1 | ========
|
---|
2 | Examples
|
---|
3 | ========
|
---|
4 |
|
---|
5 |
|
---|
6 | RawData
|
---|
7 | ========
|
---|
8 |
|
---|
9 | one may interactively play with the two most important classes *RawData* and
|
---|
10 | *SlowData* from module pyfact...
|
---|
11 |
|
---|
12 | *datafilepath* and *calibfilepath* should be adjusted in case you are not working
|
---|
13 | on the ISDC cluster.
|
---|
14 |
|
---|
15 | explore class RawData::
|
---|
16 |
|
---|
17 | from pyfact import RawData
|
---|
18 | # or from pyfact import *
|
---|
19 |
|
---|
20 | datafilepath = '/fact/raw/2012/03/04/20120304_018.fits.gz'
|
---|
21 | calibfilepath = '/fact/raw/2012/03/04/20120304_012.drs.fits.gz'
|
---|
22 | run = RawData(datafilepath, calibfilepath)
|
---|
23 | event = run.next()
|
---|
24 |
|
---|
25 | type(event)
|
---|
26 |
|
---|
27 | print 70*'*'
|
---|
28 | for key in event:
|
---|
29 | print 'key :', key
|
---|
30 | print 'value:', event[key]
|
---|
31 | print 70*'*'
|
---|
32 |
|
---|
33 | for historical reasons, an event contains *data* and *acal_data*, where *acal_data*
|
---|
34 | would be the DRS amplitude calibrated data, and *data* would be uncalibrated.
|
---|
35 | But since the calibration was moved into a C++ class, for better performance,
|
---|
36 | these keys now contains the same data.
|
---|
37 |
|
---|
38 | loop over RawData::
|
---|
39 |
|
---|
40 | from pyfact import RawData
|
---|
41 | # or from pyfact import *
|
---|
42 |
|
---|
43 | datafilepath = '/fact/raw/2012/03/04/20120304_018.fits.gz'
|
---|
44 | calibfilepath = '/fact/raw/2012/03/04/20120304_012.drs.fits.gz'
|
---|
45 | run = RawData(datafilepath, calibfilepath)
|
---|
46 |
|
---|
47 | for event in run:
|
---|
48 | print 'event_id:', event['event_id']
|
---|
49 | # the data can be found in event['data']
|
---|
50 |
|
---|
51 | SlowData
|
---|
52 | =========
|
---|
53 |
|
---|
54 | have a look at some SlowData::
|
---|
55 |
|
---|
56 | :~$ cd /fact/aux/2012/05/30
|
---|
57 | :/fact/aux/2012/05/30$ python
|
---|
58 |
|
---|
59 | from pyfact import SlowData
|
---|
60 | file = SlowData('20120530.FTM_CONTROL_TRIGGER_RATES.fits')
|
---|
61 | file.show()
|
---|
62 |
|
---|
63 |
|
---|
64 | have a look at the *columns*, that are available::
|
---|
65 |
|
---|
66 | 'columns': {'BoardRate': (40L, 4L, 'E', 'Hz'),
|
---|
67 | 'ElapsedTime': (1L, 4L, 'E', 'sec'),
|
---|
68 | 'FTMtimeStamp': (1L, 8L, 'K', 'us'),
|
---|
69 | 'OnTime': (1L, 4L, 'E', 'sec'),
|
---|
70 | 'OnTimeCounter': (1L, 8L, 'K', 'us'),
|
---|
71 | 'PatchRate': (160L, 4L, 'E', 'Hz'),
|
---|
72 | 'QoS': (1L, 4L, 'J', ''),
|
---|
73 | 'Time': (1L, 8L, 'D', 'MJD'),
|
---|
74 | 'TriggerCounter': (1L, 4L, 'J', 'int'),
|
---|
75 | 'TriggerRate': (1L, 4L, 'E', 'Hz')},
|
---|
76 |
|
---|
77 | choose the *columns* you would like to retrieve from the file::
|
---|
78 |
|
---|
79 | file.register('TriggerRate')
|
---|
80 | file.register('Time')
|
---|
81 | # or in case you are unsure
|
---|
82 | file.register('all')
|
---|
83 |
|
---|
84 | check, what happened. file has got some new members::
|
---|
85 |
|
---|
86 | file.show()
|
---|
87 |
|
---|
88 | but they are all zero. Now one should call *next()* in order to get
|
---|
89 | the file contents row by row::
|
---|
90 |
|
---|
91 | file.next()
|
---|
92 | file.show()
|
---|
93 |
|
---|
94 | or loop over the file::
|
---|
95 |
|
---|
96 | for row in file:
|
---|
97 | print row.Time, row. OnTime
|
---|
98 |
|
---|
99 | *row* is just be a copy of *file*, but inside the for loop, I think it is
|
---|
100 | convenient to access members of *row* rather than members of *file*.
|
---|
101 | I is just easier to understand for the reader, I think.
|
---|
102 |
|
---|
103 |
|
---|
104 | Stack some slow Data into numpy arrays
|
---|
105 | ======================================
|
---|
106 |
|
---|
107 | This example shows how to stack some columns from slow data into numpy arrays.
|
---|
108 | One first open the file as usual, and *registers* the columns one is interested in.
|
---|
109 | Then one informs the SlowData object about ones intention to have the data stacked.
|
---|
110 | Now the SlowData object will create 2D-arrays, which contain the registered data
|
---|
111 | while one loops over the slowdata file.
|
---|
112 |
|
---|
113 | The looping is important!
|
---|
114 |
|
---|
115 | Have a look::
|
---|
116 |
|
---|
117 | #!/usr/bin/python -tti
|
---|
118 |
|
---|
119 | import time
|
---|
120 | import numpy as np
|
---|
121 | from pyfact import SlowData
|
---|
122 |
|
---|
123 | f = SlowData('20120601.FTM_STATIC_DATA.fits')
|
---|
124 | #
|
---|
125 | # do here --> f.show() if you are not sure about the column names
|
---|
126 | #
|
---|
127 | f.register('PatchThresh')
|
---|
128 | f.register('Time')
|
---|
129 | f.stack()
|
---|
130 |
|
---|
131 | # now loop over the file and let SlowData do the magic
|
---|
132 | for row in f:
|
---|
133 | pass
|
---|
134 |
|
---|
135 | # the stacked data can be found in the dict SlowData.stacked_cols
|
---|
136 | # put the Time array into a variable and convert into seconds since 01.01.1970
|
---|
137 | t = f.stacked_cols['Time'] * 24. * 3600
|
---|
138 |
|
---|
139 | # put the thresholds into another var, for convenience
|
---|
140 | dtr = f.stacked_cols['PatchThresh']
|
---|
141 |
|
---|
142 | # give the user some diagnostic info
|
---|
143 | print 'start time:', time.asctime(time.gmtime(t[0]))
|
---|
144 | print 'stop time:', time.asctime(time.gmtime(t[-1]))
|
---|
145 |
|
---|
146 | print 'mean/median threshold:', dtr.mean(), np.median(dtr)
|
---|
147 | print 'min/max threshold:', dtr.min(), dtr.max()
|
---|
148 | print 'std deviation:', dtr.std()
|
---|
149 |
|
---|
150 |
|
---|
151 |
|
---|
152 |
|
---|
153 | calling a system command
|
---|
154 | ========================
|
---|
155 | Using the os module any command executable on the command line can be called within a script. This is in particular true for your own python scripts::
|
---|
156 |
|
---|
157 | import os
|
---|
158 | os.system('echo long listing of dir; pwd; ls -l')
|
---|
159 |
|
---|
160 | or suppose you created a script my_script.py::
|
---|
161 |
|
---|
162 | from os import system
|
---|
163 | system('python my_scrip.py')
|
---|
164 |
|
---|
165 |
|
---|
166 |
|
---|