| 1 | ========
|
|---|
| 2 | Examples
|
|---|
| 3 | ========
|
|---|
| 4 |
|
|---|
| 5 |
|
|---|
| 6 | RawData
|
|---|
| 7 | ========
|
|---|
| 8 |
|
|---|
| 9 | one may interactively play with the two most important classes *RawData* and
|
|---|
| 10 | *SlowData* from module pyfact...
|
|---|
| 11 |
|
|---|
| 12 | *datafilepath* and *calibfilepath* should be adjusted in case you are not working
|
|---|
| 13 | on the ISDC cluster.
|
|---|
| 14 |
|
|---|
| 15 | explore class RawData::
|
|---|
| 16 |
|
|---|
| 17 | from pyfact import RawData
|
|---|
| 18 | # or from pyfact import *
|
|---|
| 19 |
|
|---|
| 20 | datafilepath = '/fact/raw/2012/03/04/20120304_018.fits.gz'
|
|---|
| 21 | calibfilepath = '/fact/raw/2012/03/04/20120304_012.drs.fits.gz'
|
|---|
| 22 | run = RawData(datafilepath, calibfilepath)
|
|---|
| 23 | event = run.next()
|
|---|
| 24 |
|
|---|
| 25 | type(event)
|
|---|
| 26 |
|
|---|
| 27 | print 70*'*'
|
|---|
| 28 | for key in event:
|
|---|
| 29 | print 'key :', key
|
|---|
| 30 | print 'value:', event[key]
|
|---|
| 31 | print 70*'*'
|
|---|
| 32 |
|
|---|
| 33 | for historical reasons, an event contains *data* and *acal_data*, where *acal_data*
|
|---|
| 34 | would be the DRS amplitude calibrated data, and *data* would be uncalibrated.
|
|---|
| 35 | But since the calibration was moved into a C++ class, for better performance,
|
|---|
| 36 | these keys now contains the same data.
|
|---|
| 37 |
|
|---|
| 38 | loop over RawData::
|
|---|
| 39 |
|
|---|
| 40 | from pyfact import RawData
|
|---|
| 41 | # or from pyfact import *
|
|---|
| 42 |
|
|---|
| 43 | datafilepath = '/fact/raw/2012/03/04/20120304_018.fits.gz'
|
|---|
| 44 | calibfilepath = '/fact/raw/2012/03/04/20120304_012.drs.fits.gz'
|
|---|
| 45 | run = RawData(datafilepath, calibfilepath)
|
|---|
| 46 |
|
|---|
| 47 | for event in run:
|
|---|
| 48 | print 'event_id:', event['event_id']
|
|---|
| 49 | # the data can be found in event['data']
|
|---|
| 50 |
|
|---|
| 51 | SlowData
|
|---|
| 52 | =========
|
|---|
| 53 |
|
|---|
| 54 | have a look at some SlowData::
|
|---|
| 55 |
|
|---|
| 56 | :~$ cd /fact/aux/2012/05/30
|
|---|
| 57 | :/fact/aux/2012/05/30$ python
|
|---|
| 58 |
|
|---|
| 59 | from pyfact import SlowData
|
|---|
| 60 | file = SlowData('20120530.FTM_CONTROL_TRIGGER_RATES.fits')
|
|---|
| 61 | file.show()
|
|---|
| 62 |
|
|---|
| 63 |
|
|---|
| 64 | have a look at the *columns*, that are available::
|
|---|
| 65 |
|
|---|
| 66 | 'columns': {'BoardRate': (40L, 4L, 'E', 'Hz'),
|
|---|
| 67 | 'ElapsedTime': (1L, 4L, 'E', 'sec'),
|
|---|
| 68 | 'FTMtimeStamp': (1L, 8L, 'K', 'us'),
|
|---|
| 69 | 'OnTime': (1L, 4L, 'E', 'sec'),
|
|---|
| 70 | 'OnTimeCounter': (1L, 8L, 'K', 'us'),
|
|---|
| 71 | 'PatchRate': (160L, 4L, 'E', 'Hz'),
|
|---|
| 72 | 'QoS': (1L, 4L, 'J', ''),
|
|---|
| 73 | 'Time': (1L, 8L, 'D', 'MJD'),
|
|---|
| 74 | 'TriggerCounter': (1L, 4L, 'J', 'int'),
|
|---|
| 75 | 'TriggerRate': (1L, 4L, 'E', 'Hz')},
|
|---|
| 76 |
|
|---|
| 77 | choose the *columns* you would like to retrieve from the file::
|
|---|
| 78 |
|
|---|
| 79 | file.register('TriggerRate')
|
|---|
| 80 | file.register('Time')
|
|---|
| 81 | # or in case you are unsure
|
|---|
| 82 | file.register('all')
|
|---|
| 83 |
|
|---|
| 84 | check, what happened. file has got some new members::
|
|---|
| 85 |
|
|---|
| 86 | file.show()
|
|---|
| 87 |
|
|---|
| 88 | but they are all zero. Now one should call *next()* in order to get
|
|---|
| 89 | the file contents row by row::
|
|---|
| 90 |
|
|---|
| 91 | file.next()
|
|---|
| 92 | file.show()
|
|---|
| 93 |
|
|---|
| 94 | or loop over the file::
|
|---|
| 95 |
|
|---|
| 96 | for row in file:
|
|---|
| 97 | print row.Time, row. OnTime
|
|---|
| 98 |
|
|---|
| 99 | *row* is just be a copy of *file*, but inside the for loop, I think it is
|
|---|
| 100 | convenient to access members of *row* rather than members of *file*.
|
|---|
| 101 | I is just easier to understand for the reader, I think.
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 | Stack some slow Data into numpy arrays
|
|---|
| 105 | ======================================
|
|---|
| 106 |
|
|---|
| 107 | This example shows how to stack some columns from slow data into numpy arrays.
|
|---|
| 108 | One first open the file as usual, and *registers* the columns one is interested in.
|
|---|
| 109 | Then one informs the SlowData object about ones intention to have the data stacked.
|
|---|
| 110 | Now the SlowData object will create 2D-arrays, which contain the registered data
|
|---|
| 111 | while one loops over the slowdata file.
|
|---|
| 112 |
|
|---|
| 113 | The looping is important!
|
|---|
| 114 |
|
|---|
| 115 | Have a look::
|
|---|
| 116 |
|
|---|
| 117 | #!/usr/bin/python -tti
|
|---|
| 118 |
|
|---|
| 119 | import time
|
|---|
| 120 | import numpy as np
|
|---|
| 121 | from pyfact import SlowData
|
|---|
| 122 |
|
|---|
| 123 | f = SlowData('20120601.FTM_STATIC_DATA.fits')
|
|---|
| 124 | #
|
|---|
| 125 | # do here --> f.show() if you are not sure about the column names
|
|---|
| 126 | #
|
|---|
| 127 | f.register('PatchThresh')
|
|---|
| 128 | f.register('Time')
|
|---|
| 129 | f.stack()
|
|---|
| 130 |
|
|---|
| 131 | # now loop over the file and let SlowData do the magic
|
|---|
| 132 | for row in f:
|
|---|
| 133 | pass
|
|---|
| 134 |
|
|---|
| 135 | # the stacked data can be found in the dict SlowData.stacked_cols
|
|---|
| 136 | # put the Time array into a variable and convert into seconds since 01.01.1970
|
|---|
| 137 | t = f.stacked_cols['Time'] * 24. * 3600
|
|---|
| 138 |
|
|---|
| 139 | # put the thresholds into another var, for convenience
|
|---|
| 140 | dtr = f.stacked_cols['PatchThresh']
|
|---|
| 141 |
|
|---|
| 142 | # give the user some diagnostic info
|
|---|
| 143 | print 'start time:', time.asctime(time.gmtime(t[0]))
|
|---|
| 144 | print 'stop time:', time.asctime(time.gmtime(t[-1]))
|
|---|
| 145 |
|
|---|
| 146 | print 'mean/median threshold:', dtr.mean(), np.median(dtr)
|
|---|
| 147 | print 'min/max threshold:', dtr.min(), dtr.max()
|
|---|
| 148 | print 'std deviation:', dtr.std()
|
|---|
| 149 |
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 | calling a system command
|
|---|
| 154 | ========================
|
|---|
| 155 | Using the os module any command executable on the command line can be called within a script. This is in particular true for your own python scripts::
|
|---|
| 156 |
|
|---|
| 157 | import os
|
|---|
| 158 | os.system('echo long listing of dir; pwd; ls -l')
|
|---|
| 159 |
|
|---|
| 160 | or suppose you created a script my_script.py::
|
|---|
| 161 |
|
|---|
| 162 | from os import system
|
|---|
| 163 | system('python my_scrip.py')
|
|---|
| 164 |
|
|---|
| 165 |
|
|---|
| 166 |
|
|---|