1 | #!/usr/bin/python -tt
|
---|
2 | #
|
---|
3 | # Werner Lustermann
|
---|
4 | # ETH Zurich
|
---|
5 | #
|
---|
6 | import numpy as np
|
---|
7 |
|
---|
8 | import fir_filter as fir
|
---|
9 |
|
---|
10 | class DRSSpikes(object):
|
---|
11 | """ remove spikes (single or double false readings) from DRS4 data
|
---|
12 | Strategy:
|
---|
13 | * filter the data, removing the signal, thus spike(s) are clearly visible
|
---|
14 | * search single and double spikes
|
---|
15 | * replace the spike by a value derived from the neighbors
|
---|
16 |
|
---|
17 | """
|
---|
18 |
|
---|
19 | def __init__(self, threshold=7.,
|
---|
20 | single_pattern=np.array( [-0.5, 1.0, -0.5]) ,
|
---|
21 | double_pattern=np.array([-1., 1., 1., -1.]),
|
---|
22 | user_action=lambda candidates, singles, doubles, data, ind: None,
|
---|
23 | debug = False):
|
---|
24 | """ initialize spike filter
|
---|
25 | template_single: template of a single slice spike
|
---|
26 | template_double: template of a two slice spike
|
---|
27 |
|
---|
28 | """
|
---|
29 |
|
---|
30 | self.threshold = threshold
|
---|
31 | self.single_pattern = single_pattern * threshold
|
---|
32 | self.double_pattern = double_pattern * threshold
|
---|
33 |
|
---|
34 | self.remove_signal = fir.RemoveSignal()
|
---|
35 |
|
---|
36 | self.user_action = user_action
|
---|
37 | self.debug = debug
|
---|
38 |
|
---|
39 | def __call__(self, data):
|
---|
40 |
|
---|
41 | self.row, self.col = data.shape
|
---|
42 | indicator = self.remove_signal(data)
|
---|
43 | a = indicator.flatten()
|
---|
44 | singles = []
|
---|
45 | doubles = []
|
---|
46 |
|
---|
47 | # a spike in the first or last channel is considered as a filter artefact
|
---|
48 | candidates = np.where(a[1:-2] > self.threshold)
|
---|
49 | # candidates = np.where(a[1:1022] > self.threshold)
|
---|
50 | cc = candidates[0]
|
---|
51 | #print 'cc: ', cc
|
---|
52 | #: find single spikes
|
---|
53 | p = self.single_pattern * np.sign( self.single_pattern )
|
---|
54 | for i, can in enumerate( zip(a[cc], a[cc+1], a[cc+2]) ):
|
---|
55 | #print 'can : p', can, p
|
---|
56 | can = can * np.sign(self.single_pattern)
|
---|
57 | if np.all(can > p):
|
---|
58 | singles.append(cc[i])
|
---|
59 |
|
---|
60 | #: find double spikes
|
---|
61 | p = self.double_pattern * np.sign( self.double_pattern )
|
---|
62 | for i, can in enumerate( zip(a[cc], a[cc+1], a[cc+2], a[cc+3]) ):
|
---|
63 | #print 'data: ', [data[0,cc[i]+k] for k in range(3)]
|
---|
64 | #print 'can : p', can, p
|
---|
65 | can = can * np.sign(self.double_pattern)
|
---|
66 | if np.all(can > p):
|
---|
67 | doubles.append(cc[i])
|
---|
68 |
|
---|
69 | if self.debug:
|
---|
70 | print 'singles: ', singles
|
---|
71 | print 'doubles: ', doubles
|
---|
72 |
|
---|
73 | self.user_action(cc, singles, doubles, data, a)
|
---|
74 |
|
---|
75 | data = self.remove_single_spikes(singles, data)
|
---|
76 | data = self.remove_double_spikes(doubles, data)
|
---|
77 | return data
|
---|
78 |
|
---|
79 | def remove_single_spikes(self, singles, data):
|
---|
80 | data = data.flatten()
|
---|
81 | for spike in singles:
|
---|
82 | data[spike] = (data[spike-1] + data[spike+1]) / 2.
|
---|
83 | return data.reshape(self.row, self.col)
|
---|
84 |
|
---|
85 | def remove_double_spikes(self, doubles, data):
|
---|
86 | data = data.flatten()
|
---|
87 | for spike in doubles:
|
---|
88 | data[spike:spike+2] = (data[spike-1] + data[spike+2]) / 2.
|
---|
89 | return data.reshape(self.row, self.col)
|
---|
90 |
|
---|
91 | class DRSSpikes_2D(object):
|
---|
92 | """ remove spikes (single or double false readings) from DRS4 data
|
---|
93 | Strategy:
|
---|
94 | * filter the data, removing the signal, thus spike(s) are clearly visible
|
---|
95 | * search single and double spikes
|
---|
96 | * replace the spike by a value derived from the neighbors
|
---|
97 |
|
---|
98 | """
|
---|
99 |
|
---|
100 | def __init__(self, threshold=7.,
|
---|
101 | single_pattern=np.array( [-0.5, 1.0, -0.5]) ,
|
---|
102 | double_pattern=np.array([-1., 1., 1., -1.]),
|
---|
103 | user_action=lambda self, data: None,
|
---|
104 | debug = False):
|
---|
105 | """ initialize spike filter
|
---|
106 | template_single: template of a single slice spike
|
---|
107 | template_double: template of a two slice spike
|
---|
108 | """
|
---|
109 |
|
---|
110 | self.threshold = threshold
|
---|
111 | self.single_pattern = single_pattern * threshold
|
---|
112 | self.double_pattern = double_pattern * threshold
|
---|
113 |
|
---|
114 | self.remove_signal = fir.RemoveSignal()
|
---|
115 |
|
---|
116 | self.user_action = user_action
|
---|
117 | self.debug = debug
|
---|
118 |
|
---|
119 | def __call__(self, data):
|
---|
120 | # shortcuts
|
---|
121 | row, col = data.shape
|
---|
122 | thr = self.threshold
|
---|
123 |
|
---|
124 | # these are: lists, which will contain positiones of spikes
|
---|
125 | # lets see if this is feasible
|
---|
126 | self.singles = []
|
---|
127 | self.doubles = []
|
---|
128 | singles = self.singles
|
---|
129 | doubles = self.doubles
|
---|
130 |
|
---|
131 | # indi means indicator, i.e. a filter output, which indicates, where spikes
|
---|
132 | # are positioned in the unfiltered data
|
---|
133 | # indi is delayed w.r.t. data by 1
|
---|
134 | self.indi = self.remove_signal(data)
|
---|
135 | indi = self.indi
|
---|
136 |
|
---|
137 | # cand (candidates), is a tuple of two equal length np.arrays
|
---|
138 | # each pair of array elements can be understood as coordinates, pointing out
|
---|
139 | # where the condition was fullfilled in indi.
|
---|
140 | # e.g. in pixel = cand[0][0] around slice = cand[1][0]
|
---|
141 | # there is probably a spike
|
---|
142 | #
|
---|
143 | # for double spikes, two neighboring slices fulfill the condition
|
---|
144 | # which lead to something like:
|
---|
145 | # cand =( array([ ... 3, 3, ... ]) , array([ ... 102, 103 ...]) )
|
---|
146 | cand = np.where(indi[:,1:-2] > thr)
|
---|
147 | self.cand = cand
|
---|
148 | # in order to verify, that the candidate is really a single or double
|
---|
149 | # spike, we compare the spike with a 3 or 4 slices pattern.
|
---|
150 | # therefor we want to slice out 4 slices out of indi, where ever the
|
---|
151 | # condition was fullfilled
|
---|
152 | #
|
---|
153 | # note: since indi was sliced in the np.where statement,
|
---|
154 | # the resulting cand coordinates are reduced by 1 in the slice coordinate
|
---|
155 | # this is actually what we want, since a spike has a distinctive low-high-low
|
---|
156 | # pattern in the indicator. So we *want* the indicator slices to be shifted 1
|
---|
157 | # to the left
|
---|
158 | # and in addition, by pure chance, the coordinates in cand[1] point directly
|
---|
159 | # to the real spike in data, since indi was delayed by one anyway.
|
---|
160 | cand_slices = np.empty( (len(cand[0]), 4), dtype=np.int )
|
---|
161 | self.cand_slices = cand_slices
|
---|
162 | for i in range(4):
|
---|
163 | cand_slices[i] = indi[ (cand[0], cand[1]+i )
|
---|
164 |
|
---|
165 | # search for single spikes
|
---|
166 | sp = self.single_pattern * np.sign( self.single_pattern )
|
---|
167 | for i, can in enumerate(cand_slices[:-1]):
|
---|
168 | can *= np.sign(sp)
|
---|
169 | if np.all( can > sp):
|
---|
170 | singles.append( (cand[0][i],can[1][i]) )
|
---|
171 |
|
---|
172 | # I guess in principle it is possible, that a candidate looks like a
|
---|
173 | # single and like a double, ... nut with the current patters
|
---|
174 | # but in case one changes the patterns ... then it might happen.
|
---|
175 | # In addition the treatment of double spikes is maybed not smart:
|
---|
176 | # In case both parts of a double spike fulfill the 1st condition
|
---|
177 | # only the first candidate will fulfill the 2nd condition
|
---|
178 | # In case only the first part fulfilled the 1st conition, then
|
---|
179 | # we are fine
|
---|
180 | # In case only the second part triggered the first time, then
|
---|
181 | # we sliced out the wrong piece and it wouldn't fulfull the 2nd anyway.
|
---|
182 | #
|
---|
183 | # This means, in case there are neighboring hits in cand,
|
---|
184 | # The 2nd neighbor will never fulfill the 2nd condition.
|
---|
185 |
|
---|
186 | # search for double spikes
|
---|
187 | dp = self.double_pattern * np.sign( self.double_pattern )
|
---|
188 | for i, can in enumerate( cand_slices ):
|
---|
189 | can *= np.sign(dp)
|
---|
190 | if np.all(can > dp):
|
---|
191 | doubles.append( (cand[0][i],can[1][i]) )
|
---|
192 |
|
---|
193 | self.user_action(self, data)
|
---|
194 |
|
---|
195 | data = self.remove_single_spikes(singles, data)
|
---|
196 | data = self.remove_double_spikes(doubles, data)
|
---|
197 | return data
|
---|
198 |
|
---|
199 | def remove_single_spikes(self, singles, data):
|
---|
200 | for spike in singles:
|
---|
201 | data[spike[0],spike[1]] = (data[spike[0],spike[1]-1] + data[spike[0],spike[1]+1]) / 2.
|
---|
202 | return data
|
---|
203 |
|
---|
204 | def remove_double_spikes(self, doubles, data):
|
---|
205 | for spike in doubles:
|
---|
206 | data[spike[0],spike[1]:spike[1]+2] = (data[spike[0],spike[1]-1] + data[spike[0],spike[1]+2]) / 2.
|
---|
207 | return data
|
---|
208 |
|
---|
209 |
|
---|
210 |
|
---|
211 | def _test():
|
---|
212 |
|
---|
213 | a = np.ones((3,12)) * 3.
|
---|
214 | a[0,3] = 7.
|
---|
215 | a[1,7] = 14.
|
---|
216 | a[1,8] = 14.
|
---|
217 | a[2,4] = 50.
|
---|
218 | a[2,5] = 45.
|
---|
219 | a[2,8] = 20.
|
---|
220 |
|
---|
221 | print a
|
---|
222 |
|
---|
223 | SpikeRemover = DRSSpikes(3., debug=True)
|
---|
224 | print 'single spike pattern ', SpikeRemover.single_pattern
|
---|
225 | print 'double spike pattern ', SpikeRemover.double_pattern
|
---|
226 | afilt = SpikeRemover(a)
|
---|
227 | print afilt
|
---|
228 |
|
---|
229 | if __name__ == '__main__':
|
---|
230 | """ test the class """
|
---|
231 | _test()
|
---|
232 |
|
---|
233 |
|
---|