1 | # coding: utf-8
|
---|
2 | import progressbar
|
---|
3 | import calendar
|
---|
4 | import numpy as np
|
---|
5 | from astropy.io import fits
|
---|
6 | import pandas as pd
|
---|
7 | from sqlalchemy import create_engine
|
---|
8 |
|
---|
9 | night_int = 20150721
|
---|
10 |
|
---|
11 |
|
---|
12 | def fjd(datetime_inst):
|
---|
13 | """ convert datetime instance to FJD
|
---|
14 | """
|
---|
15 | return calendar.timegm(datetime_inst.utctimetuple()) / (24.*3600.)
|
---|
16 |
|
---|
17 | def create_DB_connection():
|
---|
18 | from ConfigParser import SafeConfigParser
|
---|
19 | config = SafeConfigParser()
|
---|
20 | config.optionxform = str # this make the parsing case sensitive
|
---|
21 | config.read('config.ini')
|
---|
22 |
|
---|
23 | factdb = create_engine(
|
---|
24 | "mysql+mysqldb://{user}:{pw}@{host}/{db}".format(
|
---|
25 | user=config.get('database', 'user'),
|
---|
26 | pw=config.get('database', 'password'),
|
---|
27 | host=config.get('database', 'host'),
|
---|
28 | db=config.get('database', 'database'),
|
---|
29 | )
|
---|
30 | )
|
---|
31 |
|
---|
32 | return factdb
|
---|
33 |
|
---|
34 |
|
---|
35 | def get_all_data_runs_from_run_db(factdb):
|
---|
36 | keys = [
|
---|
37 | 'fRunID',
|
---|
38 | 'fNight',
|
---|
39 | 'fRunStart',
|
---|
40 | 'fRunStop',
|
---|
41 | ]
|
---|
42 |
|
---|
43 | sql_query = """SELECT {comma_sep_keys}
|
---|
44 | FROM RunInfo WHERE fRunTypeKey=1 ORDER BY fNight;
|
---|
45 | """
|
---|
46 | sql_query = sql_query.format(
|
---|
47 | comma_sep_keys=', '.join(keys),
|
---|
48 | )
|
---|
49 |
|
---|
50 | data_runs = pd.read_sql_query(
|
---|
51 | sql_query,
|
---|
52 | factdb,
|
---|
53 | parse_dates=['fRunStart', 'fRunStop'],
|
---|
54 | )
|
---|
55 |
|
---|
56 | return data_runs
|
---|
57 |
|
---|
58 |
|
---|
59 |
|
---|
60 | def get_trigger_rates(night_int, base_path='/fact/aux/'):
|
---|
61 | night_string = str(night_int)
|
---|
62 | fits_file = fits.open(
|
---|
63 | base_path+'{y}/{m}/{d}/{n}.FTM_CONTROL_TRIGGER_RATES.fits'.format(
|
---|
64 | n=night_string,
|
---|
65 | y=night_string[0:4],
|
---|
66 | m=night_string[4:6],
|
---|
67 | d=night_string[6:8],
|
---|
68 | )
|
---|
69 | )
|
---|
70 | trigger_rates = fits_file[1].data
|
---|
71 | return trigger_rates
|
---|
72 |
|
---|
73 |
|
---|
74 | def add_ratio_and_more_to_dataframe(data_runs):
|
---|
75 |
|
---|
76 | # create new columns and pre-assign some hopefully good NULL-like-values
|
---|
77 | data_runs['number_of_measurements'] = 0
|
---|
78 | data_runs['median_of_board_rates'] = np.nan
|
---|
79 | data_runs['std_dev_of_board_rates'] = np.nan
|
---|
80 | data_runs['fBoardTriggerRateRatioAboveThreshold'] = np.nan
|
---|
81 |
|
---|
82 | trigger_rates = None
|
---|
83 | last_night = None
|
---|
84 |
|
---|
85 | progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',
|
---|
86 | progressbar.Percentage(), ' ',
|
---|
87 | progressbar.ETA()])
|
---|
88 |
|
---|
89 | for dataframe_index in progress(data_runs.index):
|
---|
90 | this_run = data_runs.ix[dataframe_index]
|
---|
91 | if last_night != this_run['fNight']:
|
---|
92 | try:
|
---|
93 | trigger_rates = get_trigger_rates(this_run['fNight'])
|
---|
94 | except (IOError, ValueError):
|
---|
95 | continue
|
---|
96 | last_night = this_run['fNight']
|
---|
97 |
|
---|
98 | mask = (
|
---|
99 | (trigger_rates['Time'] > fjd(this_run['fRunStart'])) *
|
---|
100 | (trigger_rates['Time'] < fjd(this_run['fRunStop']))
|
---|
101 | )
|
---|
102 |
|
---|
103 | if mask.sum() == 0:
|
---|
104 | continue
|
---|
105 | try:
|
---|
106 | this_board_rates = trigger_rates['BoardRate'][mask]
|
---|
107 | except KeyError:
|
---|
108 | continue
|
---|
109 |
|
---|
110 | N = this_board_rates.shape[0]
|
---|
111 | data_runs.ix[dataframe_index, 'number_of_measurements'] = N
|
---|
112 |
|
---|
113 | left, med, right = np.percentile(
|
---|
114 | this_board_rates,
|
---|
115 | [50-20, 50, 50+20])
|
---|
116 | something_like_width = (right - left)/2.
|
---|
117 | # 40% of the area of the normal distrubution
|
---|
118 | # fall between -0.52*sigma and +0.52*sigma.
|
---|
119 | # The estimation of sigma in a distorted CDF
|
---|
120 | # is less affected near the median. (but of course less accurate as well.)
|
---|
121 | std_dev = something_like_width / 0.52
|
---|
122 |
|
---|
123 | median_board_rates = np.median(this_board_rates, axis=1)
|
---|
124 | over = (median_board_rates > med+3*std_dev).sum()
|
---|
125 |
|
---|
126 | data_runs.ix[dataframe_index, 'median_of_board_rates'] = med
|
---|
127 | data_runs.ix[dataframe_index, 'std_dev_of_board_rates'] = std_dev
|
---|
128 | data_runs.ix[dataframe_index, 'fBoardTriggerRateRatioAboveThreshold'] = float(over)/N
|
---|
129 |
|
---|
130 | def main(night_int):
|
---|
131 | factdb = create_DB_connection()
|
---|
132 | data_runs = get_all_data_runs_from_run_db(factdb)
|
---|
133 | add_ratio_and_more_to_dataframe(data_runs)
|
---|
134 | return data_runs
|
---|
135 |
|
---|
136 | if __name__ == '__main__':
|
---|
137 | data_runs = main(night_int)
|
---|
138 | data_runs.to_csv('foo.bar', index=False)
|
---|