| 1 | #!/usr/bin/python -tti
|
|---|
| 2 | #
|
|---|
| 3 | # Dominik Neise
|
|---|
| 4 | # TU Dortmund
|
|---|
| 5 | # March 2012
|
|---|
| 6 | import numpy as np
|
|---|
| 7 | import random
|
|---|
| 8 | from coor import Coordinator # class which prepares next neighbor dictionary
|
|---|
| 9 |
|
|---|
| 10 | # just a dummy callback function
|
|---|
| 11 | def _dummy( data, core_c, core, surv ):
|
|---|
| 12 | pass
|
|---|
| 13 |
|
|---|
| 14 | class AmplitudeCleaner( object ):
|
|---|
| 15 | """ Image Cleaning based on signal strength
|
|---|
| 16 |
|
|---|
| 17 | signal strength is a very general term here
|
|---|
| 18 | it could be:
|
|---|
| 19 | * max amplitude
|
|---|
| 20 | * integral
|
|---|
| 21 | * max of sliding sum
|
|---|
| 22 | * ...
|
|---|
| 23 | The Cleaning procedure or algorith is based on the
|
|---|
| 24 | 3 step precedute on the diss of M.Gauk called 'absolute cleaning'
|
|---|
| 25 | """
|
|---|
| 26 |
|
|---|
| 27 | def __init__(self, coreTHR, edgeTHR=None):
|
|---|
| 28 | """ initialize object
|
|---|
| 29 |
|
|---|
| 30 | set the two needed thresholds
|
|---|
| 31 | in case only one is given:
|
|---|
| 32 | edgeTHR is assumen to be coreTHR/2.
|
|---|
| 33 | """
|
|---|
| 34 | self.coreTHR = coreTHR
|
|---|
| 35 | if edgeTHR==None:
|
|---|
| 36 | self.edgeTHR = coreTHR/2.
|
|---|
| 37 | else:
|
|---|
| 38 | self.edgeTHR = edgeTHR
|
|---|
| 39 |
|
|---|
| 40 | self.return_bool_mask = True # default value!
|
|---|
| 41 |
|
|---|
| 42 | # init coordinator
|
|---|
| 43 | self.coordinator = Coordinator()
|
|---|
| 44 | # retrieve next neighbor dict
|
|---|
| 45 | self.nn = self.coordinator.nn
|
|---|
| 46 |
|
|---|
| 47 | def __call__( self, data, return_bool_mask=None , callback=_dummy ):
|
|---|
| 48 | """ compute cleaned image
|
|---|
| 49 |
|
|---|
| 50 | the return value might be:
|
|---|
| 51 | np.array of same shape as data (dtype=bool)
|
|---|
| 52 | or
|
|---|
| 53 | an np.array (dtype=int), which lengths is the number of
|
|---|
| 54 | pixel which survived the cleaning, and which contains the CHIDs
|
|---|
| 55 | of these survivors
|
|---|
| 56 |
|
|---|
| 57 | the default is to return the bool array
|
|---|
| 58 | but if you set it once, differently, eg like this:
|
|---|
| 59 | myAmplitudeCleaner.return_bool_mask = False
|
|---|
| 60 | or like
|
|---|
| 61 | myAmplitudeCleaner( mydata, False)
|
|---|
| 62 |
|
|---|
| 63 | it will be stored, until you change it again...
|
|---|
| 64 | """
|
|---|
| 65 | #shortcuts
|
|---|
| 66 | coreTHR = self.coreTHR
|
|---|
| 67 | edgeTHR = self.edgeTHR
|
|---|
| 68 | nn = self.nn
|
|---|
| 69 |
|
|---|
| 70 | # once set, never forget :-)
|
|---|
| 71 | if return_bool_mask != None:
|
|---|
| 72 | self.return_bool_mask = return_bool_mask
|
|---|
| 73 | return_bool_mask = self.return_bool_mask
|
|---|
| 74 |
|
|---|
| 75 | # these will hold the outcome of..
|
|---|
| 76 | core_c = np.zeros( len(data), dtype=bool ) # ... step 1
|
|---|
| 77 | core = np.zeros( len(data), dtype=bool ) # ... step 2
|
|---|
| 78 | surv = np.zeros( len(data), dtype=bool ) # ... step 3
|
|---|
| 79 | # It could be done in one variable, but for debugging and simplicity,
|
|---|
| 80 | # I use more ...
|
|---|
| 81 |
|
|---|
| 82 | # this is Gauks step 1
|
|---|
| 83 | core_c = data > coreTHR
|
|---|
| 84 | # loop over all candidates and check if it has a next neighbor core pixel
|
|---|
| 85 |
|
|---|
| 86 | for c in np.where(core_c)[0]:
|
|---|
| 87 | # loop over all n'eighbors of c'andidate
|
|---|
| 88 | for n in nn[c]:
|
|---|
| 89 | # if c has a neighbor, beeing also a candidate
|
|---|
| 90 | # then c is definitely a core.
|
|---|
| 91 | # Note: DN 13.03.12
|
|---|
| 92 | # actually the neighbor is also now found to be core pixel,
|
|---|
| 93 | # and still this knowledge is thrown away and later this
|
|---|
| 94 | # neighbor itself is treated again as a c'andidate.
|
|---|
| 95 | # this should be improved.
|
|---|
| 96 | if core_c[n]:
|
|---|
| 97 | core[c]=True
|
|---|
| 98 | break
|
|---|
| 99 | # at this moment step 2 is done
|
|---|
| 100 |
|
|---|
| 101 | # start of step 3.
|
|---|
| 102 | # every core pixel is automaticaly a survivor, --> copy it
|
|---|
| 103 | surv = core.copy()
|
|---|
| 104 | for c in np.where(core)[0]:
|
|---|
| 105 | for n in nn[c]:
|
|---|
| 106 | # if neighbor is a core pixel, then do nothing
|
|---|
| 107 | if core[n]:
|
|---|
| 108 | pass
|
|---|
| 109 | # if neighbor is over edgeTHR, it is lucky and survived.
|
|---|
| 110 | elif data[n] > edgeTHR:
|
|---|
| 111 | surv[n] = True
|
|---|
| 112 |
|
|---|
| 113 |
|
|---|
| 114 | # calculate number of islands
|
|---|
| 115 | surv_id = np.where(surv)[0]
|
|---|
| 116 | # make a copy of survivors:
|
|---|
| 117 | self.surv_copy = list(surv_id.copy())
|
|---|
| 118 | surv_copy = self.surv_copy
|
|---|
| 119 | # the first survivor belongs to the first island, by definition
|
|---|
| 120 | self.islands = []
|
|---|
| 121 | islands = self.islands
|
|---|
| 122 | if len(surv_copy) > 0:
|
|---|
| 123 | islands.append([surv_copy[0]])
|
|---|
| 124 | del surv_copy[0]
|
|---|
| 125 | nn_found = True
|
|---|
| 126 | while len(surv_copy) > 0:
|
|---|
| 127 | if nn_found:
|
|---|
| 128 | nn_found = False
|
|---|
| 129 | for i in islands[-1]:
|
|---|
| 130 | #print 'i:',i
|
|---|
| 131 | #print 'nn[i]:', nn[i]
|
|---|
| 132 | #print 'type(nn[i]):', type(nn[i])
|
|---|
| 133 | for n in nn[i]:
|
|---|
| 134 | if n in surv_copy:
|
|---|
| 135 | del surv_copy[surv_copy.index(n)]
|
|---|
| 136 | islands[-1].append(n)
|
|---|
| 137 | nn_found = True
|
|---|
| 138 | #print 'islands'
|
|---|
| 139 | #print islands, len(islands)
|
|---|
| 140 | #print 'surv_copy'
|
|---|
| 141 | #print surv_copy, len(surv_copy)
|
|---|
| 142 | #print '*'*80
|
|---|
| 143 | #print 'END of for i in islands[-1]:'
|
|---|
| 144 | #print '*'*80
|
|---|
| 145 |
|
|---|
| 146 | else:
|
|---|
| 147 | islands.append( [ surv_copy[0] ])
|
|---|
| 148 | del surv_copy[0]
|
|---|
| 149 | nn_found = True
|
|---|
| 150 |
|
|---|
| 151 | #print 'cleaner found' ,len(islands), 'islands'
|
|---|
| 152 |
|
|---|
| 153 | callback( data, core_c, core, surv)
|
|---|
| 154 |
|
|---|
| 155 | if return_bool_mask:
|
|---|
| 156 | return surv
|
|---|
| 157 | else:
|
|---|
| 158 | return np.where(surv)[0]
|
|---|
| 159 |
|
|---|
| 160 |
|
|---|
| 161 | def info(self):
|
|---|
| 162 | """ print Cleaner Informatio
|
|---|
| 163 |
|
|---|
| 164 | """
|
|---|
| 165 | print 'coreTHR: ', self.coreTHR
|
|---|
| 166 | print 'edgeTHR: ', self.edgeTHR
|
|---|
| 167 | print 'return_bool_mask:', self.return_bool_mask
|
|---|
| 168 |
|
|---|
| 169 | def _test_callback( data, core_c, core, surv ):
|
|---|
| 170 | """ test callback functionality of AmplitudeCleaner"""
|
|---|
| 171 | print 'core_c', np.where(core_c)[0], '<--', core_c.sum()
|
|---|
| 172 | print 'core', np.where(core)[0], '<--', core.sum()
|
|---|
| 173 | print 'surv', np.where(surv)[0], '<--', surv.sum()
|
|---|
| 174 | print 'data', '*'*60
|
|---|
| 175 | print data
|
|---|
| 176 |
|
|---|
| 177 |
|
|---|
| 178 | def _test_cleaner():
|
|---|
| 179 | """ test for class AmplitudeCleaner"""
|
|---|
| 180 | from plotters import CamPlotter
|
|---|
| 181 | NPIX = 1440
|
|---|
| 182 | SIGMA = 1
|
|---|
| 183 |
|
|---|
| 184 | CORE_THR = 45
|
|---|
| 185 | EDGE_THR = 18
|
|---|
| 186 |
|
|---|
| 187 | harvey_keitel = AmplitudeCleaner( CORE_THR, EDGE_THR)
|
|---|
| 188 | harvey_keitel.info()
|
|---|
| 189 | # if you wonder why the cleaner object is called is it is:
|
|---|
| 190 | # http://www.youtube.com/watch?v=pf-Amvro2SY
|
|---|
| 191 |
|
|---|
| 192 | nn = Coordinator().nn
|
|---|
| 193 |
|
|---|
| 194 | testdata = np.zeros( NPIX )
|
|---|
| 195 | #add some noise
|
|---|
| 196 | testdata += 3
|
|---|
| 197 |
|
|---|
| 198 | # 'make' 3 doubleflowers
|
|---|
| 199 | cores = []
|
|---|
| 200 | for i in range(3):
|
|---|
| 201 | cores.append( random.randint(0, NPIX-1) )
|
|---|
| 202 | nene = nn[ cores[-1] ] # shortcut
|
|---|
| 203 | luckynn = random.sample( nene, 1)[0] # shortcut
|
|---|
| 204 | #print nene
|
|---|
| 205 | #print luckynn
|
|---|
| 206 | cores.append( luckynn )
|
|---|
| 207 | edges = []
|
|---|
| 208 | for c in cores:
|
|---|
| 209 | for n in nn[c]:
|
|---|
| 210 | if n not in cores:
|
|---|
| 211 | edges.append(n)
|
|---|
| 212 |
|
|---|
| 213 | # add those doubleflowers to the testdata
|
|---|
| 214 | for c in cores:
|
|---|
| 215 | testdata[c] += 1.2*CORE_THR
|
|---|
| 216 | for e in edges:
|
|---|
| 217 | testdata[e] += 1.2*EDGE_THR
|
|---|
| 218 |
|
|---|
| 219 |
|
|---|
| 220 | #cleaning_mask = harvey_keitel(testdata, callback=_test_callback)
|
|---|
| 221 | cleaning_mask = harvey_keitel(testdata)
|
|---|
| 222 |
|
|---|
| 223 | plotall = CamPlotter('all')
|
|---|
| 224 | plotclean = CamPlotter('cleaned')
|
|---|
| 225 |
|
|---|
| 226 | plotall(testdata)
|
|---|
| 227 | plotclean(testdata, cleaning_mask)
|
|---|
| 228 |
|
|---|
| 229 |
|
|---|
| 230 |
|
|---|
| 231 | if __name__ == '__main__':
|
|---|
| 232 | """ tests """
|
|---|
| 233 |
|
|---|
| 234 | _test_cleaner() |
|---|