| 1 | #!/usr/bin/python -tt
|
|---|
| 2 | #
|
|---|
| 3 | # Dominik Neise
|
|---|
| 4 | #
|
|---|
| 5 | import os.path
|
|---|
| 6 | import numpy as np
|
|---|
| 7 | import math
|
|---|
| 8 | from euclid import *
|
|---|
| 9 | import sys
|
|---|
| 10 |
|
|---|
| 11 | class Coordinator(object):
|
|---|
| 12 | """ class to transform chid <-> hexagonal coordinates and vice versa """
|
|---|
| 13 |
|
|---|
| 14 | def __init__(self, map_file_path = "../map.txt"):
|
|---|
| 15 | """ read map text file and generate from the three columns
|
|---|
| 16 | chid, xe and ye
|
|---|
| 17 | 3 dictionaries: chid2coor, coor2chid, chid2nn
|
|---|
| 18 | chid2nn means 'chid_to_next_neighbor_chids'
|
|---|
| 19 |
|
|---|
| 20 | this is done by calculating the hexagonal coordinates
|
|---|
| 21 | from the euclidian coordinates given in xe & ye.
|
|---|
| 22 | the center and the two base vectors are hard coded to be:
|
|---|
| 23 | center = Vector2( 0. , 1./2.)
|
|---|
| 24 | ey = Vector2( 0. , 1. )
|
|---|
| 25 | ex = Vector2( sqrt(3)/2. , 1./2. )
|
|---|
| 26 | """
|
|---|
| 27 | _CheckPath(map_file_path)
|
|---|
| 28 | path = os.path.abspath(__file__)
|
|---|
| 29 | path = os.path.dirname(path)
|
|---|
| 30 | map_file_path = os.path.join(path, map_file_path)
|
|---|
| 31 | chid, xe, ye = np.loadtxt(map_file_path, unpack=True)
|
|---|
| 32 | # -ye in order to correct for the sign difference between my mapping file
|
|---|
| 33 | # and FACTmap111030.txt
|
|---|
| 34 | self.x = xe
|
|---|
| 35 | self.y = ye
|
|---|
| 36 | coors = zip(xe,-ye,chid)
|
|---|
| 37 |
|
|---|
| 38 | # this list will contain vectors pointing to the center of pixel
|
|---|
| 39 | # in euclidian space. The coordinate system is in the focalplane of the
|
|---|
| 40 | # camera, the unit is not mm, but something like 9mm.
|
|---|
| 41 | # actually the list will not only contain these vectors, but also
|
|---|
| 42 | # also the CHID of the according pixel, both bundled in a tuple
|
|---|
| 43 | vectors_and_chids = []
|
|---|
| 44 | for c in coors:
|
|---|
| 45 | vectors_and_chids.append( (Vector2(c[0], c[1]) , int(c[2])) )
|
|---|
| 46 |
|
|---|
| 47 | # In the next few lines, I will calculate hexagonal coordinates from
|
|---|
| 48 | # the euclidian coordinates. The reason is, that I like to work with
|
|---|
| 49 | # integers.
|
|---|
| 50 | # I could have read these numbers from a file instead of calculating,
|
|---|
| 51 | # but this is error prone, because one has to make sure, the different
|
|---|
| 52 | # coordinates in a file are always conincident.
|
|---|
| 53 |
|
|---|
| 54 | # The center of the coordinate system is not 0. / 0. since there
|
|---|
| 55 | # is not pixel :-) We decided to define the upper one of the two
|
|---|
| 56 | # central pixels, as 'The Center' :-)
|
|---|
| 57 | center = Vector2( 0. , 1./2.)
|
|---|
| 58 | # the y-axis goes up
|
|---|
| 59 | ey = Vector2( 0. , 1. )
|
|---|
| 60 | # but the x-axis is turned 30degrees up, wrt the euclidian x-axis.
|
|---|
| 61 | ex = Vector2( math.sqrt(3)/2. , 1./2. )
|
|---|
| 62 | self.center = ( center.x , center.y )
|
|---|
| 63 | self.ey = ( ey.x, ey.y)
|
|---|
| 64 | self.ex = ( ex.x, ex.y )
|
|---|
| 65 |
|
|---|
| 66 | # these dicts will serve as translators,
|
|---|
| 67 | # e.g. put a chid into chid2coor and you get a Vector2 out, which points
|
|---|
| 68 | # to the center of the according pixel.
|
|---|
| 69 | coor2chid = {}
|
|---|
| 70 | chid2coor = {}
|
|---|
| 71 | chid2coor_np = {}
|
|---|
| 72 | chid2vec = {}
|
|---|
| 73 | euc2chid = {}
|
|---|
| 74 | # we will fill these translators now.
|
|---|
| 75 | for vector_and_chid in vectors_and_chids:
|
|---|
| 76 | vec = vector_and_chid[0]
|
|---|
| 77 | chid = vector_and_chid[1]
|
|---|
| 78 |
|
|---|
| 79 | # translating from euclidian into hexagonal
|
|---|
| 80 | # coordinates here...
|
|---|
| 81 | x = (vec-center).x / float(ex.x)
|
|---|
| 82 | y = ((vec-center)-x*ex).y / float(ey.y)
|
|---|
| 83 |
|
|---|
| 84 | # I want them to be integger, so I think I have to
|
|---|
| 85 | # treat the values, which are almost zero special,
|
|---|
| 86 | # but maybe rounding is just sufficient, as it is done
|
|---|
| 87 | # in the line after these...
|
|---|
| 88 | if abs(x) < 0.01:
|
|---|
| 89 | x=0.0
|
|---|
| 90 | if abs(y) < 0.01:
|
|---|
| 91 | y=0.0
|
|---|
| 92 |
|
|---|
| 93 | # okay, now coor, is the hexagonal coordinate pair of the current pixel
|
|---|
| 94 | # as a tuple
|
|---|
| 95 | coor = (int(round(x)),int(round(y)))
|
|---|
| 96 | # as Vector2
|
|---|
| 97 | coor_vec = Vector2(coor[0], coor[1])
|
|---|
| 98 |
|
|---|
| 99 | # since we just calculated this coordinate, we should make
|
|---|
| 100 | # sure, that we did not make an error such, that two pixels have the
|
|---|
| 101 | # same coordinates
|
|---|
| 102 | # other errors like holes in the camera plane cannot be detected so easily
|
|---|
| 103 | if coor in coor2chid:
|
|---|
| 104 | print 'error while filling "coor2chid":'
|
|---|
| 105 | print 'coor:',coor,'of chid:',chid,
|
|---|
| 106 | print 'is equal to coor of chid:',coor2chid[coor]
|
|---|
| 107 |
|
|---|
| 108 | # now we fill the translators
|
|---|
| 109 | chid2coor[ chid ] = coor
|
|---|
| 110 | chid2coor_np[ chid ] = np.array(coor)
|
|---|
| 111 | chid2vec[ chid ] = coor_vec
|
|---|
| 112 | # this translator is hardly used by people, but the next step
|
|---|
| 113 | # the calculation of the neighbors needs it
|
|---|
| 114 | coor2chid[ coor ] = chid
|
|---|
| 115 | euc2chid[(vec[0],vec[1])] = chid
|
|---|
| 116 |
|
|---|
| 117 |
|
|---|
| 118 | # hard code the offsets to the next neighbors
|
|---|
| 119 | # in hexagonal coordinates, the coordinates of neighbors are easily calculated.
|
|---|
| 120 | # just add one of the Vectors below.
|
|---|
| 121 | offsets = [ Vector2(1,0) , # right and up
|
|---|
| 122 | Vector2(-1,0) , # left and down
|
|---|
| 123 | Vector2(1,-1) , # right and down
|
|---|
| 124 | Vector2(0,1) , # up
|
|---|
| 125 | Vector2(0,-1) , # down
|
|---|
| 126 | Vector2(-1,1) ] # left and up
|
|---|
| 127 | # this dict serves as a neighbor look up table
|
|---|
| 128 | # put a CHID in and get a list of neighboring CHIDs out.
|
|---|
| 129 | chid2nn = {}
|
|---|
| 130 | for chid in chid2coor.keys():
|
|---|
| 131 | coor = Vector2( chid2coor[chid][0] , chid2coor[chid][1] )
|
|---|
| 132 | nn_coors = []
|
|---|
| 133 | nn_chids = []
|
|---|
| 134 | for offset in offsets:
|
|---|
| 135 | nn_coors.append( ((coor+offset).x , (coor+offset).y) )
|
|---|
| 136 | for coor in nn_coors:
|
|---|
| 137 | if coor in coor2chid:
|
|---|
| 138 | nn_chids.append( coor2chid[coor] )
|
|---|
| 139 | chid2nn[chid] = nn_chids
|
|---|
| 140 | self.nn = chid2nn
|
|---|
| 141 |
|
|---|
| 142 | self.chid2coor = chid2coor
|
|---|
| 143 | self.chid2coor_np = chid2coor_np
|
|---|
| 144 | self.coor2chid = coor2chid
|
|---|
| 145 | self.chid2vec = chid2vec
|
|---|
| 146 | self.euc2chid = euc2chid
|
|---|
| 147 |
|
|---|
| 148 | # for chid in chid2nn.keys():
|
|---|
| 149 | # print chid, '->',chid2nn[chid]
|
|---|
| 150 |
|
|---|
| 151 | def first(a):
|
|---|
| 152 | return a[0]
|
|---|
| 153 |
|
|---|
| 154 | def second(a):
|
|---|
| 155 | return a[1]
|
|---|
| 156 |
|
|---|
| 157 |
|
|---|
| 158 | def _CheckPath( inpath ):
|
|---|
| 159 | path = os.path.abspath(__file__)
|
|---|
| 160 | path = os.path.dirname(path)
|
|---|
| 161 | inpath = os.path.join(path, inpath)
|
|---|
| 162 | if not os.path.isfile(inpath):
|
|---|
| 163 | raise IOError('not able to find file: '+inpath)
|
|---|
| 164 |
|
|---|