\documentclass[12pt,openbib]{article} \usepackage{german,graphicx,amssymb,amsmath,wasysym,stmaryrd,times,a4wide,wrapfig,exscale,xspace,url,fancyhdr} \usepackage[round]{natbib} %cleardoubleplain,liststotoc,bibtotoc,idxtotoc, %\documentclass[a4paper,12pt,oneside,german]{article} %\usepackage[ansinew]{inputenc} \input library.def \frenchspacing \newcommand{\loi}{\large \textbf{LoI:}\normalsize} \newcommand{\anmerk}[1]{ \marginpar [{\parbox[t]{19.mm}{\footnotesize\sf {#1}} \parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}}] {\parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}\parbox[t]{17.mm}{ \footnotesize \sf {#1} } } } %\textwidth17cm %\oddsidemargin-0.5cm %\oddsidemargin-1.cm %\textheight25cm %\topmargin=-1.5cm \begin{document} \noindent {\LARGE{\bf \begin{center} Antrag auf Gew"ahrung einer Sachbeihilfe\\Proposal for a research project \end{center} }} \noindent {\it Das Inhaltsverzeichnis dient nur zur "Ubersicht und ist im eigentlichen Antrag nicht enthalten. \\ \ {\underline{\bf to do Liste}}\\ \begin{itemize} \item [1.6] Es muss sich jemand einen der Texte (oder ein Konglomerat daraus) aussuchen. \item [2.1] ist inhaltlich (u.A.) um die (z.T. in deutsch) angegebenen Stichpunkte zu erg"anzen. \item [2.2] ist noch (von Wolfgang und Karl?) zu schreiben. \item [3.1] ist inhaltlich (u.A.) um die (z.T. in deutsch) angegebenen Stichpunkte zu erg"anzen. \item [3.2] ist w"ortlich aus dem LoI kopiert und bedarf wom"oglich einer "Uberarbeitung im Sinne der Kapitel"uberschrift. \item [4.x] sind sprachlich, inhaltlich und optisch zu "uberarbeiten. \item [5.1] ist sprachlich (in deutsch lassen?) und inhaltlich (v.A. W"urzburg) zu "uberarbeiten. \item [5.2] ist inhaltlich (u.A.) um die angegebenen Stichpunkte und Informationen aus W"urzburg zu erg"anzen. \item [--] Plots und Bilder sind noch zu erg"anzen. \item [--] Referenzen sind im ganzen Text noch zu erg"anzen. \item [{\bf alles}] muss nat"urlich noch auf Orthographie und "`sprachliche Eleganz"' hin gegengelesen werden. \end{itemize} \newpage } \tableofcontents \newpage %%% {\LARGE{\bf \begin{center} Neuantrag auf Gew"ahrung einer Sachbeihilfe\\Proposal for a research project \end{center} }} \section{Allgemeine Angaben/General Information}\anmerk{Die Gliederung ist von der DFG vorgegeben} \subsection{Antragsteller/Applicants} % IN CASE A PROJECT IS DISTRIBUTED BETWEEN SEVERAL INSTITUTES % PLEASE GIVE AT LEAST ONE APPLICANT FOR EACH INSTITUTE; % ALSO, IN THIS CASE, THE PROPOSAL MUST MAKE CLEAR WHICH % RESOURCES GO TO WHERE, HOW THE WORK IS SPLIT, HOW THE INTERACTION % SHALL PROCEED ETC. {\bf Rhode, Wolfgang, Prof.~Dr.~Dr.}\\ Universit"atsprofessor (C3)\\ born Oct 17 1961, Nationality: German\\ Institut f"ur Physik\\ Lehrstuhl: Experimentelle Physik V (Astroteilchenphysik)\\ Dienstaddresse:\\ Universit"at Dortmund\\ D-44221 Dortmund\\ \begin{tabular}{ll} Phone:&+49\,(231)\,755-3550\\ Fax:&+49\,(231)\,755-4547\\ Email:&wolfgang.rhode@udo.edu\\ \end{tabular} \noindent Home address: Am Schilken 28, 58285 Gevelsberg (TELEFONNUMMER) \vskip0.3cm\noindent {\bf Mannheim, Karl, Prof.~Dr.}\\ Universit"atsprofessor (C4)\\ born Jan 4 1960, Nationality: German\\ Institut f"ur Theoretische Physik und Astrophysik\\ Lehrstuhl f"ur Astronomie\\ Dienstaddresse:\\ Julius-Maximilian-Universit"at W"urzburg\\ D-97074 W"urzburg\\ \begin{tabular}{ll} Phone:&+49\,(931)\,888-5031\\ Fax:&+49\,(931)\,888-4603\\ Email:&mannhein@astro.uni-wuerzbueg.de\\ \end{tabular} \noindent Home address: Oswald-Kunzemann-Str. 12, 97299 Zell am Main (TELEFON) %} \subsection{Thema/Topic} Long-term VHE $\gamma$-ray monitoring of bright blazars with a dedicated Cherenkov telescope \subsection{Fachgebiet und Arbeitsrichtung\\Scientific discipline and field of work} Astronomy and Astrophysics, Particle Astrophysics \subsection{Voraussichtliche Gesamtdauer/Scheduled duration in total} 3\,years \subsection{Antragszeitraum/Application period} 3\,years. Work on the project may and will begin immediately after the funding. \clearpage \subsection{Zusammenfassung/Summary} \anmerk{nicht mehr als 15 Zeilen oder max. 1600 Zeichen. in 12pt sind 1600 Zeichen aber 19 Zeilen} Beantragt \citeauthor{Chandrasekhar:1931} wird die F"orderung eines Luft-Cherenkov-Teleskops f"ur Langzeitbeobachtungen von Gamma-Quellen im Energiebereich zwischen 500 GeV und 50 TeV (DWARF=Dedicated multiWavelength Astroparticle Research Facility). Mit DWARF sollen zwei Aufgaben bei der Beobachtung erf"ullt werden: 1. weitgehend automatisierte Langzeitbeobachtungen von bekannten hochenergetischen Quellen. Solche Beobachtungen stehen nicht auf dem Programm der im Betrieb befindlichen Generation von Cherenkov-Teleskopen 2. Multiwavelenght-Kampangen mit Photon-Detektoren in unterschiedlichen Energiebreichen, insbesondere auch mit dem Neutrino-Teleskop IceCube. F"ur den Aufbau von DWARF soll die bestehende Infrastruktur auf dem Roque de los Muchachos auf der kanarischen Insel La Palma genutzt werden. Dort befindet sich der zur Zeit ungenutzte Mount des ehemaligen ``HEGRA-Cherenkov-Teleskops 3'' sowie eine zur Plazierung der Elektronik geeignete H"utte samt elektrischer Versorgung bei dem Teleskop. Zur Minimierung von Peronalkosten soll das Teleskop nach der Aufbauphase weitestgehend robotisch "uber das Internet / einen Link "uber den ESA-Satelltien XYZ betrieben werden. Die mit DWARF vorgenommenen Messungen dienen der Kl"arung der Frage nach der zeitlichen Variabilit"at der Gamma-Emissionen von Aktiven Galaxien und den zugrundeliegenden Beschelunigungsmechanismen der kosmsichen Strahlung.\\ \loi\\ \textbf{Abstract:} We propose to set up a Cherenkov telescope with low-cost but high performance design for robotic operation. The goal is to achieve long-term monitoring of bright blazars which will unravel the origin and nature of their variability. The telescope design is based on a technological upgrade of one of the former telescopes of the HEGRA collaboration on the Canarian Island La Palma (Spain). \\ \textbf{Introduction:} Since the termination of the HEGRA observations, the succeeding experiments MAGIC and H.E.S.S.\ have impressively extended the physical scope of gamma ray observations by detecting tens of formerly unknown gamma ray sources and analyzing their energy spectra and temporal behavior. This became possible by lowering the energy threshold from 700 GeV to less than 100 GeV and increasing at the same time the sensitivity by a factor of five.\\ To fully exploit the discovery potential of the improved sensitivity, the discovery of new, faint objects has become the major task for the new telescopes. A diversity of astrophysical source types such as pulsar wind nebulae, supernova remnants, microquasars, pulsars, radio galaxies, clusters of galaxies, gamma ray bursts, and blazers can be studied with these telescopes and limits their availability for monitoring purposes of well-known bright sources.\\ There are strong reasons to make an effort for the continuous monitoring of the few exceptionally bright blazars. This can be achieved by operating a dedicated monitoring telescope of the HEGRA-type, referred to in the following as DWARF (Dedicated multiWavelength Agn Research Facility). The reasons are outlined in detail below. \clearpage \section{Stand der Forschung, eigene Vorarbeiten\\State of the art, preliminary work by proposer} \subsection{Stand der Forschung/State of the art} \subsubsection{High energy gamma and neutrino sources} %============================================================ %Der TeV-Photon-Astronomie ist es in den letzten Jahrzehnten gelungen, {\bf 14} %extragalaktische und {\bf ???} galaktische Objekte am Himmel zu %identifizieren. Hinzu kommt die Detektion von zwei diffusen Regionen in der %Galaxie, die von H.E.S.S. {\bf ZITAT!} und Milagro {\bf ZITAT!!!} gesehen %wurden. Die erste Quelle wurde im Jahr {\bf 19??} von {\bf HEGRA ???} %beobachtet. Im Vergleich zu R\"ontgen-Messungen, die den Himmel nach Quellen %abscannen k\"onnen und dementsprechend mehr als {\bf 1000 ???} Quellen %katalogisiert haben {\bf ZITAT KATALOG XMM Newton/Chandra}, scheint diese %Anzahl jedoch sehr niedrig. Ein Grund ist das kleine Sichtfeld, was %Luft-Cherenkov Teleskope besitzen, ein weiterer, dass das TeV-Photon Signal weit entfernter Quellen %($z>0.2$) vom extragalaktischen Hintegrundlicht absorbiert wird. %Aufgrund der geringen Statistik an Quellen ist es zu diesem Zeitpunkt ist es notwendig, dass sich hochsensitive Instrumente %prim"ar auf die Untersuchung neuer Objekte am TeV-Photon-Himmel konzentrieren %und nicht auf die quantitative, permanente Beobachtung von schon bekannten %Quellen. Selbst wenn eine Quelle "uber einen l"angeren Zeitraum beobachtet %wurde, handelt es sich hier um einen Zeitraum von {\bf $<3$~Monaten ????}. In %dieser Zeit fallen jedoch sowohl Schlechtwetter-Perioden wie auch Phasen mit %starker Mond-Einstrahlung weg. Au{\ss}erdem muss beachtet werden, dass die %Quelle nur eine geringe Anzahl an Stunden sichtbar am Himmel ist. The TeV photon astronomy succeeded in discovering {\bf 14} extragalactic and {\bf ???} galactic objects at the sky during the past decades. Additionally there are two diffuse regions within our galaxy which have been detected by H.E.S.S.\ref{Aharonian:2006} and Milagro {\bf ZITAT!!!} {\it Neues Millagro Papier mit 4+ Quellregionen: "TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro" Arxiv-Nr.: 0705.0707} The first source was discovered in the year 19{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer anders, die zu allererst den Crab sahen?...ZITAT?)}. In comparison to x-ray measurments, which are able to scan the entire sky for sources and thus have cataloged more than {\bf 1000 ???} sources, this number appears to be quite small. One reason for this is the small field of view of imaging air cherenkov telesopes (IACTs), another reason the absorption of the TeV photon signal of distant ($z>0.2$) sources due to extragalactic background light (EBL). Due to this small statistic at the moment it is of particular importance that instruments with high sensitivity concentrate on the analysis of new objects in the TeV sky and not on the quantitative, permanent observation of already known sources. Even when a source was observed over a longer period of time this does mean {\bf less than three month ???? {\it Viel l"anger sind die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are es wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten hervorzuheben.}} But one has to take into account that during this time also periods of bad weather and times with strong moon light can significantly reduce observation time. Furthermore on has to consider that the sources are visible in the sky for few hours only. {\it Kann man das wirklich so sagen?} %Bei den bisher beobachteten galaktischen Objekten handelt es sich um %Mikroquasare und Supernova \"Uberreste, die identifizierten extragalaktischen %Objekte sind Aktive Galaxien (AGN). Die Objekte sind in Tabelle~\ref{tev_objects} %aufgelistet {\bf TESHIMAS VORTRAG IN MADISON}. Bei den AGN handelt es sich um %13 BLLacs und um eine FR-I Galaxie, M87. The so far observed galactic objects are microqasars and supernova remnands (SNR). The identified extragalactic sources are active galactic nuclei (AGN). The objects are listed in table~\ref{dummy} {\bf TESHIMAS VORTRAG IN MADISON}. The AGN are 13 BLLacs and one FR-I galaxy, M87. So High-peaked BL Lacertae objects are the prime source population for studies with Cherenkov telescopes. It is obvious that monitoring observations of strong blazars are orthogonal to the mission of the larger Cherenkov telescopes with their discovery potential for new sources (luminosity function, redshift distribution). \begin{table}[c] \label{dummy} \end{table} %Im Falle von hadronischer Teilchenbeschleunigung in den TeV Quellen, kann das %TeV Signal von $\pi^0$-Zerf"allen herr"uhren. Die neutralen Pionen kommen %von Delta-Resonanz Zerf"allen, die durch Proton-Photon Wechselwirkungen %entstehen. Ein weiterer Kanal im Zerfall der Delta-Resonanz f"uhrt zur %Produktion von geladenen Pionen und damit zur Produktion von Neutrinos in %koinzidenz mit TeV Photonen. Daher sind TeV Quellen auch immer interessant %f"ur Hochenergie-Neutrinoteleskope. In case of hadronic particle acceleration within the TeV emitters, the TeV signal may arise from $\pi^0$-decays. These neutral pions are decay products of of delta resonances, which are formed in proton-photon interactions. Anther decay channel of the delta resonance leads to the production of charged pions and thus to neutrino production, coincident with the TeV photons mentioned before. Therefrom TeV sources are always interesting objects for investigations with high energy neutrino telescopes. %Die hohe Variabilit"at in der zeitlichen Entwicklung der AGN %TeV-Photon-Spektren kann bisher noch nicht schl"ussig erkl"art %werden The strong variability in the temporal evolution of the AGN TeV photon spectra cannot be explained conclusively yet, {\it .... blabla quantitative Untersuchungen, d.h. Langzeituntersuchungen notwendig.} {\bf SENSITIVIT\"ATSPLOT}\\ {\bf TABELLE QUELLEN}\\ {\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren}\\ {\it Die Frage ist, ob man galaktische Quellen mit in die Langzeit-Beobachtung nehmen will, dann mu"s man das einzeln durchgehen. Ich bau die Argumentation gerade nur auf AGN auf:} \begin{itemize} \item Welche Quellen wurden oberhalb von 1 TeV bislang beobachtet? \item Welche Sensitivit"at braucht man? \item Warum braucht man Langzeitbeobachtungen? \item Warum stehen diese Beobachtungen nicht auf der Speisekarte der gro"sen neuen Telekope? \end{itemize} \paragraph{Physikalische Modelle} Erkl"are die verschiedenen Szenarien: \begin{itemize} \item Inverse Compton \item Proton Synchrotron \item Pion decay \end{itemize} Unterschiede darstellen: Pion bump ist nicht so Spitz; Inverse Compton: wenn man den 2. bump erh"oht, erh"oht sich automatisch auch der erste; oft widerspruch zu den Daten. Ich glaube, Proton Synchrotron hat das Problem nicht so, und auch Pion Zerfall nat"urlich nicht. Au"serdem: Stand der Dinge, um die Variabilit"at zu erkl"aren \paragraph{Ergebnisse von Multiwavelangth-Kampangen} {\it hier m"ussen die verschiedenen Szenarien - inverse Compton von elektronen/ proton Synchrotron und Pion-Zerf"alle an Einzelf"allen diskutiert werden. Es gibt Bsp., bei denen Inverse Compton sehr gut klappt; dann gibt's welche, wo das gar nicht hinhaut. Einen Fall gibt's, wo Integral-Daten "uberhaupt nicht ins Bild passen. Da gibts z.B. ein Papier von Aharonian zu auf astro-ph - irgendwann aus den letzten 3 Monaten.} Experimente erw"ahnen: EGRET, COMPTEL, Integral, H.E.S.S., MAGIC, wer noch??? f"ur bisherige Spektren; GLAST zum F"ullen der L"ucke!!! Auch hier: Diskussion der Variabilit"at; ``Orphan Flares''... \paragraph{Die Photon-Neutrino-Verbindung} BLABLA-\\ \textbf{The science case:} The variability of blazars, seen across the entire electromagnetic spectrum, arises from the dynamics of relativistic jets and the particle acceleration going on in them. The jets are launched from the vicinity of accreting supermassive black holes, and theoretical models predict variability arising from the interplay between jet expansion, particle injection, acceleration and cooling.\\ Long-term monitor observations of bright blazars are the key to obtain a solid data base for variability investigations. \subsection{Eigene Vorarbeiten/Preliminary work by proposer} \subsubsection{Quellphysik} \subsubsection{Beteiligung an Experimenten} \paragraph{MAGIC} \paragraph{IceCube} \loi\\ The Dortmund group is IceCube member and working since years on phenomenological calculations and data analysis of possible coincidences between VHE-gamma and neutrino-emission. \\ The available automatic analysis package developed by the W"urzburg group for MAGIC is modular and flexible, and can thus be used with minor changes for the DWARF project.\\ Ring-Methode f"ur wobble-modus aus W"urzburg? Monte Carlo production and storage will take place at Universit"at Dortmund Monte-Carlo-Erfahrung Dortmund $\to$ Marijkes Diplomarbeit A microcontroller based motion control unit (SPS) similar to the one of the current MAGIC II drive system will be used.\\ $\to$DriveSystem-Erfahrung W"urzburg To correct for axis misalignments and possible deformations of the structure (e.g. bending of camera holding masts) a pointing correction algorithm as used in the MAGIC tracking system will be applied. It is calibrated by measurement of the reflection of bright guide stars on the camera surface and ensures a pointing accuracy well below the pixel diameter. \\ $\to$ Diplomarbeit Benjamin Riegel (W"urzburg) \section{Ziele und Arbeitsprogramm\\Goals and work schedule} \subsection{Ziele/Goals} %Der vorliegende Antrag zielt darauf, das ehemalige CT3 der %HEGRA-Kollaboration auf dem Roque de los Muchachos mit verg"o"serter %Speiegelfl"ache und neuer Kamera und Datennahme unter dem Namen DWARF %wieder in Betrieb zu nehmen. Die Sensitivit"at dieses neuen Instrumentes %wird damit im Energiebereich oberhalb von 500 GeV etwa der des ebenfalls %stillgelegten Whipple-Teleskopes entsprechen. The present application aims at putting the former CT3 of the HEGRA collaboration on the Roque de los Muchachos back into operation - with an enlarged mirror surface and a new camera and data taking, under the name of DWARF. The sensitivity above 500\,GeV of this new instrument will thus correspond with the one of the also disused Whipple telescope. %Der Aufbau des Teleskopes soll in dem Sinn modular erfolgen, dass Komponenten %zuk"unftiger Teleskope (Spiegel, Kamera, DAQ) ggf. an diesem Aufbau getestet %und optimiert werden k"onnen. \noindent The layout of the telescope shall be carried out modular in such a sense that components of future telescopes (mirror, camera, DAQ) can be tested and optimized at this bodywork. %Wissenschaftlich sollen folgende Punkte realisiert werden: \noindent Scientifically the following aims shall be realized: \begin{itemize} %\item[(1)] Langzeitbeobachtungen zeitlicher Variationen von TeV-Gamma-Ray-Quellen.\\ \item[(1)] Long-term observations of temporal variations of TeV gamma ray sources.\\ An understanding of this variability will deepen our knowledge about \begin{itemize} \item the composition and generation of the jets, intimately connected to the physics of the ergosphere of rapidly spinning black holes embedded into the hot plasma from the accretion flow. \item the plasma physics responsible for highly efficient particle acceleration, bearing similarities to plasma physics of the interaction between extremely intense laser beams and matter. \item the orbital modulation of jets due to binary black holes expected from galaxy merger models.\\ the search for signatures of binary black hole systems from orbital modulation of VHE gamma ray emission \end{itemize} Long-term monitor observations of bright blazars are the key to obtain a solid data base for variability investigations. Assuming conservatively the performance of a single HEGRA-type telescope, long-term monitoring of at least the following blazars is possible: Mrk421, Mrk501, 1ES 2344+514, 1ES 1959+650, H 1426+428, PKS 2155-304. We emphasize that DWARF will run as a facility dedicated to these targets only, providing a maximum observation time for the program. \textbf{\textit{oder ist dieser Abschnitt doch besser in 3.2. aufgehoben?!}} \item[(2)] Coincident observations with gamma telescopes in different energy ranges:\\ Flux variations will be determined and compared with variability properties in other wavelength ranges. \item[(3)] Coincident observations with the neutrino telescope IceCube:\\ Hadronic emission processes and possible coincidences between VHE-gamma and neutrino-emission will be studied. \item [(5)] Furthermore, we seek to obtain know-how for the operation of future networks of Cherenkov telescopes (e.g. a monitoring array around the globe or CTA) or telescopes at inaccessible sites. \end {itemize} \subsection{Arbeitsprogramm/Work schedule}\anmerk{3.2 soll etwa die H"alfte des Antrages ausmachen} \loi\\ At least one of the proposed targets will be visible any time of the year (see plot/appendix). For calibration purposes, some time will be scheduled for observations of the Crab nebula, which is the brightest known VHE emitter with constant flux.\\ In detail the following investigations are planned: \begin{itemize} \item As direct result of the measurements, the duty cycle, the baseline emission, and the power spectrum of flux variations will be determined and compared with variability properties in other wavelength ranges. \item The lightcurves will be interpreted using models for the nonthermal emission from relativistically expanding plasma jets. In particular models currently developed in the context of the Research Training Group "Theoretical Astrophysics" in W"urzburg (Graduiertenkolleg, GK1147) shall be used. Particle acceleration is studied with hybrid MHD and particle-in-cell methods. \item The black hole mass and accretion rate will be determined from the emission models. Estimates of the black hole mass from emission models, a possible orbital modulation, and the Magorrian relation (relating the black hole mass with the stellar bulge mass of the host galaxy) will be compared. \item When flaring states will be discovered during the monitor program, MAGIC will issue a Target of Opportunity observation to obtain better time resolution (Letters of support?). Corresponding Target-of-Opportunity (ToO) proposals to H.E.S.S.\ and Veritas are in preparation. \item Correlating the arrival times of neutrinos detected by the neutrino telescope IceCube with simultaneous measurements of DWARF will allow to test the hypothesis that flares in blazar jets are connected to hadronic emission processes and thus to neutrino emission from these sources. The investigation proposed here is complete for both, neutrino and gamma observations, and can therefore lead to conclusive results. \item The diffusive fluxes of escaping UHE cosmic rays obtained from AUGER or flux limits of neutrinos from IceCube, respectively, will be used to constrain models of UHE cosmic ray origin and large-scale magnetic fields. \item Multi-frequency observations together with the Mets"ahovi Radio Observatory and the optical Tuorla Observatory are planned (Letters of support appendix). The measurements will be correlated with INTEGRAL and GLAST results, when available. X-ray monitoring using the SWIFT and Suzaku facilities will be proposed. \item The most ambitious scientific goal of this proposal is the search for signatures of binary black hole systems from orbital modulation of VHE gamma ray emission. In case of a confirmation of the present hints in the temporal behaviour of Mrk501, gravitational wave templates could be computed with high accuracy to establish their discovery with LISA (PhD project at W"urzburg funded by the German LISA consortium). \end{itemize} \textbf{The technical setup:} At the Observatorio de los Muchachos (ORM), at the MAGIC site, the mount of the former HEGRA telescope CT3 now owned by the MAGIC collaboration is still operational. One hut for electronics close to the telescope is available. Additional space is available in the MAGIC counting house. The MAGIC Memorandum of Understanding allows for operating it as an auxiliary instrument, and basic support from the shift crew of MAGIC is guaranteed, although robotic operation is the primary goal. Robotic operation is necessary to reduce costs and man power demands. Furthermore, we seek to obtain know-how for the operation of future networks of Cherenkov telescopes (e.g. a monitoring array around the globe or CTA) or telescopes at inaccessible sites. From the experience with the construction and operation of MAGIC or HEGRA, respectively, the proposing groups consider the planned focused approach (small number of experienced scientists) as optimal for achieving the project goals. The available automatic analysis package developed by the W"urzburg group for MAGIC is modular and flexible, and can thus be used with minor changes for the DWARF project. Therefore construction, commissioning and operation of a small scale Cherenkov telescope are best suitable for education and training of students by experienced scientists. To complete the mount to a functional Cherenkov telescope within a period of one year, the following steps are necessary: Camera: For long-term observations stability of the camera is a major criterion. To keep the systematic errors small good background estimation is mandatory. The only possibility for a synchronous determination of the background is the determination from the night-sky observed in the same field-of-view with the same instrument. To achieve this the observed position is moved out of the camera center which allows the estimation of the background from positions symmetric with respect to the camera center (so called wobble-mode). This observation mode increases the sensitivity by a factor of two because spending observation for dedicated background observations becomes obsolete, which also ensures a better time coverage of the observed sources. Having a camera large enough allowing more than one independent position for background estimation increases sensitivity further by better background statistics. This is the case if the source can be shifted 0.6deg-0.7deg out of the camera center. A camera completely containing shower images of events in the energy region of 1TeV-10TeV should have a diameter in the order of 5 deg. To decrease the dependence of the background measurement on the camera geometry, a camera layout as symmetric as possible will be chosen. Consequently a camera allowing for wobble-mode observations should be round and have a diameter of 4.5deg-5.0deg. To achieve this requirements a 313 Pixel camera (see figure \ref{camDWARF}) will been build based on the experience with HEGRA and MAGIC. 19 mm diameter Photomultiplier Tubes (PM, EMI 4035) will be bought, similar to the HEGRA type (EMI\,9083\,KFLA). With a 20$\%$ improved quantum efficiency they ensure a granularity which is enough to guarantee good results even below the energy threshold (flux peak energy). Each individual pixel has to be equipped with a preamplifier, an active high-voltage supply and control. The total expense for a single pixel will be in the order of 600 EURO. If development of G-APDs (QE$\ge$50$\%$) will be fast enough, respectively the price low enough, and their long term stability is proven well in time, their usage will be considered. For a transition time one of the old HEGRA cameras might be borrowed (see figure \ref{camCT3}). With a special coating (wavelength shifter) its quantum efficiency might be improved by ~8$\%$\ref{Paneque:2004}. Camera support: The camera chassis must be water tight. An automatic lid protecting the PMs at day-time will be installed. For further protection a plexi-glass window will be installed in the front of the camera. By over-coating the window with an anti-reflex layer of magnesium-fluoride a gain in transmission of 5$\%$ is expected. Each PM will be equipped with a light-guide (Winston Cone) as developed by UC Davis and successfully in operation in the MAGIC camera. (3000 EURO). The current design will be improved by using a high reflectivity aluminized Mylar mirror-foil, overcoated with a dialectical layer (SiO2 alternated with Niobium Oxide), to reach a reflectivity in the order of 98$\%$. In total this will gain ~15$\%$ in light-collection efficiency compared to the old CT3 system. For this setup the camera holding has to be redesigned. (1500EURO?) An electric and optical shielding of the individual PMs is planned. The mechanical work is done at Universit"at Dortmund. Data acquisition: For the data acquisition system a hardware readout based on an analog ring buffer (Domino II/III), currently developed for the MAGIC II readout, will be used. This technology allows sampling the pulses with high frequencies and allows to readout several channels with a single Flash-ADC resulting in low-costs. The low power consumption will allow including the digitization near the signal source which makes an analog signal transfer obsolete. The advantage is less pick-up noise and less signal dispersion. By high sampling rates (0.5\,GHz-1.2\,GHz) additional information about the pulse shape can be obtained. This increasing the over-all sensitivity further, because the short integration time allows for almost perfect suppression of noise due to night-sky background photons. The estimated trigger- (readout-) rate of the telescope is below 100\,Hz (HEGRA: $<$10\,Hz) which allows to use a low-cost industrial solution for readout of the system like USB\,2.0. (30.000-45.000: 95-145/channel). As for the HEGRA telescopes a simple multiplicity trigger is enough, but also a simple three-next-neighbors (closed package) could be programmed. ($<$30.000: $<$100/channel). To guarantee a homogenous trigger setup over the whole camera the individual pixel rates, dominated by night-sky noise, will be monitored and kept constant. Additional data reduction and preprocessing in the readout hardware or the readout computer is provided. Assuming conservatively storage of raw-data at a readout rate of 30\,Hz the storage space needed is less than 250\,GB/month or 3\,TB/year. This amount of data can easily be stored and processed by the W"urzburg Datacenter (current online capacity $>$20\,TB, offline capacity $>$30\,TB, $>$16\,CPUs). To archive the data safely 25 tapes (LTO3 with 400\,GB each, $\sim$1000\,EURO) and a SATA disk-array ($\sim$4000EURO) will be bought. On-site computing: For on-site computing less than three standard PCs are needed ($\sim$8.000EURO). This includes readout and storage, preprocessing, and telescope control. For safety reasons a firewall is mandatory. For local storage and backup two RAID\,5 SATA disk arrays with less than one Terabyte capacity each will fulfill the requirement ($\sim$4.000EURO). The data will be transmitted as soon as possible after data taking via Internet to the W"urzburg Datacenter. Monte Carlo production and storage will take place at Universit"at Dortmund For the absolute time necessary for an accurate source tracking a GPS clock will be bought. Mount and Drive: The present mount is used. Only a smaller investment for safety, corrosion protection, cable ducts, etc. is needed (7.500). For movement motors, shaft encoders and control electronics in the order of 10.000 EURO have to be bought. The drive system should allow for relatively fast repositioning for three reasons: 1) Fast movement might be mandatory for future ToO observations. 2) Wobble-mode observations will be done changing the wobble-position continuously (each 20\,min) for symmetry reasons. 3) To ensure good time coverage of more than one source visible at the same the observed source will be changed in constant time intervals ($\sim$20\,min). Therefore three 150 Watt servo motors are intended. A microcontroller based motion control unit (SPS) similar to the one of the current MAGIC II drive system will be used. For communication with the readout-system a standard Ethernet connection based on the TCP/IP- and UDP-protocol is applied. Security: An uninterruptible power-supply unit (UPS) with 5-10\,kW will be installed to protect the equipment against power cuts and ensure a safe telescope position at the time of sun-rise. ($<$2000EURO) Mirrors: The existing mirrors are replaced by new plastic mirrors which are currently developed by the group of Wolfgang Dr"oge. The cheap and light-weight material has been formerly used for Winston cones flown in balloon experiments. The mirrors are copied from a master, coated with a reflecting and a protective material. Previous tests have given promising results. By a change of the mirror geometry the mirror area can be increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture \ref{CT3} and montage \ref{DWARF}); this includes an increase of $\sim$10$\%$ per mirror by using a hexagonal layout. A further increase of the mirror area would require a reconstruction of parts of the mount and will therefore be considered only in later phase of the experiment. If the current development cannot be finished in time a re-machining of the old glass mirrors (8.5\,m$^2$) is possible with high purity aluminum and quartz coating. (Both cases: 30 mirrors, 10k, offer by L-Tec $\lesssim$500 EURO / mirror *30 mirrors = 15.000 EURO without transfer) To keep track of the alignment, reflectivity and optical quality of the individual mirrors, and the point-spread function of the total mirror, during long-term observations the application of an automatic mirror adjustment system, as developed by ETH Z"urich and successfully operated on the MAGIC telescope, is intended. The system will be provided by ETH Z"urich. (1.000 EURO/pannel) For a 3.5\,m diameter mirror the delay between an isochronous parabolic mirror and a spherical mirror at the edge is in the order of 1ns (see figure/appendix). For a sampling rate in the order of 1\,GHz a mirror mounting with a parabolic shape in needed. Since their small size the individual mirrors can still have a spherical shape. Telescope calibration: Tracking: To correct for axis misalignments and possible deformations of the structure (e.g. bending of camera holding masts) a pointing correction algorithm as used in the MAGIC tracking system will be applied. It is calibrated by measurement of the reflection of bright guide stars on the camera surface and ensures a pointing accuracy well below the pixel diameter. Therefore a high sensitive low-cost video camera, as already in operation for MAGIC I and II, (300 EURO camera, 300 EURO optics, 300 EURO housing) will be installed. PM Gain: For the calibration of the PM gain a calibration system as used for the MAGIC telescope is build. (2000 EURO) Summarizing, the expenses for the telescope are dominated by the camera and DAQ. The financial volume for the complete hardware inclusive transport amounts roughly 400.000 EURO. \textbf{Future extensions:} The known duty cycle of 10\% ($\sim$1000h/year) for a Cherenkov telescope operated at La Palma limits the time-coverage of the observations. Therefore we propose a worldwide network of ($<$10) small scale Cherenkov telescopes to be build in the future allowing 24\,h monitoring of the bright AGNs. Such a system is so far completely unique in this energy range. In a first stage of the project mounts of other former HEGRA telescopes could be used operated at locations in Croatia, the United States and Mexico. For an increased sensitivity and improved energy threshold the use of a low-cost mount build by the company MERO for solar power generation is proposed. The mount is based on the experiences with the MAGIC telescope, also builds by MERO, and has a diameter in the order of eight meters. Including support (concrete foundation, railways, etc) the costs are below 100.000EURO \subsection{Biologisch, medizinische Experiment} Untersuchungen an Mensch oder Tier, sowie gentechnische Experimente werden nicht durchgef"uhrt. \newpage \begin{figure}[ht] \centering{ \includegraphics[width=12cm]{cam271.eps} \caption{Schematic picture of the 313 pixel camera for DWARF with a field of view of 5$^\circ$.} \label{camDWARF} } \end{figure} \begin{figure}[ht] \centering{ \includegraphics[width=10.5cm]{cam313.eps} \caption{Schematic picture of the 271 pixel CT-3 camera with a field of view of 4.6$^\circ$.} \label{camCT3} } \end{figure} \begin{figure}[ht] \centering{ \includegraphics[width=12cm]{cam313.eps} \caption{Picture of the HEGRA CT-3 taken at a time when it was still in operation.} \label{CT3} } \end{figure} \begin{figure}[ht] \centering{ \includegraphics[width=12cm]{cam313.eps} \caption{Photo montage of DWARF as it will look alike after the mirror replacement.} \label{DWARF} } \end{figure} \clearpage \newpage \section{Beantragte Mittel/Funds requested} \subsection{Personalbedarf/Required staff} %Wir beantragen die F"orderung von je einem Postdoc und Doktoranden in %W"urzburg und Dortmund. We request funding for two postdocs (BATIIa, 3y) and two Ph.D. students (BATIIa/2, 3y), one in Dortmund and one in W"urzburg each. (im Antrag ist der qualifizierte Einsatz der studentischen Hilfskraefte darzulegen, KEINE Betr"age angeben!) (Bezahlung ab wann?, Kurzer Abriss der Aufgaben, ggf. Namen) \anmerk{2 Institute x 3 Jahre x (1 PD = 60.000 + 1 PhD = 30.000) = 2 x 250.000 = 500.000} %Von den Mitarbeitern sollen folgende Aufgaben erf"ullt werden: The staff members shall fulfill the following tasks: \begin{itemize} \item Postdoc W"urzburg \item Doktorand W"urzbug \item Postdoc Dortmund \item Doktorand Dortmund \end{itemize} %Geeignete und ggf. interessierte Kandidaten f"ur Postdocstellen sind... Suitable candidates interested in these positions are Dr. xxx, Dr. yyy, Dipl.-Phys. zzz and Dipl.-Phys. www. \subsection{Wissenschaftliche Ger"ate/Scientific equipment} \begin{itemize} \item Camera: 313Pixel*650EURO/Pixel ~ 200.000EURO (204kEURO) \begin{itemize} \item Pixel: 650EURO/Pixel \begin{itemize} \item 300-350EUROEURO Photomultiplier (EMI 4051) \item 50EURO Preamplifier \item 200-250EURO HV control and support (EMI) \end{itemize} \item Winston Cones: 3000EURO (?) \item Camera holding and chassis: 3000EURO(?) \end{itemize} \item Data acquisition: 313channel*245EURO/channel ~ 77.000EURO \begin{itemize} \item 145 (95) EURO/channel Readout \item 100EURO/channel Trigger \end{itemize} \item Calibration System: 9.000EURO \begin{itemize} \item 2000EURO Absolute light calibration? \item IPR control? \item Weather station 500EURO \item 1500EURO GPS clock \item 5.000EURO CD Cameras + readout \end{itemize} \item Mirrors: 15.000EURO \item On-site computing: 12.000EURO \begin{itemize} \item 3xPC: 8000EURO \item SATA RAID 3TB: 4000EURO \end{itemize} \item Computing: 4.000EURO \begin{itemize} \item 3TB SATA Disk space: 4000EURO(?) \end{itemize} \item AMC: 1000EURO/pannel \item UPS: 2000EURO \item 7.500EURO Robotics \end{itemize} \subsection{Verbrauchsmaterial/Consumables} Stromrechnung La Palma, wie hoch pro Jahr? \begin{itemize} \item operation costs: 5000EURO/3years \item 25 LTO3 Tapes: 1000EURO \item 10.000EURO Consumables \end{itemize} \subsection{Reisen/Travel expenses} \begin{itemize} \item 35.000EURO Travel and construction \end{itemize} \subsection{Publikationskosten/Publication costs} %keine none \subsection {Sonstige Kosten} %keine\\ \begin{itemize} \item 5.000EURO transport and storage container \item Dismantling (0, will be covered by proposing institutes) \item 15.000EURO Transport \end{itemize} \section{Voraussetzungen f"ur die Durchf"uhrung des Vorhabens\\Preconditions for carrying out the project} %Vor Durchf"uhrung ist die Zustimmung der Magic-Kollaboration und des %IAC einzuholen. Nach Vorgespr"achen ist von der Erteilung dieser %Zustimmung auszugehen. Before realization the consent of the Magic collaboration and the IAC is required. According to preliminary talks this consent is expected to be given. \subsection{Zusammensetzung der Arbeitsgruppe/The research team} \noindent {\bf Dortmund}: \begin{itemize} \item Prof. Dr. Dr. Wolfgang Rhode (Grundausttattung) \item Dr. Tanja Kneiske (Postdoc (Ph"anomenologie), Forschungsstipendium) \item Dr. Julia Becker (Postdoc (Ph"anomenologie), Grundausttattung) \item Dipl.-Phys. Jens Dreyer (Doktorand (IceCube), Grundausttattung) \item Dipl.-Phys Kirsten M"unich (Doktorandin (IceCube), Projekt-finanziert) \item Dipl.Phys. Marijke Haffke (Doctorandin (MAGIC), XXXXXXXXXXXXXXXXX) \item M.Sci. Valentin Curtef (Doktorand (MAGIC), Projekt-finanziert) \item cand. phys. Jan L"unemann (Diplomand (IceCube), zum F\"orderbeginn diplomiert) \item cand. phys. Dominik Leier (Diplomand (Ph"anomenologie), zum F\"orderbeginn diplomiert) \item cand. phys. Michael Backes (Diplomand (MAGIC), zum F\"orderbeginn diplomiert) \item cand. phys. Daniela Hadasch (Diplomandin (MAGIC)) \item Dipl.-Ing. Kai Warda (Elektronik) \item PTA Matthias Domke (Systemadministration) \end{itemize} \noindent{\bf W"urzburg}: \begin{itemize} \item Prof. Dr. Karl Mannheim (Grundausttattung) \item Dipl.-Phys. nn (Grundausstattung) \item Dipl.-Phys. nn (Fremdfinanziert) \end{itemize} \subsection{Zusammenarbeit mit anderen Wissenschaftlern\\Co-operation with other scientists} %Beide antragstellenden Arbeitsgruppen arbeiten in der internationalen %MAGIC-Kollaboration mit den dort vertretenen Arbeitsgruppen zusammen. %(W"urzburg gef"ordert vom BMBF, Dortmund z.Zt. mit Berufungsmitteln.)\\ Both applying groups co-operate with the international MAGIC-Collaboration and the institutes represented therein. (W"urzburg funded by the BMBF, Dortmund by means of appointment for the moment.)\\ {\bf Dr.~Adrian Biland, Prof.~Dr.~Eckart Lorenz (both ETH Z"urich)}\\ {\bf Prof.~Riccardo Paoletti (Università di Siena and INFN sez. di Pisa, Italy)}\\ %Die Arbeitsgruppe in Dortmund ist an dem IceCube-Experiment beteiligt %(BMBF-F"orderung) und unterh"alt zu den Kollaborationspartnern enge %Kontakte. Dar"uber hinaus bestehen auf dem Gebiet der Ph"anomenologie %gute Arbeitskontakte zu der Gruppe von Prof.~Dr.~Reinhard~Schlickeiser, %Ruhr-Universit"at Bochum und Prof.~Dr.~Peter~Biermann, MPIfR %Bonn. Weitere Kontakte bestehen zu Dr.~Anita Reimer, Stanford (USA) und %Prof.~Dr.~Ray~Protheroe, Adelaide (Australien).\\ \noindent The group in Dortmund is involved in the IceCube experiment (BMBF funding) and maintains close contacts to the collaboration partners. Moreover on the field of phenomenology there do exist good working contacts to the groups of Prof.~Dr.~Reinhard~Schlickeiser, Ruhr-Universit"at Bochum and Prof.~Dr.~Peter~Biermann, MPIfR Bonn. There are furthermore contacts to Dr.~Anita Reimer, Stanford (USA) and Prof.~Dr.~Ray~Protheroe, Adelaide (Australien).\\ {\bf Francis Halzen, evtl. John Quenby}\\ \noindent W"urzburg is involved in ... maintains contacts to ...\\ Prof.~Dr.~Wolfgang Dr\"oge\\ \subsection{Arbeiten im Ausland, Kooperation mit Partnern im Ausland\\Work outside Germany, Cooperation with foreign partners} %Die Arbeiten an DWARF werden auf dem ORM der Spanischen Insel La Palma und in %enger Zusammenarbeit mit der MAGIC-Kollaboration ausgef"uhrt. The work on DWARF will take place at the ORM on the Spanish island La Palma. It will be performed in close collaboration with the MAGIC-collaboration. \subsection{Apparative Ausstattung/Scientific equipment available} %Sowohl in W"urzburg als auch in Dortmund stehen umfangreiche %Rechnerkapazi"aten zur Datenspeicherung und -analyse zur Verf"ugung.\\ Both in Dortmund and in W"urzburg there are extensive computer capacities available for data storing as well as for data analysis. %Dortmund: Der Fachbereich Physik der Universit"at Dortmund verf"ugt "uber %modern ausgestattete mechanische und elektronische Werkst"atten %einschlie"slich einer Elektronik-Entwicklung. Der Lehrstuhlbereich %Astroteilchenphysik verf"ugt "uber g"angige zur Erstellung moderner %DAQ erforderliche apparative Ausstattung.\\ Dortmund: The Fachbereich Physik at the Universit"at Dortmund has modern equipped mechanical and electrical workshops including a department for development of electronics at its command. The Lehrstuhlbereich Astroteilchenphysik possesses common technical equipment required for constructing modern DAQ. W"urzburg:... \subsection{Laufende Mittel f"ur Sachausgaben\\The institution's general contribution} %Das gegenw"artige Budget des Lehrstuhls f"ur Astronomie der Universit"at %W"urzburg betr"agt $\approx $ 12345 EURO pro Jahr.\\ %Das gegenw"artige Budget des Lehrstuhlbereiches Astroteilchnphysik der %Universit"at Dortmund betr"agt $\approx $ 20000 EURO pro Jahr. Current total institute budget from the Universit"at Dortmund $\approx$ 20000 EURO per year.\\ Current total institute budget from the Universit"at W"urzburg $\approx$ xxxxx EURO per year.\\ \subsection{Sonstige Voraussetzungen/Other requirements} %keine none \subsection{Interessenskonflikte bei wirtschaftlichen Aktivit"aten\\Conflicts of interest in economic activities} %keine none \section{Erkl"arungen/Declarations} \noindent %{\bf 6.1} Ein Antrag auf Finanzierung dieses Vorhabens wurde bei %keiner anderen Stelle eingereicht. Im Falle eines solchen Antrages %wird die Deutsche Forschungsgemeinschaft von uns unverz"uglich % benachrichtigt. {\bf 6.1} A request for funding this project has not been submitted to any other addressee. In case we submit such a request we will inform the Deutsche Forschungsgemeinschaft immediately. \noindent %{\bf 6.2} Die Vertrauensdozenten an der Universit"at W"urzbug %(Prof. XXXX) und an der Universit"at Dortmund (Prof. Dr. Gather ) sind %von der Antragstellung unterrichtet worden. {\bf 6.2} The corresponding persons (Vertrauensdozenten) at the Universit"at Dortmund (Prof. Dr. Gather) and at the Universit"at W"urzburg (Prof. XXXXX) have been informed about the submission of this proposal. \noindent %{\bf 6.3} entf"allt {\bf 6.3} N/A \newpage \section{Unterschriften/Signatures} \vspace{1 cm} \noindent 01. 06. 2007 \hspace{4cm} Prof. Dr. Dr. Wolfgang Rhode \vspace{3 cm} \noindent 01. 06. 2007 \hspace{4cm} Prof. Dr. Karl Mannheim \clearpage \section*{Verzeichnis der Anlagen/List of appendages} \begin{itemize} \item %Schriftenverzeichnis der Antragsteller seit dem Jahr 2000 List of refereed publications of the applicants since 2000 \item CV of Karl Mannheim \item CV of Wolfgang Rhode \end{itemize} \newpage %\section{References} \vskip0.3cm %\bibliographystyle{alpha} \newpage %(Referenzen aus unseren Gruppen sind mit einem Stern gekennzeichnet *) (References of our groups are marked by an asterix *) \bibliography{application} %This in the bibtex style, is ok. \bibliographystyle{plain} References will be added in the final version. %\begin{thebibliography}{99} %\bibitem{andreas_05} *M.~Ackermann et al., ''On the selection of AGN neutrino % source candidates $\ldots$'', submitted to {\app} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\end{thebibliography} \end{document}