source: branches/start/Dwarf/Documents/ApplicationDFG/application.tex@ 10058

Last change on this file since 10058 was 8595, checked in by tbretz, 18 years ago
*** empty log message ***
File size: 45.6 KB
Line 
1\documentclass[12pt,openbib]{article}
2\usepackage{german,graphicx,amssymb,amsmath,wasysym,stmaryrd,times,a4wide,wrapfig,exscale,xspace,url,fancyhdr}
3\usepackage[round]{natbib}
4
5%cleardoubleplain,liststotoc,bibtotoc,idxtotoc,
6
7%\documentclass[a4paper,12pt,oneside,german]{article}
8%\usepackage[ansinew]{inputenc}
9
10\input library.def
11
12\frenchspacing
13
14\newcommand{\loi}{\large \textbf{LoI:}\normalsize}
15\newcommand{\anmerk}[1]{ \marginpar
16 [{\parbox[t]{19.mm}{\footnotesize\sf {#1}}
17 \parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}}]
18 {\parbox[t]{2.mm}{\rule[-14.4mm]{1.mm}{17.mm}}\parbox[t]{17.mm}{
19 \footnotesize \sf {#1} } } }
20
21
22%\textwidth17cm
23%\oddsidemargin-0.5cm
24%\oddsidemargin-1.cm
25%\textheight25cm
26%\topmargin=-1.5cm
27
28
29\begin{document}
30\noindent
31
32{\LARGE{\bf
33\begin{center}
34Antrag auf Gew"ahrung einer Sachbeihilfe\\Proposal for a research project
35\end{center}
36}}
37
38\noindent {\it Das Inhaltsverzeichnis dient nur zur "Ubersicht und ist im eigentlichen Antrag nicht enthalten. \\
39
40\
41
42{\underline{\bf to do Liste}}\\
43\begin{itemize}
44 \item [1.6] Es muss sich jemand einen der Texte (oder ein Konglomerat daraus) aussuchen.
45 \item [2.1] ist inhaltlich (u.A.) um die (z.T. in deutsch) angegebenen Stichpunkte zu erg"anzen.
46 \item [2.2] ist noch (von Wolfgang und Karl?) zu schreiben.
47 \item [3.1] ist inhaltlich (u.A.) um die (z.T. in deutsch) angegebenen Stichpunkte zu erg"anzen.
48 \item [3.2] ist w"ortlich aus dem LoI kopiert und bedarf wom"oglich einer "Uberarbeitung im Sinne der Kapitel"uberschrift.
49 \item [4.x] sind sprachlich, inhaltlich und optisch zu "uberarbeiten.
50 \item [5.1] ist sprachlich (in deutsch lassen?) und inhaltlich (v.A. W"urzburg) zu "uberarbeiten.
51 \item [5.2] ist inhaltlich (u.A.) um die angegebenen Stichpunkte und Informationen aus W"urzburg zu erg"anzen.
52 \item [--] Plots und Bilder sind noch zu erg"anzen.
53 \item [--] Referenzen sind im ganzen Text noch zu erg"anzen.
54 \item [{\bf alles}] muss nat"urlich noch auf Orthographie und "`sprachliche Eleganz"' hin gegengelesen werden.
55\end{itemize}
56\newpage
57}
58\tableofcontents
59\newpage
60%%%
61
62{\LARGE{\bf
63\begin{center}
64Neuantrag auf Gew"ahrung einer Sachbeihilfe\\Proposal for a research project
65\end{center}
66}}
67
68\section{Allgemeine Angaben/General Information}\anmerk{Die Gliederung ist von der DFG vorgegeben}
69
70\subsection{Antragsteller/Applicants}
71% IN CASE A PROJECT IS DISTRIBUTED BETWEEN SEVERAL INSTITUTES
72% PLEASE GIVE AT LEAST ONE APPLICANT FOR EACH INSTITUTE;
73% ALSO, IN THIS CASE, THE PROPOSAL MUST MAKE CLEAR WHICH
74% RESOURCES GO TO WHERE, HOW THE WORK IS SPLIT, HOW THE INTERACTION
75% SHALL PROCEED ETC.
76{\bf Rhode, Wolfgang, Prof.~Dr.~Dr.}\\
77Universit"atsprofessor (C3)\\
78born Oct 17 1961, Nationality: German\\
79Institut f"ur Physik\\
80Lehrstuhl: Experimentelle Physik V (Astroteilchenphysik)\\
81
82Dienstaddresse:\\
83Universit"at Dortmund\\
84D-44221 Dortmund\\
85\begin{tabular}{ll}
86Phone:&+49\,(231)\,755-3550\\
87Fax:&+49\,(231)\,755-4547\\
88Email:&wolfgang.rhode@udo.edu\\
89\end{tabular}
90
91\noindent
92Home address: Am Schilken 28, 58285 Gevelsberg (TELEFONNUMMER)
93
94\vskip0.3cm\noindent
95{\bf Mannheim, Karl, Prof.~Dr.}\\
96Universit"atsprofessor (C4)\\
97born Jan 4 1960, Nationality: German\\
98Institut f"ur Theoretische Physik und Astrophysik\\
99Lehrstuhl f"ur Astronomie\\
100
101Dienstaddresse:\\
102Julius-Maximilian-Universit"at W"urzburg\\
103D-97074 W"urzburg\\
104\begin{tabular}{ll}
105Phone:&+49\,(931)\,888-5031\\
106Fax:&+49\,(931)\,888-4603\\
107Email:&mannhein@astro.uni-wuerzbueg.de\\
108\end{tabular}
109
110\noindent
111Home address: Oswald-Kunzemann-Str. 12, 97299 Zell am Main (TELEFON)
112%}
113
114\subsection{Thema/Topic}
115Long-term VHE $\gamma$-ray monitoring of bright blazars with a dedicated Cherenkov telescope
116
117\subsection{Fachgebiet und Arbeitsrichtung\\Scientific discipline and field of work}
118Astronomy and Astrophysics, Particle Astrophysics
119
120\subsection{Voraussichtliche Gesamtdauer/Scheduled duration in total}
1213\,years
122
123\subsection{Antragszeitraum/Application period}
1243\,years. Work on the project may and will begin immediately after the
125funding.
126
127\clearpage
128
129\subsection{Zusammenfassung/Summary}
130\anmerk{nicht mehr als 15 Zeilen oder max. 1600 Zeichen.
131 in 12pt sind 1600 Zeichen aber 19 Zeilen}
132
133Beantragt \citeauthor{Chandrasekhar:1931} wird die F"orderung eines
134Luft-Cherenkov-Teleskops f"ur Langzeitbeobachtungen von Gamma-Quellen
135im Energiebereich zwischen 500 GeV und 50 TeV (DWARF=Dedicated
136multiWavelength Astroparticle Research Facility). Mit DWARF sollen zwei
137Aufgaben bei der Beobachtung erf"ullt werden: 1. weitgehend
138automatisierte Langzeitbeobachtungen von bekannten hochenergetischen
139Quellen. Solche Beobachtungen stehen nicht auf dem Programm der im
140Betrieb befindlichen Generation von Cherenkov-Teleskopen 2.
141Multiwavelenght-Kampangen mit Photon-Detektoren in unterschiedlichen
142Energiebreichen, insbesondere auch mit dem Neutrino-Teleskop IceCube.
143F"ur den Aufbau von DWARF soll die bestehende Infrastruktur auf dem
144Roque de los Muchachos auf der kanarischen Insel La Palma genutzt
145werden. Dort befindet sich der zur Zeit ungenutzte Mount des
146ehemaligen ``HEGRA-Cherenkov-Teleskops 3'' sowie eine zur Plazierung
147der Elektronik geeignete H"utte samt elektrischer Versorgung bei dem
148Teleskop. Zur Minimierung von Peronalkosten soll das Teleskop nach der
149Aufbauphase weitestgehend robotisch "uber das Internet / einen Link
150"uber den ESA-Satelltien XYZ betrieben werden. Die mit DWARF
151vorgenommenen Messungen dienen der Kl"arung der Frage nach der
152zeitlichen Variabilit"at der Gamma-Emissionen von Aktiven Galaxien und
153den zugrundeliegenden Beschelunigungsmechanismen der kosmsichen
154Strahlung.\\
155
156\loi\\
157\textbf{Abstract:} We propose to set up a Cherenkov telescope with
158low-cost but high performance design for robotic operation. The goal is
159to achieve long-term monitoring of bright blazars which will unravel
160the origin and nature of their variability. The telescope design is
161based on a technological upgrade of one of the former telescopes of the
162HEGRA collaboration on the Canarian Island La Palma (Spain). \\
163
164\textbf{Introduction:} Since the termination of the HEGRA observations,
165the succeeding experiments MAGIC and H.E.S.S.\ have impressively extended
166the physical scope of gamma ray observations by detecting tens of
167formerly unknown gamma ray sources and analyzing their energy spectra
168and temporal behavior. This became possible by lowering the energy
169threshold from 700 GeV to less than 100 GeV and increasing at the same
170time the sensitivity by a factor of five.\\ To fully exploit the
171discovery potential of the improved sensitivity, the discovery of new,
172faint objects has become the major task for the new telescopes. A
173diversity of astrophysical source types such as pulsar wind nebulae,
174supernova remnants, microquasars, pulsars, radio galaxies, clusters of
175galaxies, gamma ray bursts, and blazers can be studied with these
176telescopes and limits their availability for monitoring purposes of
177well-known bright sources.\\ There are strong reasons to make an effort
178for the continuous monitoring of the few exceptionally bright blazars.
179This can be achieved by operating a dedicated monitoring telescope of
180the HEGRA-type, referred to in the following as DWARF (Dedicated
181multiWavelength Agn Research Facility). The reasons are outlined in
182detail below.
183
184\clearpage
185
186\section{Stand der Forschung, eigene Vorarbeiten\\State of the art, preliminary work by proposer}
187
188\subsection{Stand der Forschung/State of the art}
189
190\subsubsection{High energy gamma and neutrino sources}
191
192%============================================================
193%Der TeV-Photon-Astronomie ist es in den letzten Jahrzehnten gelungen, {\bf 14}
194%extragalaktische und {\bf ???} galaktische Objekte am Himmel zu
195%identifizieren. Hinzu kommt die Detektion von zwei diffusen Regionen in der
196%Galaxie, die von H.E.S.S. {\bf ZITAT!} und Milagro {\bf ZITAT!!!} gesehen
197%wurden. Die erste Quelle wurde im Jahr {\bf 19??} von {\bf HEGRA ???}
198%beobachtet. Im Vergleich zu R\"ontgen-Messungen, die den Himmel nach Quellen
199%abscannen k\"onnen und dementsprechend mehr als {\bf 1000 ???} Quellen
200%katalogisiert haben {\bf ZITAT KATALOG XMM Newton/Chandra}, scheint diese
201%Anzahl jedoch sehr niedrig. Ein Grund ist das kleine Sichtfeld, was
202%Luft-Cherenkov Teleskope besitzen, ein weiterer, dass das TeV-Photon Signal weit entfernter Quellen
203%($z>0.2$) vom extragalaktischen Hintegrundlicht absorbiert wird.
204%Aufgrund der geringen Statistik an Quellen ist es zu diesem Zeitpunkt ist es notwendig, dass sich hochsensitive Instrumente
205%prim"ar auf die Untersuchung neuer Objekte am TeV-Photon-Himmel konzentrieren
206%und nicht auf die quantitative, permanente Beobachtung von schon bekannten
207%Quellen. Selbst wenn eine Quelle "uber einen l"angeren Zeitraum beobachtet
208%wurde, handelt es sich hier um einen Zeitraum von {\bf $<3$~Monaten ????}. In
209%dieser Zeit fallen jedoch sowohl Schlechtwetter-Perioden wie auch Phasen mit
210%starker Mond-Einstrahlung weg. Au{\ss}erdem muss beachtet werden, dass die
211%Quelle nur eine geringe Anzahl an Stunden sichtbar am Himmel ist.
212
213The TeV photon astronomy succeeded in discovering {\bf 14}
214extragalactic and {\bf ???} galactic objects at the sky during the past
215decades. Additionally there are two diffuse regions within our galaxy
216which have been detected by H.E.S.S.\ref{Aharonian:2006} and Milagro {\bf
217ZITAT!!!} {\it Neues Millagro Papier mit 4+ Quellregionen: "TeV
218Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro"
219Arxiv-Nr.: 0705.0707} The first source was discovered in the year
22019{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer
221anders, die zu allererst den Crab sahen?...ZITAT?)}. In comparison to
222x-ray measurments, which are able to scan the entire sky for sources
223and thus have cataloged more than {\bf 1000 ???} sources, this number
224appears to be quite small. One reason for this is the small field of
225view of imaging air cherenkov telesopes (IACTs), another reason the
226absorption of the TeV photon signal of distant ($z>0.2$) sources due to
227extragalactic background light (EBL). Due to this small statistic at
228the moment it is of particular importance that instruments with high
229sensitivity concentrate on the analysis of new objects in the TeV sky
230and not on the quantitative, permanent observation of already known
231sources. Even when a source was observed over a longer period of time
232this does mean {\bf less than three month ???? {\it Viel l"anger sind
233die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are es
234wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten
235hervorzuheben.}} But one has to take into account that during this time
236also periods of bad weather and times with strong moon light can
237significantly reduce observation time. Furthermore on has to consider
238that the sources are visible in the sky for few hours only. {\it Kann
239man das wirklich so sagen?}
240
241%Bei den bisher beobachteten galaktischen Objekten handelt es sich um
242%Mikroquasare und Supernova \"Uberreste, die identifizierten extragalaktischen
243%Objekte sind Aktive Galaxien (AGN). Die Objekte sind in Tabelle~\ref{tev_objects}
244%aufgelistet {\bf TESHIMAS VORTRAG IN MADISON}. Bei den AGN handelt es sich um
245%13 BLLacs und um eine FR-I Galaxie, M87.
246
247The so far observed galactic objects are microqasars and supernova
248remnands (SNR). The identified extragalactic sources are active
249galactic nuclei (AGN). The objects are listed in table~\ref{dummy} {\bf
250TESHIMAS VORTRAG IN MADISON}. The AGN are 13 BLLacs and one FR-I
251galaxy, M87. So High-peaked BL Lacertae objects are the prime source
252population for studies with Cherenkov telescopes. It is obvious that
253monitoring observations of strong blazars are orthogonal to the mission
254of the larger Cherenkov telescopes with their discovery potential for
255new sources (luminosity function, redshift distribution).
256
257\begin{table}[c]
258\label{dummy}
259\end{table}
260
261%Im Falle von hadronischer Teilchenbeschleunigung in den TeV Quellen, kann das
262%TeV Signal von $\pi^0$-Zerf"allen herr"uhren. Die neutralen Pionen kommen
263%von Delta-Resonanz Zerf"allen, die durch Proton-Photon Wechselwirkungen
264%entstehen. Ein weiterer Kanal im Zerfall der Delta-Resonanz f"uhrt zur
265%Produktion von geladenen Pionen und damit zur Produktion von Neutrinos in
266%koinzidenz mit TeV Photonen. Daher sind TeV Quellen auch immer interessant
267%f"ur Hochenergie-Neutrinoteleskope.
268
269In case of hadronic particle acceleration within the TeV emitters, the
270TeV signal may arise from $\pi^0$-decays. These neutral pions are decay
271products of of delta resonances, which are formed in proton-photon
272interactions. Anther decay channel of the delta resonance leads to the
273production of charged pions and thus to neutrino production, coincident
274with the TeV photons mentioned before. Therefrom TeV sources are always
275interesting objects for investigations with high energy neutrino
276telescopes.
277
278%Die hohe Variabilit"at in der zeitlichen Entwicklung der AGN
279%TeV-Photon-Spektren kann bisher noch nicht schl"ussig erkl"art
280%werden
281The strong variability in the temporal evolution of the AGN TeV photon
282spectra cannot be explained conclusively yet,
283
284{\it .... blabla quantitative Untersuchungen, d.h.
285Langzeituntersuchungen notwendig.}
286
287{\bf SENSITIVIT\"ATSPLOT}\\
288{\bf TABELLE QUELLEN}\\
289{\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren}\\
290{\it Die Frage ist, ob man galaktische Quellen mit in die
291Langzeit-Beobachtung nehmen will, dann mu"s man das einzeln
292durchgehen. Ich bau die Argumentation gerade nur auf AGN auf:}
293
294\begin{itemize}
295\item Welche Quellen wurden oberhalb von 1 TeV bislang beobachtet?
296\item Welche Sensitivit"at braucht man?
297\item Warum braucht man Langzeitbeobachtungen?
298\item Warum stehen diese Beobachtungen nicht auf der Speisekarte der
299gro"sen neuen Telekope?
300\end{itemize}
301
302\paragraph{Physikalische Modelle}
303Erkl"are die verschiedenen Szenarien:
304\begin{itemize}
305\item Inverse Compton
306\item Proton Synchrotron
307\item Pion decay
308\end{itemize}
309
310Unterschiede darstellen: Pion bump ist nicht so Spitz; Inverse Compton:
311wenn man den 2. bump erh"oht, erh"oht sich automatisch auch der
312erste; oft widerspruch zu den Daten. Ich glaube, Proton Synchrotron hat
313das Problem nicht so, und auch Pion Zerfall nat"urlich nicht.
314
315Au"serdem: Stand der Dinge, um die Variabilit"at zu erkl"aren
316
317\paragraph{Ergebnisse von Multiwavelangth-Kampangen}
318{\it hier m"ussen die verschiedenen Szenarien - inverse Compton von
319elektronen/ proton Synchrotron und Pion-Zerf"alle an Einzelf"allen
320diskutiert werden. Es gibt Bsp., bei denen Inverse Compton sehr gut
321klappt; dann gibt's welche, wo das gar nicht hinhaut. Einen Fall
322gibt's, wo Integral-Daten "uberhaupt nicht ins Bild passen. Da gibts
323z.B. ein Papier von Aharonian zu auf astro-ph - irgendwann aus den
324letzten 3 Monaten.}
325
326Experimente erw"ahnen: EGRET, COMPTEL, Integral, H.E.S.S., MAGIC, wer
327noch??? f"ur bisherige Spektren; GLAST zum F"ullen der L"ucke!!!
328
329Auch hier: Diskussion der Variabilit"at; ``Orphan Flares''...
330
331\paragraph{Die Photon-Neutrino-Verbindung}
332BLABLA-\\
333
334\textbf{The science case:} The variability of blazars, seen across the
335entire electromagnetic spectrum, arises from the dynamics of
336relativistic jets and the particle acceleration going on in them. The
337jets are launched from the vicinity of accreting supermassive black
338holes, and theoretical models predict variability arising from the
339interplay between jet expansion, particle injection, acceleration and
340cooling.\\
341
342Long-term monitor observations of bright blazars are the key to obtain
343a solid data base for variability investigations.
344
345\subsection{Eigene Vorarbeiten/Preliminary work by proposer}
346
347\subsubsection{Quellphysik}
348
349\subsubsection{Beteiligung an Experimenten}
350
351\paragraph{MAGIC}
352
353\paragraph{IceCube}
354
355\loi\\
356
357The Dortmund group is IceCube member and working since years on
358phenomenological calculations and data analysis of possible
359coincidences between VHE-gamma and neutrino-emission. \\
360
361The available automatic analysis package developed by the W"urzburg
362group for MAGIC is modular and flexible, and can thus be used with
363minor changes for the DWARF project.\\
364
365Ring-Methode f"ur wobble-modus aus W"urzburg?
366
367Monte Carlo production and storage will take place at Universit"at
368Dortmund Monte-Carlo-Erfahrung Dortmund $\to$ Marijkes Diplomarbeit
369
370A microcontroller based motion control unit (SPS) similar to the one of
371the current MAGIC II drive system will be used.\\
372$\to$DriveSystem-Erfahrung W"urzburg
373
374To correct for axis misalignments and possible deformations of the
375structure (e.g. bending of camera holding masts) a pointing correction
376algorithm as used in the MAGIC tracking system will be applied. It is
377calibrated by measurement of the reflection of bright guide stars on
378the camera surface and ensures a pointing accuracy well below the pixel
379diameter. \\ $\to$ Diplomarbeit Benjamin Riegel (W"urzburg)
380
381\section{Ziele und Arbeitsprogramm\\Goals and work schedule}
382
383\subsection{Ziele/Goals}
384
385%Der vorliegende Antrag zielt darauf, das ehemalige CT3 der
386%HEGRA-Kollaboration auf dem Roque de los Muchachos mit verg"o"serter
387%Speiegelfl"ache und neuer Kamera und Datennahme unter dem Namen DWARF
388%wieder in Betrieb zu nehmen. Die Sensitivit"at dieses neuen Instrumentes
389%wird damit im Energiebereich oberhalb von 500 GeV etwa der des ebenfalls
390%stillgelegten Whipple-Teleskopes entsprechen.
391
392The present application aims at putting the former CT3 of the HEGRA
393collaboration on the Roque de los Muchachos back into operation - with
394an enlarged mirror surface and a new camera and data taking, under the
395name of DWARF. The sensitivity above 500\,GeV of this new instrument
396will thus correspond with the one of the also disused Whipple
397telescope.
398
399%Der Aufbau des Teleskopes soll in dem Sinn modular erfolgen, dass Komponenten
400%zuk"unftiger Teleskope (Spiegel, Kamera, DAQ) ggf. an diesem Aufbau getestet
401%und optimiert werden k"onnen.
402
403\noindent The layout of the telescope shall be carried out modular in
404such a sense that components of future telescopes (mirror, camera, DAQ)
405can be tested and optimized at this bodywork.
406
407%Wissenschaftlich sollen folgende Punkte realisiert werden:
408\noindent Scientifically the following aims shall be realized:
409
410\begin{itemize}
411%\item[(1)] Langzeitbeobachtungen zeitlicher Variationen von TeV-Gamma-Ray-Quellen.\\
412\item[(1)] Long-term observations of temporal variations of TeV gamma
413ray sources.\\
414An understanding of this variability will deepen our knowledge about
415 \begin{itemize}
416 \item the composition and generation of the jets, intimately connected
417to the physics of the ergosphere of rapidly spinning black holes
418embedded into the hot plasma from the accretion flow.
419 \item the plasma physics responsible for highly efficient particle
420acceleration, bearing similarities to plasma physics of the interaction
421between extremely intense laser beams and matter.
422 \item the orbital modulation of jets due to binary black holes
423expected from galaxy merger models.\\ the search for signatures of
424binary black hole systems from orbital modulation of VHE gamma ray
425emission
426 \end{itemize}
427Long-term monitor observations of bright blazars are the key to obtain
428a solid data base for variability investigations. Assuming
429conservatively the performance of a single HEGRA-type telescope,
430long-term monitoring of at least the following blazars is possible:
431Mrk421, Mrk501, 1ES 2344+514, 1ES 1959+650, H 1426+428, PKS 2155-304.
432We emphasize that DWARF will run as a facility dedicated to these
433targets only, providing a maximum observation time for the program.
434\textbf{\textit{oder ist dieser Abschnitt doch besser in 3.2.
435aufgehoben?!}}
436\item[(2)] Coincident observations with gamma telescopes in different
437energy ranges:\\ Flux variations will be determined and compared with
438variability properties in other wavelength ranges.
439\item[(3)] Coincident observations with the neutrino telescope
440IceCube:\\ Hadronic emission processes and possible coincidences
441between VHE-gamma and neutrino-emission will be studied.
442\item [(5)] Furthermore, we seek to obtain know-how for the operation
443of future networks of Cherenkov telescopes (e.g. a monitoring array
444around the globe or CTA) or telescopes at inaccessible sites.
445\end {itemize}
446
447\subsection{Arbeitsprogramm/Work schedule}\anmerk{3.2 soll etwa die
448H"alfte des Antrages ausmachen}
449
450\loi\\
451
452At least one of the proposed targets will be visible any time of the
453year (see plot/appendix). For calibration purposes, some time will be
454scheduled for observations of the Crab nebula, which is the brightest
455known VHE emitter with constant flux.\\
456
457In detail the following investigations are planned:
458\begin{itemize}
459\item As direct result of the measurements, the duty cycle, the
460baseline emission, and the power spectrum of flux variations will be
461determined and compared with variability properties in other wavelength
462ranges.
463\item The lightcurves will be interpreted using models for the
464nonthermal emission from relativistically expanding plasma jets. In
465particular models currently developed in the context of the Research
466Training Group "Theoretical Astrophysics" in W"urzburg
467(Graduiertenkolleg, GK1147) shall be used. Particle acceleration is
468studied with hybrid MHD and particle-in-cell methods.
469\item The black hole mass and accretion rate will be determined from
470the emission models. Estimates of the black hole mass from emission
471models, a possible orbital modulation, and the Magorrian relation
472(relating the black hole mass with the stellar bulge mass of the host
473galaxy) will be compared.
474\item When flaring states will be discovered during the monitor
475program, MAGIC will issue a Target of Opportunity observation to obtain
476better time resolution (Letters of support?). Corresponding
477Target-of-Opportunity (ToO) proposals to H.E.S.S.\ and Veritas are in
478preparation.
479\item Correlating the arrival times of neutrinos detected by the
480neutrino telescope IceCube with simultaneous measurements of DWARF will
481allow to test the hypothesis that flares in blazar jets are connected
482to hadronic emission processes and thus to neutrino emission from these
483sources. The investigation proposed here is complete for both, neutrino
484and gamma observations, and can therefore lead to conclusive results.
485\item The diffusive fluxes of escaping UHE cosmic rays obtained from
486AUGER or flux limits of neutrinos from IceCube, respectively, will be
487used to constrain models of UHE cosmic ray origin and large-scale
488magnetic fields.
489\item Multi-frequency observations together with the Mets"ahovi Radio
490Observatory and the optical Tuorla Observatory are planned (Letters of
491support appendix). The measurements will be correlated with INTEGRAL
492and GLAST results, when available. X-ray monitoring using the SWIFT and
493Suzaku facilities will be proposed.
494\item The most ambitious scientific goal of this proposal is the search
495for signatures of binary black hole systems from orbital modulation of
496VHE gamma ray emission. In case of a confirmation of the present hints
497in the temporal behaviour of Mrk501, gravitational wave templates could
498be computed with high accuracy to establish their discovery with LISA
499(PhD project at W"urzburg funded by the German LISA consortium).
500\end{itemize}
501
502\textbf{The technical setup:} At the Observatorio de los Muchachos
503(ORM), at the MAGIC site, the mount of the former HEGRA telescope CT3
504now owned by the MAGIC collaboration is still operational. One hut for
505electronics close to the telescope is available. Additional space is
506available in the MAGIC counting house. The MAGIC Memorandum of
507Understanding allows for operating it as an auxiliary instrument, and
508basic support from the shift crew of MAGIC is guaranteed, although
509robotic operation is the primary goal. Robotic operation is necessary
510to reduce costs and man power demands. Furthermore, we seek to obtain
511know-how for the operation of future networks of Cherenkov telescopes
512(e.g. a monitoring array around the globe or CTA) or telescopes at
513inaccessible sites. From the experience with the construction and
514operation of MAGIC or HEGRA, respectively, the proposing groups
515consider the planned focused approach (small number of experienced
516scientists) as optimal for achieving the project goals. The available
517automatic analysis package developed by the W"urzburg group for MAGIC
518is modular and flexible, and can thus be used with minor changes for
519the DWARF project. Therefore construction, commissioning and operation
520of a small scale Cherenkov telescope are best suitable for education
521and training of students by experienced scientists.
522
523To complete the mount to a functional Cherenkov telescope within a
524period of one year, the following steps are necessary:
525
526Camera:
527For long-term observations stability of the camera is a major
528criterion. To keep the systematic errors small good background
529estimation is mandatory. The only possibility for a synchronous
530determination of the background is the determination from the night-sky
531observed in the same field-of-view with the same instrument. To achieve
532this the observed position is moved out of the camera center which
533allows the estimation of the background from positions symmetric with
534respect to the camera center (so called wobble-mode). This observation
535mode increases the sensitivity by a factor of two because spending
536observation for dedicated background observations becomes obsolete,
537which also ensures a better time coverage of the observed sources.
538Having a camera large enough allowing more than one independent
539position for background estimation increases sensitivity further by
540better background statistics. This is the case if the source can be
541shifted 0.6deg-0.7deg out of the camera center. A camera completely
542containing shower images of events in the energy region of 1TeV-10TeV
543should have a diameter in the order of 5 deg. To decrease the
544dependence of the background measurement on the camera geometry, a
545camera layout as symmetric as possible will be chosen. Consequently a
546camera allowing for wobble-mode observations should be round and have a
547diameter of 4.5deg-5.0deg.
548
549To achieve this requirements a 313 Pixel camera (see figure
550\ref{camDWARF}) will been build based on the experience with HEGRA and
551MAGIC. 19 mm diameter Photomultiplier Tubes (PM, EMI 4035) will be
552bought, similar to the HEGRA type (EMI\,9083\,KFLA). With a 20$\%$
553improved quantum efficiency they ensure a granularity which is enough
554to guarantee good results even below the energy threshold (flux peak
555energy). Each individual pixel has to be equipped with a preamplifier,
556an active high-voltage supply and control. The total expense for a
557single pixel will be in the order of 600 EURO.
558
559If development of G-APDs (QE$\ge$50$\%$) will be fast enough,
560respectively the price low enough, and their long term stability is
561proven well in time, their usage will be considered.
562
563For a transition time one of the old HEGRA cameras might be borrowed
564(see figure \ref{camCT3}). With a special coating (wavelength shifter)
565its quantum efficiency might be improved by ~8$\%$\ref{Paneque:2004}.
566
567Camera support:
568The camera chassis must be water tight. An automatic lid protecting the
569PMs at day-time will be installed. For further protection a plexi-glass
570window will be installed in the front of the camera. By over-coating
571the window with an anti-reflex layer of magnesium-fluoride a gain in
572transmission of 5$\%$ is expected. Each PM will be equipped with a
573light-guide (Winston Cone) as developed by UC Davis and successfully in
574operation in the MAGIC camera. (3000 EURO). The current design will be
575improved by using a high reflectivity aluminized Mylar mirror-foil,
576overcoated with a dialectical layer (SiO2 alternated with Niobium
577Oxide), to reach a reflectivity in the order of 98$\%$. In total this
578will gain ~15$\%$ in light-collection efficiency compared to the old
579CT3 system.
580
581For this setup the camera holding has to be redesigned. (1500EURO?)
582
583An electric and optical shielding of the individual PMs is planned.
584
585The mechanical work is done at Universit"at Dortmund.
586
587Data acquisition:
588For the data acquisition system a hardware readout based on an analog
589ring buffer (Domino II/III), currently developed for the MAGIC II
590readout, will be used. This technology allows sampling the pulses with
591high frequencies and allows to readout several channels with a single
592Flash-ADC resulting in low-costs. The low power consumption will allow
593including the digitization near the signal source which makes an analog
594signal transfer obsolete. The advantage is less pick-up noise and less
595signal dispersion. By high sampling rates (0.5\,GHz-1.2\,GHz) additional
596information about the pulse shape can be obtained. This increasing the
597over-all sensitivity further, because the short integration time allows
598for almost perfect suppression of noise due to night-sky background
599photons. The estimated trigger- (readout-) rate of the telescope is
600below 100\,Hz (HEGRA: $<$10\,Hz) which allows to use a low-cost industrial
601solution for readout of the system like USB\,2.0. (30.000-45.000:
60295-145/channel).
603
604As for the HEGRA telescopes a simple multiplicity trigger is enough,
605but also a simple three-next-neighbors (closed package) could be
606programmed. ($<$30.000: $<$100/channel).
607
608To guarantee a homogenous trigger setup over the whole camera the
609individual pixel rates, dominated by night-sky noise, will be monitored
610and kept constant.
611
612Additional data reduction and preprocessing in the readout hardware or
613the readout computer is provided. Assuming conservatively storage of
614raw-data at a readout rate of 30\,Hz the storage space needed is less
615than 250\,GB/month or 3\,TB/year. This amount of data can easily be stored
616and processed by the W"urzburg Datacenter (current online capacity
617$>$20\,TB, offline capacity $>$30\,TB, $>$16\,CPUs). To archive the data
618safely 25 tapes (LTO3 with 400\,GB each, $\sim$1000\,EURO) and a SATA
619disk-array ($\sim$4000EURO) will be bought.
620
621On-site computing:
622For on-site computing less than three standard PCs are needed
623($\sim$8.000EURO). This includes readout and storage, preprocessing,
624and telescope control. For safety reasons a firewall is mandatory. For
625local storage and backup two RAID\,5 SATA disk arrays with less than one
626Terabyte capacity each will fulfill the requirement ($\sim$4.000EURO).
627The data will be transmitted as soon as possible after data taking via
628Internet to the W"urzburg Datacenter.
629
630Monte Carlo production and storage will take place at Universit"at
631Dortmund
632
633For the absolute time necessary for an accurate source tracking a GPS
634clock will be bought.
635
636Mount and Drive:
637The present mount is used. Only a smaller investment for safety,
638corrosion protection, cable ducts, etc. is needed (7.500).
639
640For movement motors, shaft encoders and control electronics in the
641order of 10.000 EURO have to be bought. The drive system should allow
642for relatively fast repositioning for three reasons: 1) Fast movement
643might be mandatory for future ToO observations. 2) Wobble-mode
644observations will be done changing the wobble-position continuously
645(each 20\,min) for symmetry reasons. 3) To ensure good time coverage of
646more than one source visible at the same the observed source will be
647changed in constant time intervals ($\sim$20\,min). Therefore three 150
648Watt servo motors are intended. A microcontroller based motion control
649unit (SPS) similar to the one of the current MAGIC II drive system will
650be used. For communication with the readout-system a standard Ethernet
651connection based on the TCP/IP- and UDP-protocol is applied.
652
653Security:
654An uninterruptible power-supply unit (UPS) with 5-10\,kW will be
655installed to protect the equipment against power cuts and ensure a safe
656telescope position at the time of sun-rise. ($<$2000EURO)
657
658Mirrors:
659The existing mirrors are replaced by new plastic mirrors which are
660currently developed by the group of Wolfgang Dr"oge. The cheap and
661light-weight material has been formerly used for Winston cones flown in
662balloon experiments. The mirrors are copied from a master, coated with
663a reflecting and a protective material. Previous tests have given
664promising results. By a change of the mirror geometry the mirror area
665can be increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture \ref{CT3} and
666montage \ref{DWARF}); this includes an increase of $\sim$10$\%$ per
667mirror by using a hexagonal layout. A further increase of the mirror
668area would require a reconstruction of parts of the mount and will
669therefore be considered only in later phase of the experiment.
670
671If the current development cannot be finished in time a re-machining of
672the old glass mirrors (8.5\,m$^2$) is possible with high purity aluminum
673and quartz coating. (Both cases: 30 mirrors, 10k, offer by L-Tec
674$\lesssim$500 EURO / mirror *30 mirrors = 15.000 EURO without transfer)
675
676To keep track of the alignment, reflectivity and optical
677quality of the individual mirrors, and the point-spread function of the
678total mirror, during long-term observations the application of an
679automatic mirror adjustment system, as developed by ETH Z"urich and
680successfully operated on the MAGIC telescope, is intended. The system
681will be provided by ETH Z"urich. (1.000 EURO/pannel)
682
683For a 3.5\,m diameter mirror the delay between an isochronous parabolic
684mirror and a spherical mirror at the edge is in the order of 1ns (see
685figure/appendix). For a sampling rate in the order of 1\,GHz a mirror
686mounting with a parabolic shape in needed. Since their small size the
687individual mirrors can still have a spherical shape.
688
689Telescope calibration:
690
691Tracking: To correct for axis misalignments and possible deformations
692of the structure (e.g. bending of camera holding masts) a pointing
693correction algorithm as used in the MAGIC tracking system will be
694applied. It is calibrated by measurement of the reflection of bright
695guide stars on the camera surface and ensures a pointing accuracy well
696below the pixel diameter. Therefore a high sensitive low-cost video
697camera, as already in operation for MAGIC I and II, (300 EURO camera,
698300 EURO optics, 300 EURO housing) will be installed.
699
700PM Gain: For the calibration of the PM gain a calibration system as
701used for the MAGIC telescope is build. (2000 EURO)
702
703Summarizing, the expenses for the telescope are dominated by the camera
704and DAQ. The financial volume for the complete hardware inclusive
705transport amounts roughly 400.000 EURO.
706
707\textbf{Future extensions:} The known duty cycle of 10\%
708($\sim$1000h/year) for a Cherenkov telescope operated at La Palma
709limits the time-coverage of the observations. Therefore we propose a
710worldwide network of ($<$10) small scale Cherenkov telescopes to be
711build in the future allowing 24\,h monitoring of the bright AGNs. Such a
712system is so far completely unique in this energy range. In a first
713stage of the project mounts of other former HEGRA telescopes could be
714used operated at locations in Croatia, the United States and Mexico.
715For an increased sensitivity and improved energy threshold the use of a
716low-cost mount build by the company MERO for solar power generation is
717proposed. The mount is based on the experiences with the MAGIC
718telescope, also builds by MERO, and has a diameter in the order of
719eight meters. Including support (concrete foundation, railways, etc)
720the costs are below 100.000EURO
721
722\subsection{Biologisch, medizinische Experiment}
723Untersuchungen an Mensch oder Tier, sowie gentechnische Experimente
724werden nicht durchgef"uhrt.
725
726\newpage
727
728\begin{figure}[ht]
729\centering{
730\includegraphics[width=12cm]{cam271.eps}
731\caption{Schematic picture of the 313 pixel camera for DWARF with a field of view of 5$^\circ$.}
732\label{camDWARF}
733}
734\end{figure}
735
736\begin{figure}[ht]
737\centering{
738\includegraphics[width=10.5cm]{cam313.eps}
739\caption{Schematic picture of the 271 pixel CT-3 camera with a field of view of 4.6$^\circ$.}
740\label{camCT3}
741}
742\end{figure}
743
744\begin{figure}[ht]
745\centering{
746\includegraphics[width=12cm]{cam313.eps}
747\caption{Picture of the HEGRA CT-3 taken at a time when it was still in operation.}
748\label{CT3}
749}
750\end{figure}
751
752\begin{figure}[ht]
753\centering{
754\includegraphics[width=12cm]{cam313.eps}
755\caption{Photo montage of DWARF as it will look alike after the mirror replacement.}
756\label{DWARF}
757}
758\end{figure}
759
760\clearpage
761\newpage
762
763\section{Beantragte Mittel/Funds requested}
764
765\subsection{Personalbedarf/Required staff}
766%Wir beantragen die F"orderung von je einem Postdoc und Doktoranden in
767%W"urzburg und Dortmund.
768We request funding for two postdocs (BATIIa, 3y) and two Ph.D. students
769(BATIIa/2, 3y), one in Dortmund and one in W"urzburg each.
770
771(im Antrag ist der qualifizierte Einsatz der studentischen Hilfskraefte
772darzulegen, KEINE Betr"age angeben!)
773
774(Bezahlung ab wann?, Kurzer Abriss der Aufgaben, ggf. Namen)
775
776\anmerk{2 Institute x 3 Jahre x (1
777PD = 60.000 + 1 PhD = 30.000) = 2 x 250.000 = 500.000}
778
779%Von den Mitarbeitern sollen folgende Aufgaben erf"ullt werden:
780The staff members shall fulfill the following tasks:
781
782\begin{itemize}
783
784\item Postdoc W"urzburg
785
786\item Doktorand W"urzbug
787
788\item Postdoc Dortmund
789
790\item Doktorand Dortmund
791
792\end{itemize}
793
794%Geeignete und ggf. interessierte Kandidaten f"ur Postdocstellen sind...
795Suitable candidates interested in these positions are Dr. xxx, Dr. yyy,
796Dipl.-Phys. zzz and Dipl.-Phys. www.
797
798\subsection{Wissenschaftliche Ger"ate/Scientific equipment}
799
800\begin{itemize}
801
802\item Camera: 313Pixel*650EURO/Pixel ~ 200.000EURO (204kEURO)
803 \begin{itemize}
804 \item Pixel: 650EURO/Pixel
805 \begin{itemize}
806 \item 300-350EUROEURO Photomultiplier (EMI 4051)
807 \item 50EURO Preamplifier
808 \item 200-250EURO HV control and support (EMI)
809 \end{itemize}
810 \item Winston Cones: 3000EURO (?)
811 \item Camera holding and chassis: 3000EURO(?)
812 \end{itemize}
813
814\item Data acquisition: 313channel*245EURO/channel ~ 77.000EURO
815 \begin{itemize}
816 \item 145 (95) EURO/channel Readout
817 \item 100EURO/channel Trigger
818 \end{itemize}
819
820\item Calibration System: 9.000EURO
821 \begin{itemize}
822 \item 2000EURO Absolute light calibration?
823 \item IPR control?
824 \item Weather station 500EURO
825 \item 1500EURO GPS clock
826 \item 5.000EURO CD Cameras + readout
827 \end{itemize}
828
829\item Mirrors: 15.000EURO
830
831\item On-site computing: 12.000EURO
832 \begin{itemize}
833 \item 3xPC: 8000EURO
834 \item SATA RAID 3TB: 4000EURO
835 \end{itemize}
836
837\item Computing: 4.000EURO
838 \begin{itemize}
839 \item 3TB SATA Disk space: 4000EURO(?)
840 \end{itemize}
841
842\item AMC: 1000EURO/pannel
843\item UPS: 2000EURO
844\item 7.500EURO Robotics
845
846\end{itemize}
847
848\subsection{Verbrauchsmaterial/Consumables}
849Stromrechnung La Palma, wie hoch pro Jahr?
850
851\begin{itemize}
852 \item operation costs: 5000EURO/3years
853 \item 25 LTO3 Tapes: 1000EURO
854 \item 10.000EURO Consumables
855\end{itemize}
856
857\subsection{Reisen/Travel expenses}
858\begin{itemize}
859 \item 35.000EURO Travel and construction
860\end{itemize}
861
862\subsection{Publikationskosten/Publication costs}
863%keine
864none
865
866\subsection {Sonstige Kosten}
867%keine\\
868\begin{itemize}
869 \item 5.000EURO transport and storage container
870 \item Dismantling (0, will be covered by proposing institutes)
871 \item 15.000EURO Transport
872\end{itemize}
873
874\section{Voraussetzungen f"ur die Durchf"uhrung des Vorhabens\\Preconditions for carrying out the project}
875%Vor Durchf"uhrung ist die Zustimmung der Magic-Kollaboration und des
876%IAC einzuholen. Nach Vorgespr"achen ist von der Erteilung dieser
877%Zustimmung auszugehen.
878
879Before realization the consent of the Magic collaboration and the IAC
880is required. According to preliminary talks this consent is expected to
881be given.
882
883\subsection{Zusammensetzung der Arbeitsgruppe/The research team}
884
885\noindent {\bf Dortmund}:
886
887\begin{itemize}
888\item Prof. Dr. Dr. Wolfgang Rhode (Grundausttattung)
889\item Dr. Tanja Kneiske (Postdoc (Ph"anomenologie), Forschungsstipendium)
890\item Dr. Julia Becker (Postdoc (Ph"anomenologie), Grundausttattung)
891\item Dipl.-Phys. Jens Dreyer (Doktorand (IceCube), Grundausttattung)
892\item Dipl.-Phys Kirsten M"unich (Doktorandin (IceCube), Projekt-finanziert)
893\item Dipl.Phys. Marijke Haffke (Doctorandin (MAGIC), XXXXXXXXXXXXXXXXX)
894\item M.Sci. Valentin Curtef (Doktorand (MAGIC), Projekt-finanziert)
895\item cand. phys. Jan L"unemann (Diplomand (IceCube), zum F\"orderbeginn diplomiert)
896\item cand. phys. Dominik Leier (Diplomand (Ph"anomenologie), zum F\"orderbeginn diplomiert)
897\item cand. phys. Michael Backes (Diplomand (MAGIC), zum F\"orderbeginn diplomiert)
898\item cand. phys. Daniela Hadasch (Diplomandin (MAGIC))
899\item Dipl.-Ing. Kai Warda (Elektronik)
900\item PTA Matthias Domke (Systemadministration)
901\end{itemize}
902
903\noindent{\bf W"urzburg}:
904
905\begin{itemize}
906\item Prof. Dr. Karl Mannheim (Grundausttattung)
907\item Dipl.-Phys. nn (Grundausstattung)
908\item Dipl.-Phys. nn (Fremdfinanziert)
909\end{itemize}
910
911\subsection{Zusammenarbeit mit anderen Wissenschaftlern\\Co-operation with other scientists}
912
913%Beide antragstellenden Arbeitsgruppen arbeiten in der internationalen
914%MAGIC-Kollaboration mit den dort vertretenen Arbeitsgruppen zusammen.
915%(W"urzburg gef"ordert vom BMBF, Dortmund z.Zt. mit Berufungsmitteln.)\\
916
917Both applying groups co-operate with the international MAGIC-Collaboration
918and the institutes represented therein. (W"urzburg funded by the BMBF, Dortmund
919by means of appointment for the moment.)\\
920{\bf Dr.~Adrian Biland, Prof.~Dr.~Eckart Lorenz (both ETH Z"urich)}\\
921{\bf Prof.~Riccardo Paoletti (Università di Siena and INFN sez. di Pisa, Italy)}\\
922
923%Die Arbeitsgruppe in Dortmund ist an dem IceCube-Experiment beteiligt
924%(BMBF-F"orderung) und unterh"alt zu den Kollaborationspartnern enge
925%Kontakte. Dar"uber hinaus bestehen auf dem Gebiet der Ph"anomenologie
926%gute Arbeitskontakte zu der Gruppe von Prof.~Dr.~Reinhard~Schlickeiser,
927%Ruhr-Universit"at Bochum und Prof.~Dr.~Peter~Biermann, MPIfR
928%Bonn. Weitere Kontakte bestehen zu Dr.~Anita Reimer, Stanford (USA) und
929%Prof.~Dr.~Ray~Protheroe, Adelaide (Australien).\\
930
931\noindent The group in Dortmund is involved in the IceCube experiment
932(BMBF funding) and maintains close contacts to the collaboration
933partners. Moreover on the field of phenomenology there do exist good
934working contacts to the groups of Prof.~Dr.~Reinhard~Schlickeiser,
935Ruhr-Universit"at Bochum and Prof.~Dr.~Peter~Biermann, MPIfR Bonn.
936There are furthermore contacts to Dr.~Anita Reimer, Stanford (USA) and
937Prof.~Dr.~Ray~Protheroe, Adelaide (Australien).\\ {\bf Francis Halzen,
938evtl. John Quenby}\\
939
940\noindent W"urzburg is involved in ... maintains contacts to ...\\
941Prof.~Dr.~Wolfgang Dr\"oge\\
942
943\subsection{Arbeiten im Ausland, Kooperation mit Partnern im Ausland\\Work outside Germany, Cooperation with foreign partners}
944%Die Arbeiten an DWARF werden auf dem ORM der Spanischen Insel La Palma und in
945%enger Zusammenarbeit mit der MAGIC-Kollaboration ausgef"uhrt.
946
947The work on DWARF will take place at the ORM on the Spanish island La
948Palma. It will be performed in close collaboration with the
949MAGIC-collaboration.
950
951\subsection{Apparative Ausstattung/Scientific equipment available}
952%Sowohl in W"urzburg als auch in Dortmund stehen umfangreiche
953%Rechnerkapazi"aten zur Datenspeicherung und -analyse zur Verf"ugung.\\
954Both in Dortmund and in W"urzburg there are extensive computer
955capacities available for data storing as well as for data analysis.
956
957%Dortmund: Der Fachbereich Physik der Universit"at Dortmund verf"ugt "uber
958%modern ausgestattete mechanische und elektronische Werkst"atten
959%einschlie"slich einer Elektronik-Entwicklung. Der Lehrstuhlbereich
960%Astroteilchenphysik verf"ugt "uber g"angige zur Erstellung moderner
961%DAQ erforderliche apparative Ausstattung.\\
962Dortmund: The Fachbereich Physik at the Universit"at Dortmund has
963modern equipped mechanical and electrical workshops including a
964department for development of electronics at its command. The
965Lehrstuhlbereich Astroteilchenphysik possesses common technical
966equipment required for constructing modern DAQ.
967
968W"urzburg:...
969
970\subsection{Laufende Mittel f"ur Sachausgaben\\The institution's general contribution}
971
972%Das gegenw"artige Budget des Lehrstuhls f"ur Astronomie der Universit"at
973%W"urzburg betr"agt $\approx $ 12345 EURO pro Jahr.\\
974%Das gegenw"artige Budget des Lehrstuhlbereiches Astroteilchnphysik der
975%Universit"at Dortmund betr"agt $\approx $ 20000 EURO pro Jahr.
976Current total institute budget from the Universit"at Dortmund $\approx$
97720000 EURO per year.\\
978
979Current total institute budget from the Universit"at W"urzburg
980$\approx$ xxxxx EURO per year.\\
981
982\subsection{Sonstige Voraussetzungen/Other requirements}
983%keine
984none
985
986\subsection{Interessenskonflikte bei wirtschaftlichen Aktivit"aten\\Conflicts of interest in economic activities}
987%keine
988none
989
990\section{Erkl"arungen/Declarations}
991\noindent
992%{\bf 6.1} Ein Antrag auf Finanzierung dieses Vorhabens wurde bei
993%keiner anderen Stelle eingereicht. Im Falle eines solchen Antrages
994%wird die Deutsche Forschungsgemeinschaft von uns unverz"uglich
995% benachrichtigt.
996{\bf 6.1} A request for funding this project has not been submitted to
997any other addressee. In case we submit such a request we will inform
998the Deutsche Forschungsgemeinschaft immediately.
999
1000\noindent
1001%{\bf 6.2} Die Vertrauensdozenten an der Universit"at W"urzbug
1002%(Prof. XXXX) und an der Universit"at Dortmund (Prof. Dr. Gather ) sind
1003%von der Antragstellung unterrichtet worden.
1004{\bf 6.2} The corresponding persons (Vertrauensdozenten) at the
1005Universit"at Dortmund (Prof. Dr. Gather) and at the Universit"at
1006W"urzburg (Prof. XXXXX) have been informed about the submission of this
1007proposal.
1008
1009\noindent
1010%{\bf 6.3} entf"allt
1011{\bf 6.3} N/A
1012
1013
1014\newpage
1015\section{Unterschriften/Signatures}
1016
1017\vspace{1 cm}
1018\noindent
101901. 06. 2007 \hspace{4cm} Prof. Dr. Dr. Wolfgang Rhode
1020
1021\vspace{3 cm}
1022\noindent
102301. 06. 2007 \hspace{4cm} Prof. Dr. Karl Mannheim
1024\clearpage
1025
1026\section*{Verzeichnis der Anlagen/List of appendages}
1027
1028\begin{itemize}
1029\item
1030%Schriftenverzeichnis der Antragsteller seit dem Jahr 2000
1031List of refereed publications of the applicants since 2000
1032\item
1033CV of Karl Mannheim
1034\item
1035CV of Wolfgang Rhode
1036\end{itemize}
1037
1038\newpage
1039%\section{References}
1040
1041\vskip0.3cm
1042
1043%\bibliographystyle{alpha}
1044\newpage
1045%(Referenzen aus unseren Gruppen sind mit einem Stern gekennzeichnet *)
1046(References of our groups are marked by an asterix *)
1047\bibliography{application}
1048%This in the bibtex style, is ok.
1049\bibliographystyle{plain}
1050References will be added in the final version.
1051%\begin{thebibliography}{99}
1052%\bibitem{andreas_05} *M.~Ackermann et al., ''On the selection of AGN neutrino
1053% source candidates $\ldots$'', submitted to {\app}
1054
1055
1056%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1057%\end{thebibliography}
1058
1059\end{document}
Note: See TracBrowser for help on using the repository browser.