // P(k) = 1/(N*N) * |F(k)|*|F(k)| //
|
|---|
| 60 | // * The histogram is ranged between 0 and 1./(2*binwidth) //
|
|---|
| 61 | // * The number of bins equals N/2+1 //
|
|---|
| 62 | // * Note that histograms with unequal binwidth can not yet be treated! //
|
|---|
| 63 | // * If the PSD does NOT CONVERGE to 0 at the maximum bin, //
|
|---|
| 64 | // you HAVE TO sample your data finer! //
|
|---|
| 65 | //
|
|---|
| 66 | // Fourier-Transformation:
|
|---|
| 67 | // =======================
|
|---|
| 68 |
|
|---|
| 69 | // (taken from http://www.parasitaere-kapazitaeten.net/Pd/ft.htm)
|
|---|
| 70 | //
|
|---|
| 71 | // The Fourier-Transformation is a mathematical function that breaks
|
|---|
| 72 | // down a signal (like sound) into its frequency-spectrum as a set of
|
|---|
| 73 | // sinusoidal components, converting it from the Time Domain to the
|
|---|
| 74 | // Frequency Domain.
|
|---|
| 75 | //
|
|---|
| 76 | // In the Time Domain the signal x[ ] consists of N samples, labeled
|
|---|
| 77 | // from 0 to N-1. In the Frequency Domain the RFFT produces two signals
|
|---|
| 78 | // (signalvectors), treated as complex numbers representing the Real Part:
|
|---|
| 79 | // Re X[ ] and the Imaginary Part: Im X[ ]. They are seen as the Cosine-
|
|---|
| 80 | // und Sine-Components of the base frequencies. Each of these two signals
|
|---|
| 81 | // contains one more sample than the half of the original signal: N/2 + 1
|
|---|
| 82 | // samples. (this results from the fact, that the sine-components of the
|
|---|
| 83 | // first frequency (0) and the last (nyquist, N/2) are always 0). With the
|
|---|
| 84 | // complex Fourier-Transformation N complexe values are transformed to N
|
|---|
| 85 | // new complex values. For both it applies to: the Frequency Domain
|
|---|
| 86 | // contains exactly the same information as the Time-Domain.
|
|---|
| 87 | //
|
|---|
| 88 | // A Real FFT over 64 samples produces values for 33 cosine- and 33
|
|---|
| 89 | // sine-wave-amplitudes with the frequencies 0, 1, 2, 3, ..., 30, 31, 32.
|
|---|
| 90 | // The first value (frequency 0) is the DC (direct current), the other
|
|---|
| 91 | // values have to be seen in practice as factors of a
|
|---|
| 92 | // fundamental-frequency which can be calculated by dividing samplerate by
|
|---|
| 93 | // windowsize. The highest frequency is the nyquist-frequency
|
|---|
| 94 | // (samplerate/2).
|
|---|
| 95 | //
|
|---|
| 96 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 97 |
|
|---|
| 98 | #include "MFFT.h"
|
|---|
| 99 |
|
|---|
| 100 | #include <TMath.h>
|
|---|
| 101 |
|
|---|
| 102 | #include "MLog.h"
|
|---|
| 103 | #include "MLogManip.h"
|
|---|
| 104 |
|
|---|
| 105 | #include "MArrayD.h"
|
|---|
| 106 | #include "MArrayF.h"
|
|---|
| 107 | #include "MArrayI.h"
|
|---|
| 108 |
|
|---|
| 109 | ClassImp(MFFT);
|
|---|
| 110 |
|
|---|
| 111 | using namespace std;
|
|---|
| 112 |
|
|---|
| 113 | // ---------------------------------------------------------------------------
|
|---|
| 114 | //
|
|---|
| 115 | // Default Constructor
|
|---|
| 116 | // Initializes random number generator and default variables
|
|---|
| 117 | //
|
|---|
| 118 | MFFT::MFFT() : fDim(0)
|
|---|
| 119 | {
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | // --------------------------------------------------------------------------
|
|---|
| 123 | //
|
|---|
| 124 | // Destructor.
|
|---|
| 125 | //
|
|---|
| 126 | MFFT::~MFFT()
|
|---|
| 127 | {
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | void MFFT::TransformF(const Int_t isign, TArrayF &data)
|
|---|
| 131 | {
|
|---|
| 132 |
|
|---|
| 133 | UInt_t n,mmax,m,j,istep,i;
|
|---|
| 134 | Float_t wtemp,wr,wpr,wpi,wi,theta;
|
|---|
| 135 | Float_t tempr,tempi;
|
|---|
| 136 |
|
|---|
| 137 | Int_t nn = fDim/2;
|
|---|
| 138 | n = nn << 1;
|
|---|
| 139 |
|
|---|
| 140 | //
|
|---|
| 141 | // The bit-reversal section of the routine:
|
|---|
| 142 | // Exchange the two complex numbers
|
|---|
| 143 | //
|
|---|
| 144 | j=1;
|
|---|
| 145 | for (i=1;i<n;i+=2) {
|
|---|
| 146 | if (j > i) {
|
|---|
| 147 | Swap(data[j-1],data[i-1]);
|
|---|
| 148 | Swap(data[j],data[i]);
|
|---|
| 149 | }
|
|---|
| 150 | m=nn;
|
|---|
| 151 | while (m >= 2 && j > m) {
|
|---|
| 152 | j -= m;
|
|---|
| 153 | m >>= 1;
|
|---|
| 154 | }
|
|---|
| 155 | j += m;
|
|---|
| 156 | }
|
|---|
| 157 | //
|
|---|
| 158 | // Here begins the Danielson-Lanczos section of the routine
|
|---|
| 159 | //
|
|---|
| 160 | mmax=2;
|
|---|
| 161 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
|---|
| 162 |
|
|---|
| 163 | istep = mmax << 1;
|
|---|
| 164 | //
|
|---|
| 165 | // Initialize the trigonometric recurrence:
|
|---|
| 166 | //
|
|---|
| 167 | theta = isign*(6.28318530717959/mmax);
|
|---|
| 168 |
|
|---|
| 169 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 170 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 171 | wpi = TMath::Sin(theta);
|
|---|
| 172 |
|
|---|
| 173 | wr=1.0;
|
|---|
| 174 | wi=0.0;
|
|---|
| 175 |
|
|---|
| 176 | for (m=1; m<mmax; m+=2) {
|
|---|
| 177 | for (i=m; i<=n; i+=istep) {
|
|---|
| 178 | //
|
|---|
| 179 | // The Danielson-Lanczos formula:
|
|---|
| 180 | //
|
|---|
| 181 | j = i+mmax;
|
|---|
| 182 | tempr = wr*data[j-1] - wi*data[j];
|
|---|
| 183 | tempi = wr*data[j] + wi*data[j-1];
|
|---|
| 184 | data[j-1] = data[i-1] - tempr;
|
|---|
| 185 | data[j] = data[i] - tempi;
|
|---|
| 186 | data[i-1] += tempr;
|
|---|
| 187 | data[i] += tempi;
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 | //
|
|---|
| 191 | // Trigonometric recurrence
|
|---|
| 192 | //
|
|---|
| 193 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
|---|
| 194 | wi = wi*wpr + wtemp*wpi+wi;
|
|---|
| 195 |
|
|---|
| 196 | }
|
|---|
| 197 | mmax=istep;
|
|---|
| 198 | }
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 |
|
|---|
| 202 | void MFFT::TransformD(const Int_t isign, TArrayD &data)
|
|---|
| 203 | {
|
|---|
| 204 |
|
|---|
| 205 | UInt_t n,mmax,m,j,istep,i;
|
|---|
| 206 | Double_t wtemp,wr,wpr,wpi,wi,theta;
|
|---|
| 207 | Double_t tempr,tempi;
|
|---|
| 208 |
|
|---|
| 209 | Int_t nn = fDim/2;
|
|---|
| 210 | n = nn << 1;
|
|---|
| 211 |
|
|---|
| 212 | //
|
|---|
| 213 | // The bit-reversal section of the routine:
|
|---|
| 214 | // Exchange the two complex numbers
|
|---|
| 215 | //
|
|---|
| 216 | j=1;
|
|---|
| 217 | for (i=1;i<n;i+=2) {
|
|---|
| 218 | if (j > i) {
|
|---|
| 219 | Swap(data[j-1],data[i-1]);
|
|---|
| 220 | Swap(data[j],data[i]);
|
|---|
| 221 | }
|
|---|
| 222 | m=nn;
|
|---|
| 223 | while (m >= 2 && j > m) {
|
|---|
| 224 | j -= m;
|
|---|
| 225 | m >>= 1;
|
|---|
| 226 | }
|
|---|
| 227 | j += m;
|
|---|
| 228 | }
|
|---|
| 229 | //
|
|---|
| 230 | // Here begins the Danielson-Lanczos section of the routine
|
|---|
| 231 | //
|
|---|
| 232 | mmax=2;
|
|---|
| 233 | while (n > mmax) { // Outer loop executed log_2(nn) times
|
|---|
| 234 |
|
|---|
| 235 | istep = mmax << 1;
|
|---|
| 236 | //
|
|---|
| 237 | // Initialize the trigonometric recurrence:
|
|---|
| 238 | //
|
|---|
| 239 | theta = isign*(6.28318530717959/mmax);
|
|---|
| 240 |
|
|---|
| 241 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 242 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 243 | wpi = TMath::Sin(theta);
|
|---|
| 244 |
|
|---|
| 245 | wr=1.0;
|
|---|
| 246 | wi=0.0;
|
|---|
| 247 |
|
|---|
| 248 | for (m=1; m<mmax; m+=2) {
|
|---|
| 249 | for (i=m; i<=n; i+=istep) {
|
|---|
| 250 | //
|
|---|
| 251 | // The Danielson-Lanczos formula:
|
|---|
| 252 | //
|
|---|
| 253 | j = i+mmax;
|
|---|
| 254 | tempr = wr*data[j-1] - wi*data[j];
|
|---|
| 255 | tempi = wr*data[j] + wi*data[j-1];
|
|---|
| 256 | data[j-1] = data[i-1] - tempr;
|
|---|
| 257 | data[j] = data[i] - tempi;
|
|---|
| 258 | data[i-1] += tempr;
|
|---|
| 259 | data[i] += tempi;
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | //
|
|---|
| 263 | // Trigonometric recurrence
|
|---|
| 264 | //
|
|---|
| 265 | wr = (wtemp=wr)*wpr - wi*wpi+wr;
|
|---|
| 266 | wi = wi*wpr + wtemp*wpi+wi;
|
|---|
| 267 |
|
|---|
| 268 | }
|
|---|
| 269 | mmax=istep;
|
|---|
| 270 | }
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 | //
|
|---|
| 274 | // Calculates the Fourier transform of a set of n real-valued data points.
|
|---|
| 275 | // Replaces this data (which is stored in array data[1..n]) by the positive
|
|---|
| 276 | // frequency half of its complex Fourier transform. The real-valued first
|
|---|
| 277 | // and last components of the complex transform are returned as elements
|
|---|
| 278 | // data[1] and data[2], respectively. n must be a power of 2. This routine
|
|---|
| 279 | // also calculates the inverse transform of a complex data array if it is
|
|---|
| 280 | // the transform of real data. (Result in this case mus be multiplied by
|
|---|
| 281 | // 2/n.). From NUMERICAL RECIPES IN C++.
|
|---|
| 282 | //
|
|---|
| 283 | void MFFT::RealFTF(const Int_t isign)
|
|---|
| 284 | {
|
|---|
| 285 |
|
|---|
| 286 | Int_t i,i1,i2,i3,i4;
|
|---|
| 287 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
|---|
| 288 | Float_t wr,wi,wpr,wpi,wtemp,theta;
|
|---|
| 289 |
|
|---|
| 290 | //
|
|---|
| 291 | // Initialize the recurrence
|
|---|
| 292 | //
|
|---|
| 293 | theta = TMath::Pi() / (Double_t)(fDim>>1);
|
|---|
| 294 |
|
|---|
| 295 | if(isign==1) // forward transform
|
|---|
| 296 | {
|
|---|
| 297 | c2 = -0.5;
|
|---|
| 298 | TransformF(1,fDataF);
|
|---|
| 299 | }
|
|---|
| 300 | else // set up backward transform
|
|---|
| 301 | {
|
|---|
| 302 | c2 = 0.5;
|
|---|
| 303 | theta = -theta;
|
|---|
| 304 | }
|
|---|
| 305 |
|
|---|
| 306 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 307 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 308 | wpi = TMath::Sin(theta);
|
|---|
| 309 |
|
|---|
| 310 | wr = 1.0 + wpr;
|
|---|
| 311 | wi = wpi;
|
|---|
| 312 |
|
|---|
| 313 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
|---|
| 314 | {
|
|---|
| 315 |
|
|---|
| 316 | i2 = 1 + (i1 = i+i);
|
|---|
| 317 | i4 = 1 + (i3 = fDim-i1);
|
|---|
| 318 |
|
|---|
| 319 | //
|
|---|
| 320 | // The two separate transforms are separated out of the data
|
|---|
| 321 | //
|
|---|
| 322 | h1r = c1*(fDataF[i1]+fDataF[i3]);
|
|---|
| 323 | h1i = c1*(fDataF[i2]-fDataF[i4]);
|
|---|
| 324 | h2r = -c2*(fDataF[i2]+fDataF[i4]);
|
|---|
| 325 | h2i = c2*(fDataF[i1]-fDataF[i3]);
|
|---|
| 326 |
|
|---|
| 327 | //
|
|---|
| 328 | // Here, they are recombined to from the true transform
|
|---|
| 329 | // of the orginal real data
|
|---|
| 330 | //
|
|---|
| 331 | fDataF[i1] = h1r + wr*h2r - wi*h2i;
|
|---|
| 332 | fDataF[i2] = h1i + wr*h2i + wi*h2r;
|
|---|
| 333 | fDataF[i3] = h1r - wr*h2r + wi*h2i;
|
|---|
| 334 | fDataF[i4] = -h1i + wr*h2i + wi*h2r;
|
|---|
| 335 |
|
|---|
| 336 | //
|
|---|
| 337 | // The recurrence
|
|---|
| 338 | //
|
|---|
| 339 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
|---|
| 340 | wi = wi*wpr + wtemp*wpi + wi;
|
|---|
| 341 | }
|
|---|
| 342 |
|
|---|
| 343 | //
|
|---|
| 344 | // Squeeze the first and last data together to get them all
|
|---|
| 345 | // within the original array
|
|---|
| 346 | //
|
|---|
| 347 | if(isign==1)
|
|---|
| 348 | {
|
|---|
| 349 | fDataF[0] = (h1r=fDataF[0]) + fDataF[1];
|
|---|
| 350 | fDataF[1] = h1r - fDataF[1];
|
|---|
| 351 | }
|
|---|
| 352 | else
|
|---|
| 353 | {
|
|---|
| 354 |
|
|---|
| 355 | fDataF[0] = c1*((h1r=fDataF[0]) + fDataF[1]);
|
|---|
| 356 | fDataF[1] = c1*(h1r-fDataF[1]);
|
|---|
| 357 |
|
|---|
| 358 | //
|
|---|
| 359 | // The inverse transform for the case isign = -1
|
|---|
| 360 | //
|
|---|
| 361 | TransformF(-1,fDataF);
|
|---|
| 362 |
|
|---|
| 363 | //
|
|---|
| 364 | // normalize correctly (not done in original NR's)
|
|---|
| 365 | //
|
|---|
| 366 | for(i=1;i<=fDim;i++)
|
|---|
| 367 | fDataF[i] *= (2./fDim);
|
|---|
| 368 | }
|
|---|
| 369 | }
|
|---|
| 370 | void MFFT::RealFTD(const Int_t isign)
|
|---|
| 371 | {
|
|---|
| 372 |
|
|---|
| 373 | Int_t i,i1,i2,i3,i4;
|
|---|
| 374 | Float_t c1=0.5,c2,h1r,h1i,h2r,h2i;
|
|---|
| 375 | Double_t wr,wi,wpr,wpi,wtemp,theta;
|
|---|
| 376 |
|
|---|
| 377 | //
|
|---|
| 378 | // Initialize the recurrence
|
|---|
| 379 | //
|
|---|
| 380 | theta=3.141592653589793/(Double_t) (fDim>>1);
|
|---|
| 381 |
|
|---|
| 382 | if(isign==1) // forward transform
|
|---|
| 383 | {
|
|---|
| 384 | c2 = -0.5;
|
|---|
| 385 | TransformD(1,fDataD);
|
|---|
| 386 | }
|
|---|
| 387 | else // set up backward transform
|
|---|
| 388 | {
|
|---|
| 389 | c2 = 0.5;
|
|---|
| 390 | theta = -theta;
|
|---|
| 391 | }
|
|---|
| 392 |
|
|---|
| 393 | wtemp = TMath::Sin(0.5*theta);
|
|---|
| 394 | wpr = -2.0*wtemp*wtemp;
|
|---|
| 395 | wpi = TMath::Sin(theta);
|
|---|
| 396 |
|
|---|
| 397 | wr = 1.0 + wpr;
|
|---|
| 398 | wi = wpi;
|
|---|
| 399 |
|
|---|
| 400 | for(i=1;i<(fDim>>2);i++) // case i=0 done separately below
|
|---|
| 401 | {
|
|---|
| 402 |
|
|---|
| 403 | i2 = 1 + (i1 = i+i);
|
|---|
| 404 | i4 = 1 + (i3 = fDim-i1);
|
|---|
| 405 |
|
|---|
| 406 | //
|
|---|
| 407 | // The two separate transforms are separated out of the data
|
|---|
| 408 | //
|
|---|
| 409 | h1r = c1*(fDataD[i1]+fDataD[i3]);
|
|---|
| 410 | h1i = c1*(fDataD[i2]-fDataD[i4]);
|
|---|
| 411 | h2r = -c2*(fDataD[i2]+fDataD[i4]);
|
|---|
| 412 | h2i = c2*(fDataD[i1]-fDataD[i3]);
|
|---|
| 413 |
|
|---|
| 414 | //
|
|---|
| 415 | // Here, they are recombined to from the true transform
|
|---|
| 416 | // of the orginal real data
|
|---|
| 417 | //
|
|---|
| 418 | fDataD[i1] = h1r + wr*h2r - wi*h2i;
|
|---|
| 419 | fDataD[i2] = h1i + wr*h2i + wi*h2r;
|
|---|
| 420 | fDataD[i3] = h1r - wr*h2r + wi*h2i;
|
|---|
| 421 | fDataD[i4] = -h1i + wr*h2i + wi*h2r;
|
|---|
| 422 |
|
|---|
| 423 | //
|
|---|
| 424 | // The recurrence
|
|---|
| 425 | //
|
|---|
| 426 | wr = (wtemp=wr)*wpr - wi*wpi + wr;
|
|---|
| 427 | wi = wi*wpr + wtemp*wpi + wi;
|
|---|
| 428 | }
|
|---|
| 429 |
|
|---|
| 430 | //
|
|---|
| 431 | // Squeeze the first and last data together to get them all
|
|---|
| 432 | // within the original array
|
|---|
| 433 | //
|
|---|
| 434 | if(isign==1)
|
|---|
| 435 | {
|
|---|
| 436 | fDataD[0] = (h1r=fDataD[0]) + fDataD[1];
|
|---|
| 437 | fDataD[1] = h1r - fDataD[1];
|
|---|
| 438 | }
|
|---|
| 439 | else
|
|---|
| 440 | {
|
|---|
| 441 |
|
|---|
| 442 | fDataD[0] = c1*((h1r=fDataD[0]) + fDataD[1]);
|
|---|
| 443 | fDataD[1] = c1*(h1r-fDataD[1]);
|
|---|
| 444 |
|
|---|
| 445 | //
|
|---|
| 446 | // The inverse transform for the case isign = -1
|
|---|
| 447 | //
|
|---|
| 448 | TransformD(-1,fDataD);
|
|---|
| 449 |
|
|---|
| 450 | //
|
|---|
| 451 | // normalize correctly (not done in original NR's)
|
|---|
| 452 | //
|
|---|
| 453 | for(i=1;i<=fDim;i++)
|
|---|
| 454 | fDataD[i] *= (2./fDim);
|
|---|
| 455 | }
|
|---|
| 456 | }
|
|---|
| 457 |
|
|---|
| 458 |
|
|---|
| 459 | //
|
|---|
| 460 | // Fast Fourier Transform for float arrays
|
|---|
| 461 | //
|
|---|
| 462 | Float_t* MFFT::RealFunctionFFT(const Int_t n, const Float_t *data)
|
|---|
| 463 | {
|
|---|
| 464 |
|
|---|
| 465 | fDim = n;
|
|---|
| 466 | CheckDim(n);
|
|---|
| 467 |
|
|---|
| 468 | fDataF.Set(fDim);
|
|---|
| 469 | //
|
|---|
| 470 | // Clone the array
|
|---|
| 471 | //
|
|---|
| 472 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 473 | fDataF[i] = data[i];
|
|---|
| 474 |
|
|---|
| 475 | RealFTF(1);
|
|---|
| 476 |
|
|---|
| 477 | return fDataF.GetArray();
|
|---|
| 478 |
|
|---|
| 479 | }
|
|---|
| 480 |
|
|---|
| 481 | //
|
|---|
| 482 | // Fast Inverse Fourier Transform for float arrays
|
|---|
| 483 | //
|
|---|
| 484 | Float_t* MFFT::RealFunctionIFFT(const Int_t n, const Float_t *data)
|
|---|
| 485 | {
|
|---|
| 486 |
|
|---|
| 487 | fDim = n;
|
|---|
| 488 | CheckDim(fDim);
|
|---|
| 489 |
|
|---|
| 490 | fDataF.Set(fDim);
|
|---|
| 491 | //
|
|---|
| 492 | // Clone the array
|
|---|
| 493 | //
|
|---|
| 494 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 495 | fDataF[i] = data[i];
|
|---|
| 496 |
|
|---|
| 497 | RealFTF(-1);
|
|---|
| 498 |
|
|---|
| 499 | return fDataF.GetArray();
|
|---|
| 500 |
|
|---|
| 501 | }
|
|---|
| 502 |
|
|---|
| 503 | //
|
|---|
| 504 | // Fast Fourier Transform for double arrays
|
|---|
| 505 | //
|
|---|
| 506 | Double_t* MFFT::RealFunctionFFT(const Int_t n, const Double_t *data)
|
|---|
| 507 | {
|
|---|
| 508 |
|
|---|
| 509 | fDim = n;
|
|---|
| 510 | CheckDim(n);
|
|---|
| 511 |
|
|---|
| 512 | fDataD.Set(fDim);
|
|---|
| 513 | //
|
|---|
| 514 | // Clone the array
|
|---|
| 515 | //
|
|---|
| 516 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 517 | fDataD[i] = data[i];
|
|---|
| 518 |
|
|---|
| 519 | RealFTD(1);
|
|---|
| 520 |
|
|---|
| 521 | return fDataD.GetArray();
|
|---|
| 522 |
|
|---|
| 523 | }
|
|---|
| 524 |
|
|---|
| 525 | //
|
|---|
| 526 | // Fast Inverse Fourier Transform for double arrays
|
|---|
| 527 | //
|
|---|
| 528 | Double_t* MFFT::RealFunctionIFFT(const Int_t n, const Double_t *data)
|
|---|
| 529 | {
|
|---|
| 530 |
|
|---|
| 531 | fDim = n;
|
|---|
| 532 | CheckDim(fDim);
|
|---|
| 533 |
|
|---|
| 534 | fDataD.Set(fDim);
|
|---|
| 535 | //
|
|---|
| 536 | // Clone the array
|
|---|
| 537 | //
|
|---|
| 538 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 539 | fDataD[i] = data[i];
|
|---|
| 540 |
|
|---|
| 541 | RealFTD(-1);
|
|---|
| 542 |
|
|---|
| 543 | return fDataD.GetArray();
|
|---|
| 544 |
|
|---|
| 545 | }
|
|---|
| 546 |
|
|---|
| 547 | //
|
|---|
| 548 | // Fast Fourier Transform for TArrayF's
|
|---|
| 549 | //
|
|---|
| 550 | TArrayF* MFFT::RealFunctionFFT(const TArrayF *data)
|
|---|
| 551 | {
|
|---|
| 552 |
|
|---|
| 553 | fDim = data->GetSize();
|
|---|
| 554 | CheckDim(fDim);
|
|---|
| 555 |
|
|---|
| 556 | fDataF.Set(fDim);
|
|---|
| 557 | //
|
|---|
| 558 | // Clone the array
|
|---|
| 559 | //
|
|---|
| 560 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 561 | fDataF[i] = data->At(i);
|
|---|
| 562 |
|
|---|
| 563 | RealFTF(1);
|
|---|
| 564 |
|
|---|
| 565 | return new TArrayF(fDim,fDataF.GetArray());
|
|---|
| 566 |
|
|---|
| 567 | }
|
|---|
| 568 |
|
|---|
| 569 | //
|
|---|
| 570 | // Inverse Fast Fourier Transform for TArrayF's
|
|---|
| 571 | //
|
|---|
| 572 | TArrayF* MFFT::RealFunctionIFFT(const TArrayF *data)
|
|---|
| 573 | {
|
|---|
| 574 |
|
|---|
| 575 | fDim = data->GetSize();
|
|---|
| 576 | CheckDim(fDim);
|
|---|
| 577 |
|
|---|
| 578 | fDataF.Set(fDim);
|
|---|
| 579 | //
|
|---|
| 580 | // Clone the array
|
|---|
| 581 | //
|
|---|
| 582 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 583 | fDataF[i] = data->At(i);
|
|---|
| 584 |
|
|---|
| 585 | RealFTF(-1);
|
|---|
| 586 |
|
|---|
| 587 | return new TArrayF(fDim,fDataF.GetArray());
|
|---|
| 588 | }
|
|---|
| 589 |
|
|---|
| 590 |
|
|---|
| 591 | //
|
|---|
| 592 | // Fast Fourier Transform for TArrayD's
|
|---|
| 593 | //
|
|---|
| 594 | TArrayD* MFFT::RealFunctionFFT(const TArrayD *data)
|
|---|
| 595 | {
|
|---|
| 596 |
|
|---|
| 597 | fDim = data->GetSize();
|
|---|
| 598 | CheckDim(fDim);
|
|---|
| 599 |
|
|---|
| 600 | fDataD.Set(fDim);
|
|---|
| 601 | //
|
|---|
| 602 | // Clone the array
|
|---|
| 603 | //
|
|---|
| 604 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 605 | fDataD[i] = data->At(i);
|
|---|
| 606 |
|
|---|
| 607 | RealFTD(1);
|
|---|
| 608 |
|
|---|
| 609 | return new TArrayD(fDim,fDataD.GetArray());
|
|---|
| 610 |
|
|---|
| 611 | }
|
|---|
| 612 |
|
|---|
| 613 | //
|
|---|
| 614 | // Inverse Fast Fourier Transform for TArrayD's
|
|---|
| 615 | //
|
|---|
| 616 | TArrayD* MFFT::RealFunctionIFFT(const TArrayD *data)
|
|---|
| 617 | {
|
|---|
| 618 |
|
|---|
| 619 | fDim = data->GetSize();
|
|---|
| 620 | CheckDim(fDim);
|
|---|
| 621 |
|
|---|
| 622 | fDataD.Set(fDim);
|
|---|
| 623 | //
|
|---|
| 624 | // Clone the array
|
|---|
| 625 | //
|
|---|
| 626 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 627 | fDataD[i] = data->At(i);
|
|---|
| 628 |
|
|---|
| 629 | RealFTD(-1);
|
|---|
| 630 |
|
|---|
| 631 | return new TArrayD(fDim,fDataD.GetArray());
|
|---|
| 632 | }
|
|---|
| 633 |
|
|---|
| 634 | //----------------------------------------------------------
|
|---|
| 635 | //
|
|---|
| 636 | // Power Spectrum Density Calculation
|
|---|
| 637 | //
|
|---|
| 638 | TH1D* MFFT::PowerSpectrumDensity(const TH1D *hist)
|
|---|
| 639 | {
|
|---|
| 640 |
|
|---|
| 641 | TH1D *newhist = (TH1D*)CheckHist(hist,1);
|
|---|
| 642 |
|
|---|
| 643 | fDataD.Set(fDim);
|
|---|
| 644 | //
|
|---|
| 645 | // Copy the hist into an array
|
|---|
| 646 | //
|
|---|
| 647 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 648 | fDataD[i] = hist->GetBinContent(i);
|
|---|
| 649 |
|
|---|
| 650 | RealFTD(1);
|
|---|
| 651 |
|
|---|
| 652 | Int_t dim2 = fDim*fDim;
|
|---|
| 653 | Double_t c02;
|
|---|
| 654 | Double_t ck2;
|
|---|
| 655 | Double_t cn2;
|
|---|
| 656 | //
|
|---|
| 657 | // Fill the new histogram:
|
|---|
| 658 | //
|
|---|
| 659 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 660 | // (stored in fData{0])
|
|---|
| 661 | //
|
|---|
| 662 | c02 = fDataD[0]*fDataD[0];
|
|---|
| 663 | newhist->Fill(c02/dim2);
|
|---|
| 664 | //
|
|---|
| 665 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)| + |C(N-k)|*|C(N-k)|)
|
|---|
| 666 | //
|
|---|
| 667 | for (Int_t k=2;k<fDim-2;k+=2)
|
|---|
| 668 | {
|
|---|
| 669 |
|
|---|
| 670 | Int_t ki = k+1;
|
|---|
| 671 | ck2 = (fDataD[k]*fDataD[k] + fDataD[ki]*fDataD[ki]);
|
|---|
| 672 | newhist->Fill(ck2/dim2);
|
|---|
| 673 | }
|
|---|
| 674 | //
|
|---|
| 675 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 676 | // (stored in fData[1])
|
|---|
| 677 | //
|
|---|
| 678 | cn2 = (fDataD[1]*fDataD[1]);
|
|---|
| 679 | newhist->Fill(cn2/dim2);
|
|---|
| 680 |
|
|---|
| 681 | return newhist;
|
|---|
| 682 | }
|
|---|
| 683 |
|
|---|
| 684 | // -------------------------------------------------
|
|---|
| 685 | //
|
|---|
| 686 | // Power Spectrum Density calculation for TArrayF
|
|---|
| 687 | //
|
|---|
| 688 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayF *array)
|
|---|
| 689 | {
|
|---|
| 690 |
|
|---|
| 691 | fDim = array->GetSize();
|
|---|
| 692 | CheckDim(fDim);
|
|---|
| 693 |
|
|---|
| 694 | fDataF.Set(fDim);
|
|---|
| 695 | //
|
|---|
| 696 | // Copy the hist into an array
|
|---|
| 697 | //
|
|---|
| 698 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 699 | fDataF[i] = array->At(i);
|
|---|
| 700 |
|
|---|
| 701 | RealFTF(1);
|
|---|
| 702 |
|
|---|
| 703 | const Int_t dim2 = fDim*fDim;
|
|---|
| 704 | const Int_t dim05 = fDim/2;
|
|---|
| 705 | Float_t c02;
|
|---|
| 706 | Float_t ck2;
|
|---|
| 707 | Float_t cn2;
|
|---|
| 708 |
|
|---|
| 709 | TArrayF *newarray = new TArrayF(dim05);
|
|---|
| 710 |
|
|---|
| 711 | //
|
|---|
| 712 | // Fill the new histogram:
|
|---|
| 713 | //
|
|---|
| 714 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 715 | //
|
|---|
| 716 | c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 717 | newarray->AddAt(c02/dim2,0);
|
|---|
| 718 | //
|
|---|
| 719 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 720 | //
|
|---|
| 721 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 722 | {
|
|---|
| 723 | const Int_t k2 = k+k;
|
|---|
| 724 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
|---|
| 725 | newarray->AddAt(ck2/dim2,k);
|
|---|
| 726 | }
|
|---|
| 727 | //
|
|---|
| 728 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 729 | //
|
|---|
| 730 | cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 731 | newarray->AddAt(cn2,dim05-1);
|
|---|
| 732 |
|
|---|
| 733 | return newarray;
|
|---|
| 734 | }
|
|---|
| 735 |
|
|---|
| 736 | // -------------------------------------------------
|
|---|
| 737 | //
|
|---|
| 738 | // Power Spectrum Density calculation for TArrayI
|
|---|
| 739 | //
|
|---|
| 740 | TArrayF* MFFT::PowerSpectrumDensity(const TArrayI *array)
|
|---|
| 741 | {
|
|---|
| 742 |
|
|---|
| 743 | fDim = array->GetSize();
|
|---|
| 744 | CheckDim(fDim);
|
|---|
| 745 |
|
|---|
| 746 | fDataF.Set(fDim);
|
|---|
| 747 | //
|
|---|
| 748 | // Copy the hist into an array
|
|---|
| 749 | //
|
|---|
| 750 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 751 | fDataF[i] = (Float_t)array->At(i);
|
|---|
| 752 |
|
|---|
| 753 | RealFTF(1);
|
|---|
| 754 |
|
|---|
| 755 | const Int_t dim2 = fDim*fDim;
|
|---|
| 756 | const Int_t dim05 = fDim/2;
|
|---|
| 757 | Float_t c02;
|
|---|
| 758 | Float_t ck2;
|
|---|
| 759 | Float_t cn2;
|
|---|
| 760 |
|
|---|
| 761 | TArrayF *newarray = new TArrayF(dim05);
|
|---|
| 762 |
|
|---|
| 763 | //
|
|---|
| 764 | // Fill the new histogram:
|
|---|
| 765 | //
|
|---|
| 766 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 767 | //
|
|---|
| 768 | c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 769 | newarray->AddAt(c02/dim2,0);
|
|---|
| 770 | //
|
|---|
| 771 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 772 | //
|
|---|
| 773 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 774 | {
|
|---|
| 775 | const Int_t k2 = k+k;
|
|---|
| 776 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
|---|
| 777 | newarray->AddAt(ck2/dim2,k);
|
|---|
| 778 | }
|
|---|
| 779 | //
|
|---|
| 780 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 781 | //
|
|---|
| 782 | cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 783 | newarray->AddAt(cn2,dim05-1);
|
|---|
| 784 |
|
|---|
| 785 | return newarray;
|
|---|
| 786 | }
|
|---|
| 787 |
|
|---|
| 788 |
|
|---|
| 789 | // -------------------------------------------------
|
|---|
| 790 | //
|
|---|
| 791 | // Power Spectrum Density calculation for TArrayD
|
|---|
| 792 | //
|
|---|
| 793 | TArrayD* MFFT::PowerSpectrumDensity(const TArrayD *array)
|
|---|
| 794 | {
|
|---|
| 795 |
|
|---|
| 796 | fDim = array->GetSize();
|
|---|
| 797 | CheckDim(fDim);
|
|---|
| 798 |
|
|---|
| 799 | fDataD.Set(fDim);
|
|---|
| 800 | //
|
|---|
| 801 | // Copy the hist into an array
|
|---|
| 802 | //
|
|---|
| 803 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 804 | fDataD[i] = array->At(i);
|
|---|
| 805 |
|
|---|
| 806 | RealFTD(1);
|
|---|
| 807 |
|
|---|
| 808 | const Int_t dim2 = fDim*fDim;
|
|---|
| 809 | const Int_t dim05 = fDim/2;
|
|---|
| 810 | Float_t c02;
|
|---|
| 811 | Float_t ck2;
|
|---|
| 812 | Float_t cn2;
|
|---|
| 813 |
|
|---|
| 814 | TArrayD *newarray = new TArrayD(dim05);
|
|---|
| 815 |
|
|---|
| 816 | //
|
|---|
| 817 | // Fill the new histogram:
|
|---|
| 818 | //
|
|---|
| 819 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 820 | //
|
|---|
| 821 | c02 = (fDataD[0]*fDataD[0]);
|
|---|
| 822 | newarray->AddAt(c02/dim2,0);
|
|---|
| 823 | //
|
|---|
| 824 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 825 | //
|
|---|
| 826 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 827 | {
|
|---|
| 828 | const Int_t k2 = k+k;
|
|---|
| 829 | ck2 = (fDataD[k2]*fDataD[k2] + fDataD[k2+1]*fDataD[k2+1]);
|
|---|
| 830 | newarray->AddAt(ck2/dim2,k);
|
|---|
| 831 | }
|
|---|
| 832 | //
|
|---|
| 833 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 834 | //
|
|---|
| 835 | cn2 = (fDataD[1]*fDataD[1]);
|
|---|
| 836 | newarray->AddAt(cn2,dim05-1);
|
|---|
| 837 |
|
|---|
| 838 | return newarray;
|
|---|
| 839 | }
|
|---|
| 840 |
|
|---|
| 841 | // -------------------------------------------------
|
|---|
| 842 | //
|
|---|
| 843 | // Power Spectrum Density calculation for MArrayF
|
|---|
| 844 | // The difference to the TArrayF versions is that
|
|---|
| 845 | // the resulting array has two entries less, namely
|
|---|
| 846 | // the first and last one are skipped!
|
|---|
| 847 | //
|
|---|
| 848 | MArrayF* MFFT::PowerSpectrumDensity(const MArrayF *array)
|
|---|
| 849 | {
|
|---|
| 850 |
|
|---|
| 851 | fDim = array->GetSize();
|
|---|
| 852 | CheckDim(fDim);
|
|---|
| 853 |
|
|---|
| 854 | fDataF.Set(fDim);
|
|---|
| 855 | //
|
|---|
| 856 | // Copy the hist into an array
|
|---|
| 857 | //
|
|---|
| 858 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 859 | fDataF[i] = array->At(i);
|
|---|
| 860 |
|
|---|
| 861 | RealFTF(1);
|
|---|
| 862 |
|
|---|
| 863 | const Int_t dim2 = fDim*fDim;
|
|---|
| 864 | const Int_t dim05 = fDim/2;
|
|---|
| 865 | Float_t ck2;
|
|---|
| 866 |
|
|---|
| 867 | MArrayF *newarray = new MArrayF(dim05-2);
|
|---|
| 868 |
|
|---|
| 869 | //
|
|---|
| 870 | // Fill the new histogram:
|
|---|
| 871 | //
|
|---|
| 872 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 873 | //
|
|---|
| 874 | // c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 875 | // newarray->AddAt(c02/dim2,0);
|
|---|
| 876 | //
|
|---|
| 877 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 878 | //
|
|---|
| 879 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 880 | {
|
|---|
| 881 | const Int_t k2 = k+k;
|
|---|
| 882 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
|---|
| 883 | newarray->AddAt(ck2/dim2,k-1);
|
|---|
| 884 | }
|
|---|
| 885 | //
|
|---|
| 886 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 887 | //
|
|---|
| 888 | // cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 889 | // newarray->AddAt(cn2,dim05-1);
|
|---|
| 890 |
|
|---|
| 891 | return newarray;
|
|---|
| 892 | }
|
|---|
| 893 |
|
|---|
| 894 | //-----------------------------------------------------
|
|---|
| 895 | //
|
|---|
| 896 | // Power Spectrum Density calculation for MArrayI
|
|---|
| 897 | // The difference to the TArrayI versions is that
|
|---|
| 898 | // the resulting array has two entries less, namely
|
|---|
| 899 | // the first and last one are skipped!
|
|---|
| 900 | //
|
|---|
| 901 | MArrayF* MFFT::PowerSpectrumDensity(const MArrayI *array)
|
|---|
| 902 | {
|
|---|
| 903 |
|
|---|
| 904 | fDim = array->GetSize();
|
|---|
| 905 | CheckDim(fDim);
|
|---|
| 906 |
|
|---|
| 907 | fDataF.Set(fDim);
|
|---|
| 908 | //
|
|---|
| 909 | // Copy the hist into an array
|
|---|
| 910 | //
|
|---|
| 911 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 912 | fDataF[i] = (Float_t)array->At(i);
|
|---|
| 913 |
|
|---|
| 914 | RealFTF(1);
|
|---|
| 915 |
|
|---|
| 916 | const Int_t dim2 = fDim*fDim;
|
|---|
| 917 | const Int_t dim05 = fDim/2;
|
|---|
| 918 | Float_t ck2;
|
|---|
| 919 |
|
|---|
| 920 | MArrayF *newarray = new MArrayF(dim05-2);
|
|---|
| 921 |
|
|---|
| 922 | //
|
|---|
| 923 | // Fill the new histogram:
|
|---|
| 924 | //
|
|---|
| 925 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 926 | //
|
|---|
| 927 | // c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 928 | // newarray->AddAt(c02/dim2,0);
|
|---|
| 929 | //
|
|---|
| 930 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 931 | //
|
|---|
| 932 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 933 | {
|
|---|
| 934 | const Int_t k2 = k+k;
|
|---|
| 935 | ck2 = (fDataF[k2]*fDataF[k2] + fDataF[k2+1]*fDataF[k2+1]);
|
|---|
| 936 | newarray->AddAt(ck2/dim2,k-1);
|
|---|
| 937 | }
|
|---|
| 938 | //
|
|---|
| 939 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 940 | //
|
|---|
| 941 | // cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 942 | // newarray->AddAt(cn2,dim05-1);
|
|---|
| 943 |
|
|---|
| 944 | return newarray;
|
|---|
| 945 | }
|
|---|
| 946 |
|
|---|
| 947 | // -------------------------------------------------
|
|---|
| 948 | //
|
|---|
| 949 | // Power Spectrum Density calculation for MArrayD
|
|---|
| 950 | // The difference to the TArrayI versions is that
|
|---|
| 951 | // the resulting array has two entries less, namely
|
|---|
| 952 | // the first and last one are skipped!
|
|---|
| 953 | //
|
|---|
| 954 | MArrayD* MFFT::PowerSpectrumDensity(const MArrayD *array)
|
|---|
| 955 | {
|
|---|
| 956 |
|
|---|
| 957 | fDim = array->GetSize();
|
|---|
| 958 | CheckDim(fDim);
|
|---|
| 959 |
|
|---|
| 960 | fDataD.Set(fDim);
|
|---|
| 961 | //
|
|---|
| 962 | // Copy the hist into an array
|
|---|
| 963 | //
|
|---|
| 964 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 965 | fDataD[i] = array->At(i);
|
|---|
| 966 |
|
|---|
| 967 | RealFTD(1);
|
|---|
| 968 |
|
|---|
| 969 | const Int_t dim2 = fDim*fDim;
|
|---|
| 970 | const Int_t dim05 = fDim/2;
|
|---|
| 971 | Float_t ck2;
|
|---|
| 972 |
|
|---|
| 973 | MArrayD *newarray = new MArrayD(dim05-2);
|
|---|
| 974 |
|
|---|
| 975 | //
|
|---|
| 976 | // Fill the new histogram:
|
|---|
| 977 | //
|
|---|
| 978 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 979 | //
|
|---|
| 980 | // c02 = (fDataD[0]*fDataD[0]);
|
|---|
| 981 | // newarray->AddAt(c02/dim2,0);
|
|---|
| 982 | //
|
|---|
| 983 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 984 | //
|
|---|
| 985 | for (Int_t k=1;k<dim05-1;k++)
|
|---|
| 986 | {
|
|---|
| 987 | const Int_t k2 = k+k;
|
|---|
| 988 | ck2 = (fDataD[k2]*fDataD[k2] + fDataD[k2+1]*fDataD[k2+1]);
|
|---|
| 989 | newarray->AddAt(ck2/dim2,k-1);
|
|---|
| 990 | }
|
|---|
| 991 | //
|
|---|
| 992 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 993 | //
|
|---|
| 994 | // cn2 = (fDataD[1]*fDataD[1]);
|
|---|
| 995 | // newarray->AddAt(cn2,dim05-1);
|
|---|
| 996 |
|
|---|
| 997 | return newarray;
|
|---|
| 998 | }
|
|---|
| 999 |
|
|---|
| 1000 | // -----------------------------------------------
|
|---|
| 1001 | //
|
|---|
| 1002 | // Power Spectrum Density calculation for TH1
|
|---|
| 1003 | //
|
|---|
| 1004 | TH1F* MFFT::PowerSpectrumDensity(const TH1 *hist)
|
|---|
| 1005 | {
|
|---|
| 1006 |
|
|---|
| 1007 | TH1F *newhist = (TH1F*)CheckHist(hist,0);
|
|---|
| 1008 |
|
|---|
| 1009 | fDataF.Set(fDim);
|
|---|
| 1010 | //
|
|---|
| 1011 | // Copy the hist into an array
|
|---|
| 1012 | //
|
|---|
| 1013 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 1014 | fDataF[i] = hist->GetBinContent(i);
|
|---|
| 1015 |
|
|---|
| 1016 | RealFTF(1);
|
|---|
| 1017 |
|
|---|
| 1018 | Int_t dim2 = fDim*fDim;
|
|---|
| 1019 | Float_t c02;
|
|---|
| 1020 | Float_t ck2;
|
|---|
| 1021 | Float_t cn2;
|
|---|
| 1022 | //
|
|---|
| 1023 | // Fill the new histogram:
|
|---|
| 1024 | //
|
|---|
| 1025 | // 1) P(0) = 1/(N*N) |C(0)|*|C(0)|
|
|---|
| 1026 | //
|
|---|
| 1027 | c02 = (fDataF[0]*fDataF[0]);
|
|---|
| 1028 | newhist->Fill(0.,c02/dim2);
|
|---|
| 1029 | //
|
|---|
| 1030 | // 2) P(k) = 1/(N*N) (|C(k)|*|C(k)|))
|
|---|
| 1031 | //
|
|---|
| 1032 | for (Int_t k=2;k<fDim;k+=2)
|
|---|
| 1033 | {
|
|---|
| 1034 | ck2 = (fDataF[k]*fDataF[k] + fDataF[k+1]*fDataF[k+1]);
|
|---|
| 1035 | newhist->Fill(k/2.,ck2/dim2);
|
|---|
| 1036 | }
|
|---|
| 1037 | //
|
|---|
| 1038 | // 3) P(N) = 1/(N*N) (|C(n/2)|*|C(n/2)|)
|
|---|
| 1039 | //
|
|---|
| 1040 | cn2 = (fDataF[1]*fDataF[1]);
|
|---|
| 1041 | newhist->Fill(fDim/2.-1.,cn2/dim2);
|
|---|
| 1042 |
|
|---|
| 1043 | return newhist;
|
|---|
| 1044 | }
|
|---|
| 1045 |
|
|---|
| 1046 |
|
|---|
| 1047 | //
|
|---|
| 1048 | // Power Spectrum Density calculation for TH1I
|
|---|
| 1049 | //
|
|---|
| 1050 | TH1F* MFFT::PowerSpectrumDensity(const TH1F *hist)
|
|---|
| 1051 | {
|
|---|
| 1052 | return PowerSpectrumDensity((TH1*)hist);
|
|---|
| 1053 | }
|
|---|
| 1054 |
|
|---|
| 1055 | //
|
|---|
| 1056 | // Power Spectrum Density calculation for TH1I
|
|---|
| 1057 | //
|
|---|
| 1058 | TH1F* MFFT::PowerSpectrumDensity(const TH1I *hist)
|
|---|
| 1059 | {
|
|---|
| 1060 | return PowerSpectrumDensity((TH1*)hist);
|
|---|
| 1061 | }
|
|---|
| 1062 |
|
|---|
| 1063 |
|
|---|
| 1064 | void MFFT::CheckDim(Int_t a)
|
|---|
| 1065 | {
|
|---|
| 1066 |
|
|---|
| 1067 | // If even number, return 0
|
|---|
| 1068 | if (a==2) return;
|
|---|
| 1069 |
|
|---|
| 1070 | // If odd number, return the closest power of 2
|
|---|
| 1071 | if (a & 1)
|
|---|
| 1072 | {
|
|---|
| 1073 | Int_t b = 1;
|
|---|
| 1074 | while (b < fDim/2+1)
|
|---|
| 1075 | b <<= 1;
|
|---|
| 1076 |
|
|---|
| 1077 | fDim = b;
|
|---|
| 1078 | // gLog << warn << "Dimension of Data is not a multiple of 2, will take only first "
|
|---|
| 1079 | // << fDim << " entries! " << endl;
|
|---|
| 1080 | return;
|
|---|
| 1081 | }
|
|---|
| 1082 |
|
|---|
| 1083 | CheckDim(a>>1);
|
|---|
| 1084 | }
|
|---|
| 1085 |
|
|---|
| 1086 | TH1* MFFT::CheckHist(const TH1 *hist, const Int_t flag)
|
|---|
| 1087 | {
|
|---|
| 1088 |
|
|---|
| 1089 | // number of entries
|
|---|
| 1090 | fDim = hist->GetNbinsX();
|
|---|
| 1091 | CheckDim(fDim);
|
|---|
| 1092 |
|
|---|
| 1093 | // Step width
|
|---|
| 1094 | Double_t delta = hist->GetBinWidth(1);
|
|---|
| 1095 |
|
|---|
| 1096 | // Nyquist frequency
|
|---|
| 1097 | Axis_t fcrit = 1./(2.*delta);
|
|---|
| 1098 | Axis_t low = -0.5;
|
|---|
| 1099 | Axis_t up = fcrit;
|
|---|
| 1100 |
|
|---|
| 1101 | switch (flag)
|
|---|
| 1102 | {
|
|---|
| 1103 | case 0:
|
|---|
| 1104 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
|---|
| 1105 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
|---|
| 1106 | fDim/2,low,up);
|
|---|
| 1107 | break;
|
|---|
| 1108 | case 1:
|
|---|
| 1109 | return new TH1D(Form("%s%s",hist->GetName()," PSD"),
|
|---|
| 1110 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
|---|
| 1111 | fDim/2,low,up);
|
|---|
| 1112 | break;
|
|---|
| 1113 | default:
|
|---|
| 1114 | return new TH1F(Form("%s%s",hist->GetName()," PSD"),
|
|---|
| 1115 | Form("%s%s",hist->GetTitle()," - Power Spectrum Density"),
|
|---|
| 1116 | fDim/2,low,up);
|
|---|
| 1117 | break;
|
|---|
| 1118 | }
|
|---|
| 1119 | }
|
|---|
| 1120 |
|
|---|
| 1121 | //
|
|---|
| 1122 | // Real function spectrum with data windowing
|
|---|
| 1123 | //
|
|---|
| 1124 | TArrayF* MFFT::RealFunctionSpectrum(const TArrayF *data)
|
|---|
| 1125 | {
|
|---|
| 1126 |
|
|---|
| 1127 | fDim = data->GetSize();
|
|---|
| 1128 | CheckDim(fDim);
|
|---|
| 1129 |
|
|---|
| 1130 | fDataF.Set(fDim);
|
|---|
| 1131 | //
|
|---|
| 1132 | // Copy the hist into an array
|
|---|
| 1133 | //
|
|---|
| 1134 | for (Int_t i=0;i<fDim;i++)
|
|---|
| 1135 | fDataF[i] = data->At(i);
|
|---|
| 1136 |
|
|---|
| 1137 | fWindowF.Set(fDim);
|
|---|
| 1138 |
|
|---|
| 1139 | Int_t dim2 = fDim/2;
|
|---|
| 1140 |
|
|---|
| 1141 | TArrayF *power = new TArrayF(dim2);
|
|---|
| 1142 |
|
|---|
| 1143 | //
|
|---|
| 1144 | // Start program spctrm from NR's
|
|---|
| 1145 | //
|
|---|
| 1146 | Float_t w, facp, facm, sumw=0.;
|
|---|
| 1147 |
|
|---|
| 1148 | facm = dim2;
|
|---|
| 1149 | facp = 1./dim2;
|
|---|
| 1150 |
|
|---|
| 1151 | for (Int_t j=0;j<dim2;j++)
|
|---|
| 1152 | {
|
|---|
| 1153 | Int_t j2 = j+j;
|
|---|
| 1154 | w = ApplyWindow(j,facm,facp);
|
|---|
| 1155 | sumw += w*w;
|
|---|
| 1156 | fWindowF[j2] = fDataF[j]*w;
|
|---|
| 1157 | fWindowF[j2+1] = fDataF[dim2+j]*w;
|
|---|
| 1158 | }
|
|---|
| 1159 |
|
|---|
| 1160 | TransformF(1,fWindowF);
|
|---|
| 1161 |
|
|---|
| 1162 | power->AddAt(fWindowF[0]*fWindowF[0] + fWindowF[1]*fWindowF[1],0);
|
|---|
| 1163 |
|
|---|
| 1164 | // power->AddAt(fWindowF[0]*fWindowF[0],0);
|
|---|
| 1165 | // power->AddAt(fWindowF[1]*fWindowF[1],dim2-1);
|
|---|
| 1166 |
|
|---|
| 1167 |
|
|---|
| 1168 | for (Int_t j=1;j<dim2;j++)
|
|---|
| 1169 | // for (Int_t j=1;j<dim2;j++)
|
|---|
| 1170 | {
|
|---|
| 1171 | Int_t j2 = j+j;
|
|---|
| 1172 | Float_t buf = fWindowF[j2+1] *fWindowF[j2+1]
|
|---|
| 1173 | + fWindowF[j2 ] *fWindowF[j2 ]
|
|---|
| 1174 | + fWindowF[fDim-j2+1]*fWindowF[fDim-j2+1]
|
|---|
| 1175 | + fWindowF[fDim-j2 ]*fWindowF[fDim-j2 ] ;
|
|---|
| 1176 | power->AddAt(buf/sumw/(fDim+fDim),j);
|
|---|
| 1177 | }
|
|---|
| 1178 |
|
|---|
| 1179 | return power;
|
|---|
| 1180 |
|
|---|
| 1181 | }
|
|---|